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The problem of estimating the density-weighted average derivative of a regression function is considered. We present a new consistent estimator based on a plug-in approach and wavelet projections. Its performances are explored under various dependence structures on the observations: the independent case, the ρ-mixing case and the α-mixing case. More precisely, denoting n the number of observations, in the independent case, we prove that it attains 1/n under the mean squared error, in the ρ-mixing case, 1/ √ n under the mean absolute error, and, in the α-mixing case, ln n/n under the mean absolute error. A short simulation study illustrates the theory.

Introduction

We consider the following nonparametric regression model:

Y i = f (X i ) + ξ i ,
i ∈ {1, . . . , n}, (1.1)

1
where the design variables (or input variables) X 1 , . . . , X n are n identically distributed random variables with common unknown density function g, the noise ξ 1 , . . . , ξ n are n identically distributed random variables with E(ξ 1 ) = 0 and E(ξ 4 1 ) < ∞, and f is an unknown regression function. Moreover, it is understood that ξ i is independent of X i , for any i ∈ {1, . . . , n}. In this paper, we are interested in the pointwise estimation of the density-weighted average derivative, which is defined as follows δ = E g(X 1 )f (X 1 ) = g 2 (x)f (x)dx,

(1.2) from (X 1 , Y 1 ), . . . , (X n , Y n ). It is known that the estimation of δ is of interest in many statistical and econometric models, especially in the context of estimation of coefficients in index models (for review see, e.g., [START_REF] Powell | Estimation of Semiparametric Models[END_REF] and [START_REF] Matzkin | Nonparametric identification[END_REF]). Indeed, estimation of coefficients in single index models relies on the fact that averaged derivatives of the conditional mean are proportional to the coefficients (see, e.g., [START_REF] Stoker | Consistent estimation of scaled coefficients[END_REF][START_REF] Stoker | Tests of additive derivative constraints[END_REF], [START_REF] Powell | Semiparametric estimation of index coefficients[END_REF] and [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivatives[END_REF]). Also further motivation of average derivative estimate can be found in specific problems in economics, such as measuring the positive definiteness of the aggregate income effects matrix for assessing the "Law of Demand" (see [START_REF] Härdle | Empirical Evidence on the Law of Demand[END_REF]), policy analysis of tax and subsidy reform (see [START_REF] Deaton | Parametric and Nonparametric Approaches to Price and Tax Reform[END_REF]), and nonlinear pricing in labor markets (see [START_REF] Coppejans | Kernel Estimation of Average Derivatives and Differences[END_REF]). When (X 1 , Y 1 ), . . . , (X n , Y n ) are i.i.d., the most frequently used nonparametric techniques are based on kernel estimators. Three different approaches can be found in [START_REF] Härdle | Investigating smooth multiple regression by the method of average derivatives[END_REF], [START_REF] Powell | Semiparametric estimation of index coefficients[END_REF] and [START_REF] Stoker | Equivalence of Direct, Indirect and Slope Estimators of Average Derivatives, Nonparametric and Semiparametric Methods in Econometrics and Statistics[END_REF]. Their consistency are established. Recent theoretical and practical developments related to these estimators can be found in, e.g., [START_REF] Härdle | Bandwidth Choice for Average Derivative Estimation[END_REF], [START_REF] Türlach | Fast implementation of density-weighted average derivative estimation[END_REF], [START_REF] Powell | Optimal Bandwidth Choice For Density-Weighted Averages[END_REF], [START_REF] Banerjee | A method of estimating the Average Derivative[END_REF], Schafgans and Zinde-Walsh (2010) and [START_REF] Cattaneo | Robust Data-Driven Inference for Density-Weighted Average Derivatives[END_REF][START_REF] Cattaneo | Small Bandwidth Asymptotics for Density-Weighted Average Derivatives[END_REF]. A new estimator based on orthogonal series methods has been introduced in Prakasa Rao (1995). More precisely, using the same plug-in approach of [START_REF] Powell | Semiparametric estimation of index coefficients[END_REF], δ the estimator of the density-weighted average derivative has the following form

δ = - 2 n n i=1 Y i ĝ i (X i ), (1.3)
where ĝ i denotes an orthogonal series estimator of g constructed from X 1 , . . . , X i-1 , X i+1 , X n . Moreover, the consistency of this estimator is proved.

In this study, we develop a new estimator based on a different plug-in approach to the one in [START_REF] Powell | Semiparametric estimation of index coefficients[END_REF] and a particular orthogonal series method: the wavelet series method. The main advantage of this method is its adaptability to the varying degrees of smoothness of the underlying unknown curves. For a complete discussion of wavelets and their applications in statistics, we refer to [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF], [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Vidakovic | Statistical Modeling by Wavelets[END_REF].

When (X 1 , Y 1 ), . . . , (X n , Y n ) are i.i.d., we prove that our estimator attains the parametric rate of convergence 1/n under the Mean Square Error (MSE). This rate is a bit better to the one attains by the estimator in Prakasa [START_REF] Rao | Consistent estimation of density-weighted average derivative by orthogonal series method[END_REF]. Moreover, the flexibility of our approach enables us to consider possible dependent observations, thus opening new perspectives of applications. This is illustrated by the considerations of the ρ-mixing dependence introduced by [START_REF] Kolmogorov | On strong mixing conditions for stationary Gaussian processes[END_REF] and the α-mixing dependence introduced by [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. Adopting the Mean Absolute Error (MAE), we prove that our estimator attains the rate of convergence 1/

√ n in the ρ-mixing case, and ln n/n in the α-mixing case. All these results prove the consistency of our estimator and its robustness in term of dependence on the observations. Mention that, to the best of our knowledge, the estimation of δ in such a dependent setting has never been explored earlier. A simulation study illustrates the performance of the proposed wavelet method in finite sample situations. The remainder of the paper is set out as follows. Next, in Section 2, we discuss the preliminaries of the wavelet orthogonal bases and we recall the definition of some mixing conditions. Section is devoted to our wavelet estimator. Assumptions on (1.1) are described in Section 4. Section 5 presents our main theoretical results. A short simulation study illustrates the theory in Section 6. Finally, the proofs are postponed to Section 7.

Preliminaries and Definitions

Orthonormal bases of compactly supported wavelets

Let the following set of functions

L 2 ([0, 1]) = h : [0, 1] → R; ||h|| 2 2 = 1 0 (h(x)) 2 dx .
For the purposes of this paper, we use the compactly supported wavelet bases on [0, 1] briefly described below.

Let N ≥ 10 be a fixed integer, and φ and ψ be the initial wavelet functions of the Daubechies wavelets db2N . These functions have the features to be compactly supported and C 1 (see [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]). Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k)
and Λ j = {0, . . . , 2 j -1}. Then, with an appropriate treatment at the boundaries, the collection

B = {φ τ,k , k ∈ Λ τ ; ψ j,k ; j ∈ N -{0, . . . , τ -1}, k ∈ Λ j }
is an orthonormal basis of L 2 ([0, 1]), provided the primary resolution level τ is large enough to ensure that the support of φ τ,k and ψ τ,k with k ∈ Λ τ is not the whole of [0, 1] (see, e.g., [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF]).

Hence, any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = k∈Λτ α τ,k φ τ,k (x) + ∞ j=τ k∈Λ j β j,k ψ j,k (x), (2.1)
where

α τ,k = 1 0 h(x)φ τ,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx.
For more details about wavelet bases, we refer to [START_REF] Meyer | Wavelets and Operators[END_REF], [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF], [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Mixing conditions

In this subsection, we recall the definitions of two standard kinds of dependence for random sequences: the ρ-mixing dependence and the α-mixing dependence.

Let Z = (Z t ) t∈Z be a strictly stationary random sequence defined on a probability space (Ω, A, P). For j ∈ Z, define the σ-fields

F Z -∞,j = σ(Z k , k ≤ j), F Z j,∞ = σ(Z k , k ≥ j).
Definition 2.1 (ρ-mixing dependence) For any m ∈ Z, we define the m-th maximal correlation coefficient of (Z t ) t∈Z by

ρ m = sup (U,V )∈L 2 (F Z -∞,0 )×L 2 (F Z m,∞ ) |Cov(U, V )| V(U )V(V )
, where Cov(., .) denotes the covariance function and L 2 (D) denotes the space of squareintegrable, D-measurable (real-valued) random variables for any D ∈ {F Z -∞,0 , F Z m,∞ }. We say that (Z t ) t∈Z is ρ-mixing if and only if lim m→∞ ρ m = 0.

Full details on ρ-mixing can be found in, e.g., [START_REF] Kolmogorov | On strong mixing conditions for stationary Gaussian processes[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Shao | Maximal inequality for partial sums of ρ-mixing sequences[END_REF] and [START_REF] Zhengyan | Limit Theory for Mixing Dependent Random Variables[END_REF].

Definition 2.2 (α-mixing dependence) For any m ∈ Z, we define the m-th strong mixing coefficient of (Z t ) t∈Z by

α m = sup (A,B)∈F Z -∞,0 ×F Z m,∞ |P(A ∩ B) -P(A)P(B)| .
We say that (Z t ) t∈Z is α-mixing if and only if lim m→∞ α m = 0.

Full details on α-mixing can be found in, e.g., [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF] and [START_REF] Fryzlewicz | Mixing properties of ARCH and time-varying ARCH processes[END_REF].

3 A new wavelet-based estimator for δ Proposition 3.1 below provides another expression of the density-weighted average derivative (1.2) in terms of wavelet coefficients.

Proposition 3.1 Consider the regression model with random design (1.1). Suppose that supp(X

1 ) = [0, 1], f g ∈ L 2 ([0, 1]), g ∈ L 2 ([0, 1]
) and g(0) = g(1) = 0. Then the densityweighted average derivative (1.2) can be expressed as

δ = -2   k∈Λτ α τ,k c τ,k + ∞ j=τ k∈Λ j β j,k d j,k   ,
where

α τ,k = 1 0 f (x)g(x)φ τ,k (x)dx, c τ,k = 1 0 g (x)φ τ,k (x)dx, (3.1)
β j,k = 1 0 f (x)g(x)ψ j,k (x)dx, d j,k = 1 0 g (x)ψ j,k (x)dx. (3.2)
We consider the following plug-in estimator for δ:

δ = -2   k∈Λτ ατ,k ĉτ,k + j 0 j=τ k∈Λ j βj,k dj,k   , (3.3) where ατ,k = 1 n n i=1 Y i φ τ,k (X i ), ĉτ,k = - 1 n n i=1 (φ τ,k ) (X i ), (3.4) βj,k = 1 n n i=1 Y i ψ j,k (X i ), dj,k = - 1 n n i=1 (ψ j,k ) (X i ) (3.5)
and j 0 is an integer which will be chosen a posteriori.

Remark 3.1 The construction of our estimator (3.3) uses a plug-in approach derived to Proposition 3.1. Note that it completely differs to the estimator (1.3) of Prakasa [START_REF] Rao | Consistent estimation of density-weighted average derivative by orthogonal series method[END_REF].

Remark 3.2 Mention that ĉτ,k (3.4) and dj,k (3.5) have been introduced by Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] in the derivative density estimation problem via wavelets. In the context of dependent observations, see [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for m-dependent random variables[END_REF] and [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF].

Proposition 3.2 Suppose that supp(X 1 ) = [0, 1]. Then

• ατ,k (3.4) and βj,k (3.5) are unbiased estimators for α τ,k (3.1) and β j,k (3.2) respectively.

• under g(0) = g(1) = 0, ĉτ,k (3.4) and dj,k (3.5) are unbiased estimators for c τ,k (3.1) and d j,k (3.2) respectively.

4 Model assumptions 4.1 Assumptions on f and g

We formulate the following assumptions on f and g:

H1. The support of X 1 , denoted by supp(X 1 ), is compact. In order to fix the notations, we suppose that supp(X 1 ) = [0, 1].

H2. There exists a known constant

C 1 > 0 such that sup x∈[0,1] |f (x)| ≤ C 1 .
H3. The function g satisfies g(0) = g(1) = 0 and there exist two known constants C 2 > 0 and

C 3 > 0 such that sup x∈[0,1] g(x) ≤ C 2 , sup x∈[0,1] |g (x)| ≤ C 3 .
Let us now make some brief comments on these assumptions. The assumption H1 is similar to [START_REF] Härdle | How Sensitive are Average Derivatives?[END_REF], Assumption (A3)) or (Banerjee, 2007, Assumption A1). In our study, we make it to apply the wavelet methodology described in Section 3. The noncompactly supported case arises several technical difficulties for the wavelet methods (see [START_REF] Juditsky | On minimax density estimation on R[END_REF] and [START_REF] Reynaud-Bouret | Adaptive density estimation: a curse of support?[END_REF]).

Their adaptations in the context of the density-weighted average derivative estimation is not immediatly clear. The assumptions H2 and H3 are standard in this framework. They are satisfied by a wide variety of functions.

Assumptions on the wavelet coefficients of f g and g

Let s 1 > 0, s 2 > 0 and β j,k and d j,k be given by (3.2). We formulate the following assumptions on β j,k and d j,k :

H4(s 1 ). There exists a constant C 4 > 0 such that

|β j,k | ≤ C 4 2 -j(s 1 +1/2) .

H5(s 2

). There exists a constant C 5 > 0 such that

|d j,k | ≤ C 5 2 -j(s 2 +1/2) .
The assumptions H4(s 1 ) and H5(s 2 ) characterize the degrees of smoothness of f g and g respectively.

Remark 4.1 In terms of function sets, H4(s 1 ) and H5(s 2 ) are equivalent to f g ∈ L s 1 (M 1 ) and g ∈ L s 2 (M 2 ) with M 1 > 0 and M 2 > 0 respectively, where

L s (M ) = h : [0, 1] → R; |h ( s ) (x) -h ( s ) (y)| ≤ M |x -y| α , s = s + α, α ∈ (0, 1] ,
M > 0, s is the integer part of s and h ( s ) the s -th derivatives of h. We refer to (Härdle et al., 1998, Chapter 8).

5 Main results

The independent case

In this subsection, we suppose that (X 1 , Y 1 ), . . . , (X n , Y n ) are independent. Before presenting the main result, let us set two propositions which will be usefull in the proofs.

Proposition 5.1 Consider the nonparametric regression model, defined by (1.1). Assume that H1, H2 and H3 hold. Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5) with j such that 2 j ≤ n. Then

• there exists a constant C > 0 such that

E ( βj,k -β j,k ) 4 ≤ C 1 n 2 ,
(5.1)

• there exists a constant C > 0 such that

E ( dj,k -d j,k ) 4 ≤ C 2 4j n 2 .
(5.2)

These inequalities hold with (α τ,k , ĉτ,k ) in (3.4) instead of ( βj,k , dj,k ), and (α τ,k , c τ,k ) in (3.1) instead of (β j,k , d j,k ) for j = τ .
Proposition 5.2 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s 1 ) and H5(s 2 ) hold. Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5) with j such that 2 j ≤ n. Then there exists a constant C > 0 such that

E ( βj,k dj,k -β j,k d j,k ) 2 ≤ C 2 -j(2s 1 -1) n + 2 -j(2s 2 +1) n + 2 2j n 2 .
• Suppose that H1, H2 and H3 hold. Let α τ,k and c τ,k be given by (3.1), and ατ,k and ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E (α τ,k ĉτ,k -α τ,k c τ,k ) 2 ≤ C 1 n .
The following theorem establishes the upper bound of the MSE of our estimator.

Theorem 5.1 Assume that H1, H2, H3, H4(s 1 ) with s 1 > 3/2 and H5(s 2 ) with s 2 > 1/2 hold. Let δ be given by (1.2) and δ be given by (3.3) with j 0 such that n 1/4 < 2 j 0 +1 ≤ 2n 1/4 . Then there exists a constant C > 0 such that

E ( δ -δ) 2 ≤ C 1 n .
Remark 5.1 Theorem 5.1 shows that, under some assumptions, our estimator (3.3) has a better MSE than the one in Prakasa [START_REF] Rao | Consistent estimation of density-weighted average derivative by orthogonal series method[END_REF], i.e. q 2 (n)/n, where q(n) satifies lim n→∞ q(n) = ∞.

Remark 5.2 The level j 0 described in Theorem 5.1 is such that δ attains the parametric rate of convergence 1/n without depending on the knowledge of the regularity of f or g in its construction. In this sense, δ is adaptive.

There are many practical situations in which it is not appropriate to assume that the observations (X 1 , Y 1 ), . . . , (X n , Y n ) are independent. The most typical scenario concerns the dynamic economic systems which are modelled as multiple time series. For details and applications of dependent nonparametric regression model (1.1), see [START_REF] White | Nonlinear Regression with Dependent Observations[END_REF], [START_REF] Lütkepohl | Multiple Time Series Analysis[END_REF] and the references therein.

The rest of the study is devoted to the estimation of δ in the ρ-mixing case and the α-mixing case. For technical convenience, the performance of (3.3) is explored via the MAE (not the MSE).

The ρ-mixing case

Now, we assume that (X 1 , Y 1 ), . . . , (X n , Y n ) coming from a ρ-mixing strictly stationary process (X t , Y t ) t∈Z (1.1) (for details see Definition 2.1).

Before presenting the main result, let us set two propositions which will be usefull in the proofs.

Proposition 5.3 Consider the nonparametric regression model, defined by (1.1). Suppose that H1, H2, H3 and (5.5) hold. Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5). Then

• there exists a constant C > 0 such that

E ( βj,k -β j,k ) 2 ≤ C 1 n , (5.3) 
• there exists a constant C > 0 such that

E ( dj,k -d j,k ) 2 ≤ C 2 2j n .
(5.4)

These inequalities hold with (α τ,k , ĉτ,k ) in (3.4) instead of ( βj,k , dj,k ), and (α τ,k , c τ,k ) in (3.1) instead of (β j,k , d j,k ) for j = τ .

Proposition 5.4 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s 1 ), H5(s 2 ) and (5.5) hold, Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5). Then there exists a constant C > 0 such that

E | βj,k dj,k -β j,k d j,k | ≤ C 2 -j(s 1 -1/2) √ n + 2 -j(s 2 +1/2) √ n + 2 j n .
• Suppose that H1, H2, H3 and (5.5) hold. Let α τ,k and c τ,k be given by (3.1), and ατ,k and ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E (|α τ,k ĉτ,k -α τ,k c τ,k |) ≤ C 1 √ n .
Theorem 5.2 determines the upper bound of the MAE of our estimator in the ρ-mixing case.

Theorem 5.2 Consider the nonparametric regression model, defined by (1.1). Suppose that

• there exists a constant C * > 0 such that ∞ m=1 ρ m ≤ C * , (5.5) 
• H1, H2, H3, H4(s 1 ) with s 1 > 3/2 and H5(s 2 ) with s 2 > 1/2 hold.

Let δ be given by (1.2) and δ be given by (3.3) with j 0 such that n 1/4 < 2 j 0 +1 ≤ 2n 1/4 . Then there exists a constant C > 0 such that

E | δ -δ| ≤ C 1 √ n .

The α-mixing case

Here, we assume that (X 1 , Y 1 ), . . . , (X n , Y n ) coming from a α-mixing strictly stationary process (X t , Y t ) t∈Z (1.1) (for details see Definition 2.2). Again, before presenting the main result, let us set two propositions which will be usefull in the proofs.

Proposition 5.5 Consider the nonparametric regression model, defined by (1.1). Suppose that

• there exist two constants a > 0 and b > 0 such that the strong mixing coefficient satisfies

α m ≤ ab -m , (5.6) 
• H1, H2, H3, H4(s 1 ) with s 1 > 3/2 and H5(s 2 ) with s 2 > 1/2 hold.

Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5) with j such that 2 j ≤ n. Then

• there exists a constant C > 0 such that

E ( βj,k -β j,k ) 2 ≤ C ln n n , (5.7) 
• there exists a constant C > 0 such that

E ( dj,k -d j,k ) 2 ≤ C 2 2j ln n n .
(5.8)

These inequalities hold with (α τ,k , ĉτ,k ) in (3.4) instead of ( βj,k , dj,k ), and (α τ,k , c τ,k ) in (3.1) instead of (β j,k , d j,k ) for j = τ .

Proposition 5.6 Consider the nonparametric regression model, defined by (1.1).

• Suppose that H1, H2, H3, H4(s 1 ), H5(s 2 ) and (5.6) hold. Let β j,k and d j,k be given by (3.2), and βj,k and dj,k be given by (3.5) with j satisfying 2 j ≤ n. Then there exists a constant C > 0 such that

E | βj,k dj,k -β j,k d j,k | ≤ C 2 -j(s 1 -1/2) ln n n + 2 -j(s 2 +1/2) ln n n + 2 j ln n n .
• Suppose that H1, H2, H3 and (5.6) hold. Let α τ,k and c τ,k be given by (3.1), and ατ,k and ĉτ,k be given by (3.4). Then there exists a constant C > 0 such that

E (|α τ,k ĉτ,k -α τ,k c τ,k |) ≤ C ln n n .
Theorem 5.3 investigates the upper bound of the MAE of our estimator in the α-mixing case.

Theorem 5.3 Consider the nonparametric regression model, defined by (1.1). Suppose that H1, H2, H3, H4(s 1 ) with s 1 > 3/2, H5(s 2 ) with s 2 > 1/2 and (5.6) hold. Let δ be given by (1.2) and δ be given by (3.3) with j 0 such that (n/ ln n) 1/4 < 2 j 0 +1 ≤ 2(n/ ln n) 1/4 . Then there exists a constant C > 0 such that

E | δ -δ| ≤ C ln n n .

Simulation results

In this section, we present a simulation study designed to illustrate the finite-sample performance of the proposed wavelet density-weighted average derivative estimator δ (3.3). We consider the nonparametric regression model (1.1) whith i.i.d. X 1 , . . . , X n having a common unknown density function g and the error (ξ t ) t∈Z is an autoregressive process of order one (AR(1)) given by

ξ i = αξ i-1 + i ,
where ( t ) t∈Z is a sequence of i.i.d. random variables having the normal distribution N (0, σ 2 ). Note that Y 1 , . . . , Y n are dependent, (ξ t ) t∈Z is strictly stationary and strongly mixing for |α| < 1, (see, e.g., [START_REF] Doukhan | Mixing. Properties and Examples[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF]) and the variance of ξ 1 is σ 2 ξ = σ 2 /(1 -α 2 ). We aim to estimate δ (1.2) from (X i , Y i )'s data generated according to (1.1). The performance of the proposed method was studied for two sets of designs distribution for X i , a Beta(2, 2) (i.e., g 1 (x) = 6x(1 -x)) and a Beta(3, 3) (i.e., g 2 (x) = 30x 2 (1 -x) 2 ) with three test regression functions (see Figure 1). They are defined by f 2 (x) = 0.5 + 0.2 cos(4πx) + 0.1 cos(24πx).

(a) Cusp:

f 3 (x) = |x -0.5|
The primary level is τ = 0, and the Symmlet wavelet with 6 vanishing moments were used throughout all experiments. Here, j 0 = log 2 (n)/2, thus we keep only the 2 j 0 wavelet coefficients to perform the reconstruction. We conduct N = 100 Monte Carlo replications for each experiment on samples of size n = 256, 512, 1024 and 2048. The MAE performance is computed as MAE( δ) = N -1 N i=1 | δi -δ i |. All simulations were carried out using Matlab. It is also of interest to make comparisons with the popular kernel estimator developed by [START_REF] Powell | Semiparametric estimation of index coefficients[END_REF] and the proposed estimator. More precisely, we consider the kernel estimator defined as follow

δK = - 2 n n i=1 Y i ĝ i (X i ),
where

ĝ i (x) = 1 (n -1)h 2 n j=1 j =i K x -X j h ,
h is the bandwidth and K denotes the derivative of a kernel function K. This estimator only makes sense if K exists and is non-zero. Since the Gaussian kernel has derivatives of all orders this is a common choice for density derivative estimation. Even if no theory exists in this dependent context, for the sake of simplicity, the Silverman rule-of-thumb (rot) is used to select the bandwidth. Indeed, this rule may also be applied to density derivative estimation and, since we use second order Gaussian kernel, the rot bandwidth is h rot = 0.97σn -1/7 , where σ is the sample standard deviation (see, e.g., [START_REF] Hansen | Lecture notes on nonparametrics[END_REF]).

We study the influence of the noise level (i.e., the variance of the AR(1)-process σ 2 ξ , ranging from "low noise" with σ = 0.02, and α = 0.05, thus σ ξ = 0.02 through "medium noise" with σ = 0.06, and α = 0.6, thus σ ξ = 0.075 to "high noise" with σ = 0.1, and α = 0.7, thus σ ξ = 0.14) on the estimators.

Table 1 reports the mean of the MAE over 100 replications, calculated across the sampled times for each realization. As expected, increasing the variance of the AR(1)-process increases the MAE and the MAE is decreasing as the sample size increases. Our wavelet estimator is slightly better than the Kernel one in almost all cases but none of them clearly outperforms the others for all tests functions, level of noise and all sample sizes.

Conclusion

In this paper we introduce a new density-weighted average derivative estimator using wavelet methods. We evaluate its theoretical performances under various dependence assumptions on the observations. In particular, Theorems 5.1, 5.2 and 5.3 imply the consistency of our estimator (3.3), i.e. lim n→∞ δ p = δ, for the considered dependence structures. This illustrates the flexibility of our approach. Our results could be useful to econometricians and statisticians working with density-weighted average derivative estimation, as a simple theory using dependent observations has been absent in this literature until now.

Proofs

On the construction of δ

Proof of Proposition 3.1

Using supp(X 1 ) = [0, 1], g(0) = g(1) = 0 and an integration by part, we obtain

δ = g 2 (x)f (x) 1 0 -2 1 0 f (x)g(x)g (x)dx = -2 1 0 f (x)g(x)g (x)dx. (7.1) Since f g ∈ L 2 ([0, 1]
) and g ∈ L 2 ([0, 1]), we can expand f g on B as (2.1): 

f (x)g(x) = k∈Λτ α τ,k φ τ,k (x) + ∞ j=τ k∈Λ j β j,k ψ j,k (x),
g (x) = k∈Λτ c τ,k φ τ,k (x) + ∞ j=τ k∈Λ j d j,k ψ j,k (x),
where c τ,k and d j,k are (3.2). Observing that the integral term in (7.1) is the scalar product of f g and g , the orthonormality of B on L 2 ([0, 1]) yields

δ = -2 1 0 f (x)g(x)g (x)dx = -2   k∈Λτ α τ,k c τ,k + ∞ j=τ k∈Λ j β j,k d j,k   .
Proposition 3.1 is proved.

Proof of Proposition 3.2

• Since (Y 1 , X 1 ), . . . , (Y n , X n ) are identically distributed, ξ i and X i are independent for any i ∈ {1, . . . , n}, and E(ξ 1 ) = 0, we have

E( βj,k ) = E(Y 1 ψ j,k (X 1 )) = E(f (X 1 )ψ j,k (X 1 )) = 1 0 f (x)g(x)ψ j,k (x)dx = β j,k .
Similarly, we prove that E(α τ,k ) = α τ,k .

• Using the identical distribution of X 1 , . . . , X n , E(ξ 1 ) = 0, an integration by parts and g(0) = g(1) = 0, we obtain

E( dj,k ) = -E((ψ j,k ) (X 1 )) = - 1 0 g(x)(ψ j,k ) (x)dx = -[g(x)ψ j,k (x)] 1 0 - 1 0 g (x)ψ j,k (x)dx = 1 0 g (x)ψ j,k (x)dx = d j,k .
Similarly, we prove that

E(ĉ τ,k ) = c τ,k .
This ends the proof of Proposition 3.2.

Proof of the main results

The independent case

In the sequel, we assume that (X 1 , Y 1 ), • • • , (X n , Y n ) are independent. To bound the fouth cental moment of the estimators, defined by (3.4) and (3.5), we use the following version of the Rosenthal inequality (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

Lemma 7.1 Let n be a positive integer, p ≥ 2 and U 1 , . . . , U n be n zero mean independent random variables such that sup i∈{1,...,n} E(|U i | p ) < ∞. Then there exists a constant C > 0 such that

E n i=1 U i p ≤ C   n i=1 E (|U i | p ) + n i=1 E U 2 i p/2   .
Proof of Proposition 5.1

• Observe that E ( βj,k -β j,k ) 4 = 1 n 4 E   n i=1 (Y i ψ j,k (X i ) -β j,k ) 4   . Set U i = Y i ψ j,k (X i ) -β j,k , i ∈ {1, . . . , n}.
Since (X 1 , Y 1 ), . . . , (X n , Y n ) are i.i.d., we get that U 1 , . . . , U n are also i.i.d.. Moreover, from Proposition 3.2, we have E(U 1 ) = 0. Thus, Lemma 7.1 (with p = 4) yields

E ( βj,k -β j,k ) 4 ≤ C 1 n 4 nE(U 4 1 ) + n 2 (E(U 2 1 )) 2 .
Using H1, H2, the Hölder inequality, H3, the independence between ξ 1 and X 1 , E(ξ 4 1 ) < ∞, applying the change of variables y = 2 j xk, and using the fact that ψ is compactly supported, we have for any u ∈ {2, 4},

E(U u 1 ) ≤ CE((Y 1 ψ j,k (X 1 )) u ) ≤ C(C u 1 + E(ξ u 1 ))E((ψ j,k (X 1 )) u ) = C 1 0 (ψ j,k (x)) u g(x)dx ≤ C 1 0 (ψ j,k (x)) u dx = C2 j(u-2)/2 1 0 (ψ(x)) u dx ≤ C2 j(u-2)/2 . (7.2)
Therefore, since 2 j ≤ n, we obtain

E ( βj,k -β j,k ) 4 ≤ C 1 n 3 2 j + 1 n 2 ≤ C 1 n 2 .
• We have

E ( dj,k -d j,k ) 4 = 1 n 4 E   n i=1 ((ψ j,k ) (X i ) -d j,k ) 4   .
Now, set

U i = (ψ j,k ) (X i ) -d j,k , i ∈ {1, . . . , n}.
Since X 1 , . . . , X n are i.i.d., it is clear that U 1 , . . . , U n are also i.i.d.. Moreover, by Propostion 3.2, we have E(U 1 ) = 0. Hence, Lemma 7.1 (with p = 4) yields

E ( dj,k -d j,k ) 4 ≤ C 1 n 4 nE(U 4 1 ) + n 2 (E(U 2 1 )) 2 .
Using H2, the Hölder inequality, H3, (ψ j,k ) (x) = 2 3j/2 ψ (2 j xk), applying the change of variables y = 2 j xk, and using the fact that ψ is compactly supported and C 1 , we have for any u ∈ {2, 4},

E(U u 1 ) ≤ CE(((ψ j,k ) (X 1 )) u ) = C 1 0 ((ψ j,k ) (x)) u g(x)dx ≤ C 1 0 ((ψ j,k ) (x)) u dx = C2 j(3u-2)/2 1 0 (ψ (x)) u dx ≤ C2 j(3u-2)/2 . (7.3)
Putting these inequalities together and using 2 j ≤ n, we obtain

E ( dj,k -d j,k ) 4 ≤ C 2 5j n 3 + 2 4j n 2 ≤ C 2 4j n 2 .
Proposition 5.1 is proved.

Proof of Proposition 5.2

• We have the following decomposition βj,k dj,k -β j,k d j,k = β j,k ( dj,k -d j,k ) + d j,k ( βj,k -β j,k ) + ( βj,k -β j,k )( dj,k -d j,k ). Therefore E ( βj,k dj,k -β j,k d j,k ) 2 ≤ 3(T 1 + T 2 + T 3 ),
where

T 1 = β 2 j,k E ( dj,k -d j,k ) 2 , T 2 = d 2 j,k E ( βj,k -β j,k ) 2 and T 3 = E ( βj,k -β j,k ) 2 ( dj,k -d j,k ) 2 .
Upper bound for T 1 . It follows from the Cauchy-Schwarz inequality, the second point in Proposition 5.1 and H4(s 1 ) that

T 1 ≤ C 2 4 2 -2j(s 1 +1/2) E ( dj,k -d j,k ) 4 ≤ C2 -2j(s 1 +1/2) 2 2j n = C 2 -j(2s 1 -1) n .
Upper bound for T 2 . By the Cauchy-Schwarz inequality, the first point in Proposition 5.1 and H5(s 2 ), we obtain

T 2 ≤ C 2 5 2 -2j(s 2 +1/2) E ( βj,k -β j,k ) 4 ≤ C 2 -j(2s 2 +1) n .
Upper bound for T 3 . The Cauchy-Schwarz inequality and Proposition 5.1 yield

T 3 ≤ (E ( βj,k -β j,k ) 4 E ( dj,k -d j,k ) 4 ≤ C 1 n 2 2 4j n 2 = C 2 2j n 2 .
Combining the inequalities above, we obtain

E ( βj,k dj,k -β j,k d j,k ) 2 ≤ C 2 -j(2s 1 -1) n + 2 -j(2s 2 +1) n + 2 2j n 2 .
• The proof of the second point is identical to the first one but with the bounds |α τ,k | ≤ C and |c τ,k | ≤ C thanks to H2 and H3.

This ends the proof of Proposition 5.2.

The following Lemma will be very usefull for the proof of Theorem 5.1. It is a consequence of the Cauchy-Schwarz inequality.

Lemma 7.2 Let n be a positive integer and U 1 , . . . , U n be n random variables such that sup i∈{1,...,n} E(U

2 i ) < ∞. Then E   n i=1 U i 2   ≤ n i=1 E(U 2 i ) 2 .
Proof of Theorem 5.1 (7.4) where

It follows from Proposition 3.1 that δ -δ = -2 k∈Λτ (α τ,k ĉτ,k -α τ,k c τ,k ) -2 j 0 j=τ k∈Λ j ( βj,k dj,k -β j,k d j,k ) + 2 ∞ j=j 0 +1 k∈Λ j β j,k d j,k . Therefore E ( δ -δ) 2 ≤ 12(W 1 + W 2 + W 3 ),
W 1 = E     k∈Λτ (α τ,k ĉτ,k -α τ,k c τ,k )   2   , W 2 = E     j 0 j=τ k∈Λ j ( βj,k dj,k -β j,k d j,k )   2   and W 3 =   ∞ j=j 0 +1 k∈Λ j β j,k d j,k   2 .
Let us now bound W 1 and W 2 in turn. Upper bound for W 1 . Owing to Lemma 7.2, the second point of Proposition 5.2 and Card(Λ τ ) = 2 τ , we obtain

W 1 ≤   k∈Λτ E ((α τ,k ĉτ,k -α τ,k c τ,k ) 2 )   2 ≤ C 1 n . (7.5)
Upper bound for W 2 . It follows from Lemma 7.2, the first point of Proposition 5.2, Card(Λ j ) = 2 j , the elementary inequality:

√ a + b + c ≤ √ a + √ b + √ c, s 1 > 3/2, s 2 > 1/2 and 2 j 0 ≤ n 1/4 that W 2 ≤   j 0 j=τ k∈Λ j E ( βj,k dj,k -β j,k d j,k ) 2   2 ≤ C   j 0 j=τ 2 j 2 -j(2s 1 -1) n + 2 -j(2s 2 +1) n + 2 2j n 2   2 ≤ C   j 0 j=τ 2 -j(s 1 -3/2) √ n + 2 -j(s 2 -1/2) √ n + 2 2j n   2 ≤ C   1 √ n j 0 j=τ 2 -j(s 1 -3/2) + 1 √ n j 0 j=τ 2 -j(s 2 -1/2) + 1 n j 0 j=τ 2 2j   2 ≤ C 1 √ n + 1 √ n + 2 2j 0 n 2 ≤ C 1 n . (7.6)
Upper bound for W 3 . By H4(s 1 ) with s 1 > 3/2, H5(s 2 ) with s 2 > 1/2 and 2 j 0 +1 > n 1/4 , we have

W 3 ≤   ∞ j=j 0 +1 k∈Λ j |β j,k ||d j,k |   2 ≤ C   ∞ j=j 0 +1 2 j 2 -j(s 1 +1/2) 2 -j(s 2 +1/2)   2 ≤ C2 -2j 0 (s 1 +s 2 ) ≤ C2 -4j 0 ≤ C 1 n . (7.7)
Putting (7.4), (7.5), (7.6) and (7.7) together, we obtain

E ( δ -δ) 2 ≤ C 1 n .
This ends the proof of Theorem 5.1.

The ρ-mixing case

In the sequel, we assume that (X 1 , Y 1 ), . . . , (X n , Y n ) coming from a ρ-mixing strictly stationary process (X t , Y t ) t∈Z (1.1) (see Definition 2.1).

Proof of Proposition 5.3

• From Proposition 3.2, we have E( βj,k ) = β j,k . It follows that

E ( βj,k -β j,k ) 2 = 1 n 2 V n i=1 Y i ψ j,k (X i ) = S 1 + S 2 ,
where

S 1 = 1 n V(Y 1 ψ j,k (X 1 )), S 2 = 2 n 2 n v=2 v-1 =1 Cov (Y v ψ j,k (X v ), Y ψ j,k (X )) .
Upper bound for S 1 . It follows from (7.2) with u = 2 that

S 1 ≤ 1 n E (Y 1 ψ j,k (X 1 )) 2 ≤ C 1 n .
Upper bound for S 2 . The stationarity of (X t , Y t ) t∈Z implies that

S 2 = 2 n 2 n-1 m=1 (n -m)Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) ≤ 2 n n-1 m=1 |Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) |.
A standard covariance inequality for ρ-mixing gives

|Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) | ≤ E((Y 1 ψ j,k (X 1 )) 2 )ρ m
(see, for instance, (Zhengyan and Lu, 1996, Lemma 1.2.7.)).

Equation (7.2) with u = 2 yields

E((Y 1 ψ j,k (X 1 )) 2 ) ≤ C.
Therefore, using (5.5),

S 2 ≤ C 1 n n-1 m=1 ρ m ≤ C 1 n ∞ m=1 ρ m ≤ C 1 n .
Combining the inequalities above, we obtain

E ( βj,k -β j,k ) 2 ≤ C 1 n .
• Proceeding as for the first point but with (ψ j,k ) (X i ) instead of Y i ψ j,k (X i ) and ( 7.3) instead of (7.2).

Proposition 5.3 is proved.

Proof of Proposition 5.4

• We have the following decomposition

βj,k dj,k -β j,k d j,k = β j,k ( dj,k -d j,k ) + d j,k ( βj,k -β j,k ) + ( βj,k -β j,k )( dj,k -d j,k ). Therefore E | βj,k dj,k -β j,k d j,k | ≤ T 1 + T 2 + T 3 , where T 1 = |β j,k |E | dj,k -d j,k | , T 2 = |d j,k |E | βj,k -β j,k | and T 3 = E |( βj,k -β j,k )( dj,k -d j,k )| .
Upper bound for T 1 . Using the Cauchy-Schwarz inequality, the second point in Proposition 5.3 and H4(s 1 ), we obtain

T 1 ≤ C 4 2 -j(s 1 +1/2) E ( dj,k -d j,k ) 2 ≤ C2 -j(s 1 +1/2) 2 j √ n = C 2 -j(s 1 -1/2) √ n .
Upper bound for T 2 . By the Cauchy-Schwarz inequality, the first point in Proposition 5.3 and H5(s 2 ), we obtain

T 2 ≤ C 5 2 -j(s 2 +1/2) E ( βj,k -β j,k ) 2 ≤ C 2 -j(s 2 +1/2) √ n .
Upper bound for T 3 . The Cauchy-Schwarz inequality and Proposition 5.3 yield

T 3 ≤ (E ( βj,k -β j,k ) 2 E ( dj,k -d j,k ) 2 ≤ C 1 n 2 2j n = C 2 j n .
The above inequalities imply that

E | βj,k dj,k -β j,k d j,k | ≤ C 2 -j(s 1 -1/2) √ n + 2 -j(s 2 +1/2) √ n + 2 j n .
• The proof of the second point is identical to the first one but with the bounds |α τ,k | ≤ C and |c τ,k | ≤ C thanks to H2 and H3.

This ends the proof of Proposition 5.4.

Proof of Theorem 5.2

Using Proposition 3.1, we have

δ -δ = -2 k∈Λτ (α τ,k ĉτ,k -α τ,k c τ,k ) -2 j 0 j=τ k∈Λ j ( βj,k dj,k -β j,k d j,k ) + 2 ∞ j=j 0 +1 k∈Λ j β j,k d j,k . Therefore E | δ -δ| ≤ W 1 + W 2 + W 3 , (7.8) 
where

W 1 = k∈Λτ E (|α τ,k ĉτ,k -α τ,k c τ,k |) , W 2 = j 0 j=τ k∈Λ j E | βj,k dj,k -β j,k d j,k | and W 3 = ∞ j=j 0 +1 k∈Λ j |β j,k ||d j,k |.
Upper bound for W 1 . The second point of Proposition 5.4 and Card(Λ τ ) = 2 τ give

W 1 ≤ C 1 √ n . (7.9)
Upper bound for W 2 . It follows from the first point of Proposition 5.4, Card(Λ j ) = 2 j , s 1 > 3/2, s 2 > 1/2 and 2 j 0 ≤ n 1/4 that

W 2 ≤ C j 0 j=τ 2 j 2 -j(s 1 -1/2) √ n + 2 -j(s 2 +1/2) √ n + 2 j n ≤ C   1 √ n j 0 j=τ 2 -j(s 1 -3/2) + 1 √ n j 0 j=τ 2 -j(s 2 -1/2) + 1 n j 0 j=τ 2 2j   ≤ C 1 √ n + 1 √ n + 2 2j 0 n ≤ C 1 √ n . (7.10)
Upper bound for W 3 . By H4(s 1 ) with s 1 > 3/2, H5(s 2 ) with s 2 > 1/2 and 2 j 0 +1 > n 1/4 , we have

W 3 ≤ C ∞ j=j 0 +1
2 j 2 -j(s 1 +1/2) 2 -j(s 2 +1/2) ≤ C2 -j 0 (s 1 +s 2 ) ≤ C2 -2j 0 ≤ C 1 √ n .

(7.11) Putting (7.8), (7.9), (7.10) and (7.11) together, we obtain

E | δ -δ| ≤ C 1 √ n .
This ends the proof of Theorem 5.2.

The α-mixing case

Recall that, here, we assume that (X 1 , Y 1 ), . . . , (X n , Y n ) coming from a α-mixing strictly stationary process (X t , Y t ) t∈Z (1.1) (see Definition 2.2).

Proof of Proposition 5.5

• Proposition 3.2 yields E( βj,k ) = β j,k . Therefore,

E ( βj,k -β j,k ) 2 = 1 n 2 V n i=1 Y i ψ j,k (X i ) = S 1 + S 2 ,
where

S 1 = 1 n V(Y 1 ψ j,k (X 1 )), S 2 = 2 n 2 n v=2 v-1 =1 Cov (Y v ψ j,k (X v ), Y ψ j,k (X )) .
Upper bound for S 1 . It follows from (7.2) with u = 2 that

S 1 ≤ 1 n E (Y 1 ψ j,k (X 1 )) 2 ≤ C 1 n .
Upper bound for S 2 . The stationarity of (X t , Y t ) t∈Z implies that |Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) |.

On the one hand, the Cauchy-Schwarz inequality and (7.2) with u = 2 yield |Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) | ≤ E((Y 1 ψ j,k (X 1 )) 2 ) ≤ C. |Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) ≤ C ln n.

On the other hand, a standard covariance inequality for α-mixing gives, for any γ ∈ (0, 1), |Cov (Y m+1 ψ j,k (X m+1 ), Y 1 ψ j,k (X 1 )) | ≤ 10α γ m E |Y 1 ψ j,k (X 1 )| 2/(1-γ) 1-γ .

(See, for instance, [START_REF] Davydov | The invariance principle for stationary processes[END_REF]).

Taking γ = 1/2 and using (5.6), again (7.2) with u = 4 and 2 j ≤ n, we obtain Combining the inequalities above, we obtain E ( βj,kβ j,k ) 2 ≤ C ln n n .

• The proof is similar to the first point. It is enough to replace Y i ψ j,k (X i ) by (ψ j,k ) (X i ), apply (7.3) instead of (7.2) and observe that b -m/2 ≤ C2 2j √ nb -c ln n/2 ≤ C2 2j .

Proposition 5.5 is proved.
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 1 

		: 100× mean MAE values of estimator (3.3), from 100 replications of the model
	(1.1) of sample sizes 256, 512, 1024 and 2048.				
					σ ξ = 0.02			
			g 1				g 2		
	n	256	512	1024	2048	256	512	1024	2048
	MAE( δf 1 ) 16.995 10.874 7.368	5.463 21.306 14.124 10.853 7.767
	MAE( δK f 1 ) 26.595 28.040 25.159 22.465 46.443 50.442 54.003 57.082 MAE( δf 2 ) 13.161 9.299 6.527 4.555 15.404 11.626 8.088 5.852
	MAE( δK f 2 ) 13.401 9.184 MAE( δf 3 ) 16.049 10.838 7.574 6.030	4.949 18.633 13.262 10.741 7.169 5.373 17.800 12.659 10.017 6.695
	MAE( δK f 3 ) 12.389 8.816	6.065	4.710 15.960 11.290 9.090	6.309
					σ ξ = 0.075			
	MAE( δf 1 ) 16.499 10.857 6.555	6.369 32.286 34.796 32.016 34.532
	MAE( δK f 1 ) 28.144 24.984 24.802 22.961 49.598 49.585 49.357 51.668 MAE( δf 2 ) 12.637 9.448 5.858 5.095 15.978 14.015 8.961 5.729
	MAE( δK f 2 ) 13.230 9.089 MAE( δf 3 ) 15.758 11.163 6.918 6.632	5.864 12.902 10.682 6.936 6.425 18.598 16.780 9.879	4.517 7.175
	MAE( δK f 3 ) 11.834 8.746	6.209	5.363 11.062 10.098 6.652	4.484
					σ ξ = 0.14			
	MAE( δf 1 ) 14.874 9.934	7.500	5.044 34.457 32.840 33.062 33.222
	MAE( δK f 1 ) 26.266 25.873 24.093 20.847 45.886 51.442 50.582 52.013 MAE( δf 2 ) 12.093 8.196 6.759 4.377 18.663 12.750 9.186 6.622
	MAE( δK f 2 ) 12.594 9.668 MAE( δf 3 ) 14.385 9.923	8.074 8.390	5.340 14.944 9.628 5.215 21.728 15.784 12.041 7.256 7.558 4.862
	MAE( δK f 3 ) 11.807 9.246	7.335	4.650 13.235 8.812	7.480	4.931
	where α τ,k and β j,k are (3.1), and						
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Proof of Proposition 5.6

The proof of Proposition 5.6 is identical to the one of Proposition 5.4. It is enough to use Proposition 5.5 instead of Proposition 5.3 and to replace 1/n by ln n/n.

Proof of Theorem 5.3

The proof of Theorem 5.3 is identical to the one of Theorem 5.2. It suffices to use Proposition 5.6 instead of Proposition 5.4 and to replace 1/n by ln n/n.