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Abstract

The problem of estimating the density-weighted average derivative of a regression
function is considered. We present a new consistent estimator based on a plug-in ap-
proach and wavelet projections. Its performances are explored under various depen-
dence structures on the observations: the independent case, the p-mixing case and the
a-mixing case. More precisely, denoting n the number of observations, in the indepen-
dent case, we prove that it attains 1/n under the mean squared error, in the p-mixing
case, 1/y/n under the mean absolute error, and in the a-mixing case, and y/Inn/n
under the mean absolute error.

Key words and phrases: Nonparametric estimation of density-weighted average deriva-
tive, 'Plug-in’ approach, Wavelets, Consistency, p-mixing, a-mixing.

AMS 2000 Subject Classifications: 62G07, 62G20.

1 Introduction

We consider the following nonparametric regression model.

E:f(XZ)+£lv (S {1,‘..,’!1}, (11)
where the design variables (or input variables) Xi,...,X,, are n identically distributed
random variables with common unknown density function g, the noise &1,...,&, are n

identically distributed random variables with E(¢;) = 0 and E(£f) < oo, and f is an
unknown regression function. Moreover, it is understood that &; is independent of X, for



any ¢ € {1,...,n}. In this paper, we are interested in the pointwise estimation of the
density-weighted average derivative, which is defined as follows

§=E (¢(X1)1' () = [ #a)f (). (1.2)

It is known that the estimation of § is of interest in some econometric problems, especially
in the context of estimation of coefficients in index models (see e.g. Stoker (1986, 1989),
Powell et al. (1989) and Hérdle and Stoker (1989)).

When (X1,Y7),...,(X,,Y,) are i.i.d., the most frequently used nonparametric tech-
niques are based on kernel estimators. Three different approaches can be found in Héardle
and Stoker (1989), Powell et al. (1989) and Stoker (1991). Their consistency are established.
Recent theoretical and practical developments related to these estimators can be found in
e.g. Hérdle et al. (1992), Tiirlach (1994), Powell and Stoker (1996), Banerjee (2007), Schaf-
gans and Zinde-Walsh (2010) and Cattaneo et al. (2010, 2011). A new estimator based on
orthogonal series methods has been introduced in Prakasa Rao (1995). More precisely, using
the same plug-in approach of Powell et al. (1989), § the estimator of the density-weighted
average derivative has the following form

R 2 o
6= —Hzngg(xi), (1.3)
=1
where g, denotes an orthogonal series estimator of ¢’ constructed from (X1,Y7),. .., (X, Yy).

Moreover, the consistency of this estimator is proved.

In this study, we develop a new estimator based on a different plug-in approach to the
one in Powell et al. (1989) and a particular orthogonal series method: the wavelet series
method. The main advantage of this method is its adaptability to the varying degrees
of smoothness of the underlying unknown curves. For a complete discussion of wavelets
and their applications in statistics, we refer to Antoniadis (1997), Héardle et al. (1998) and
Vidakovic (1999).

When (X1,Y1),..., (Xn, Ys) are i.i.d., we prove that our estimator attains the paramet-
ric rate of convergence 1/n under the Mean Square Error (MSE). This rate is a bit better
to the one attains by the estimator in Prakasa Rao (1995). Moreover, the flexibility of our
approach enables us to consider possible dependent observations, thus opening new perspec-
tives of applications. This is illustrated by the considerations of the p-mixing dependence
introduced by Kolmogorov and Rozanov (1960) and the a-mixing dependence introduced
by Rosenblatt (1956). Adopting the Mean Absolute Error (MAE), we prove that our es-
timator attains the rate of convergence 1/y/n in the p-mixing case, and y/Inn/n in the
o-mixing case. All these results prove the consistency of our estimator and its robustness
in term of dependence on the observations. Mention that, to the best of our knowledge, the
estimation of ¢ in such a dependent setting has never been explored earlier.



The remainder of the paper is set out as follows. Next, in Section 2, we discuss the
preliminaries of the wavelet orthogonal bases and we recall the definition of some mixing
conditions. Our wavelet estimator is described in Section 3. Assumptions on (1.1) are
described in Section 4. Section 5 presents our main theoretical results. Finally, the proofs
are postponed to Section 6.

2 Preliminaries and Definitions

2.1 Orthonormal bases of compactly supported wavelets

Fix a b > 0. Let the following set of functions

b
Hﬂ[amz{M[amﬁwa@zlgmm%%.

For the purposes of this paper, we use the compactly supported wavelet bases on [—b, b]
briefly described below.

Let N > 2 be a fixed integer, and ¢ and ¥ be the initial wavelet functions of the
Daubechies wavelets db2N (see e.g. Mallat (2009)). These functions have the features to
be compactly supported and CV 1.

Set

bin(@) = 2P0(2x — k), () =229z — k).

Then there exists an integer 7 and a set of consecutive integers A; with a length proportional
to 27 such that the collection

B:{d)ﬂk’? kEAT; wj,k; jeN_{Ov"'aT_l}v k‘EA]},

is an orthonormal basis of L2([—b, b]).
Hence, for any h € LL2([~b, b]) can be expanded on B as

h(@)= > arpdrp(@) + > > Biabik(@), (2.1)
keA- J=7 keA;

where

b b
ozﬂk:/ h(x)érk(x)dz, Bk :/bh($)¢j7k($)d%

—b _

For more details, we refer to Meyer (1992), Cohen et al. (1993) and Mallat (2009).



2.2 Mixing conditions

In this subsection, we will recall the definition of two standard kinds of dependence for
random sequences: the p-mixing dependence and the a-mixing dependence.
Suppose Z = (Z;)iez is a strictly stationary random sequence defined on a probability space
(Q, A,P). For j € Z, define the o-fields

Floi=0(Zik <)), Fiow=0(Zrk > j).
Definition 2.1 (p-mixing dependence) For any m € 7Z, we define the m-th mazimal
correlation coefficient of (Zy)iez by

| Cov(U, V)|
Pm = sup i N AT
UV)eL2(FZ )x12(FZ o) VY (U)V(V)

where Cou(.,.) denotes the covariance function and L*(A) = {U € A; E(U?) < oo} for
any A € {.7:50010, .F,,Zwo )

We say that (Zy)iez is p-mizing if and only if limy, o0 prm = 0.

Full details on p-mixing can be found in e.g. Kolmogorov and Rozanov (1960), Doukhan
(1994), Shao (1995) and Zhengyan and Lu (1996).

Definition 2.2 (a-mixing dependence) For any m € Z, we define the m-th strong mix-
ing coefficient of (Zi)iez by

i = sup IP(AN B) — P(A)P(B)].
(AB)EFZ X FE o

We say that (Zy)iez is a-mizing if and only if limy, o0 cty = 0.
Full details on a-mixing can be found in e.g. Rosenblatt (1956), Doukhan (1994), Carrasco
and Chen (2002) and Fryzlewicz and Subba Rao (2011).
3 A new wavelet-based estimator for ¢

Let 7 be the integer mentioned in Section 2. Recall that, for any integer j, A; denotes a set
of consecutive integers, with a length proportional to 27.

Proposition 3.1 below provides another expression of the density-weighted average derivative
(1.2) in terms of wavelet coefficients.



Proposition 3.1 Consider the regression model with random design (1.1). Suppose that
supp(X1) = [~b,b] for a known b > 0, fg € L2([-b,b]), g’ € L2([~b,b]) and g(—b) = g(b) =
0. Then the density-weighted average derivative (1.2) can be expressed as

o
§==2| > crwcrn+d. > Bindix |

kA, j=7 keA;

where
b

b
g = / F@o@)ors()dz, ors = / ¢ (@) (@)de, (3.1)

—b

b

b
Bik = /bf(ﬂf)g(ﬂﬁ)%,k(x)d% djr = /bgl(ﬂf)i/)j,k(%)dl’- (3.2)

We consider the following plug-in estimator for 4:

Jjo
§=-2 Z Q7 kCrk + Z Z Bixdin | (3-3)

keA, =T k€A,
where
1< 1<
Grp == Yibra(Xi),  rn=——3 (6r4) (X)), (3.4)
=1 =1
) 1 n R 1 n
Biw = D Yie(Xa),  djr= - > W) (Xi) (3.5)
=1 =1

and jo is an integer which will be chosen a posteriori.

Remark 3.1 The construction of our estimator (3.3) uses a plug-in approach derived to
Proposition 3.1. Note that it completely differs to the estimator (1.3) of Prakasa Rao (1995).

Remark 3.2 Mention that ¢, ) (3.4) and czj’k (3.5) have been introduced by Prakasa Rao
(1996) in the derivative density estimation problem via wavelets. In the context of dependent
observations, see Chaubey et al. (2005) and Chaubey et al. (2006).

Proposition 3.2 Suppose that supp(X1) = [—b,b]. Then

o G, (3.4) and Bj,k (3.5) are unbiased estimators for o (3.1) and Bk (3.2) respec-
tively.

e under g(—b) = g(b) =0, ¢k (3.4) and djyk (3.5) are unbiased estimators for c;j (3.1)
and djy, (3.2) respectively.



4 Model assumptions
4.1 Assumptions on f and g
We formulate the following assumptions on f and g:

H1. The support of X, denoted by supp(X1), is compact. In order to fix the notations,
we suppose that supp(X;) = [—b, b] for a known b > 0.

H2. There exists a known constant Cy; > 0 such that

sup f(x) < Ch.
x€[—b,b]

H3. The function g satisfies g(—b) = ¢g(b) = 0 and there exist two known constants Cy > 0
and C3 > 0 such that

sup g(z) < Cs, sup |g'(z)| < Cs.
x€[—b,b] z€[—b,b]

The assumption H1 is realistic; as noted in Banerjee (2007), in many applications supp(X1)
is often bounded. The others assumptions are satisfied for a wide variety of functions.

4.2 Assumptions on the wavelet coefficients of fg and ¢

Let s1 > 0, s > 0 and B3;; and d;; be given by (3.2). We formulate the following
assumptions on §; and d; x:

H4(s1). There exists a constant Cy > 0 such that

|5]k| < 042—j(81+1/2)_
H5(s2). There exists a constant C5 > 0 such that

\d; ] < Cg2 9 (s2+1/2)

Remark 4.1 In terms of function sets, H4(s1) and H5(s2) are equivalent to fg € L, (M)
and g' € Lg,(Ms) with My > 0 and My > 0 respectively, where

£o(M) = {: [0,1] - Bs |pED (@) — sD()] < Mz — I, 5= [s] +a, a € (0,1]},

M >0, |s| is the integer part of s and h\l5)) the | s|-th derivatives of h. We refer to (Hdirdle
et al., 1998, Chapter 8).



5 Main results

5.1 The independent case
In this subsection, we suppose that (X1,Y1),...,(X,,Y,) are independent.

Proposition 5.1 Consider the nonparametric regression model, deﬁried by (1}) Assume
that H1, H2 and H3 hold. Let ;1 and dj be given by (3.2), and B and d; be given
by (3.5) with j such that 29 < n. Then

o there exists a constant C > 0 such that

A 1
E <(ﬁj,k - 5j,k)4) =C5 (5.1)
e there exists a constant C > 0 such that
R 24j
E (s - da)') < O (5.2)

These inequalities hold with (Gr k, ¢r1) in (3.4) instead of (Bj,k» LZM), and (o, cr ) in (3.1)
instead of (Bjk,djx) forj=rT.

Proposition 5.2 Consider the nonparametric regression model, defined by (1.1).

o Suppose that H1, H2, H3, H4(s1) and H5(s2) hold. Let B;), and d;j be given by
(3.2), and Bj,k and CZM be given by (3.5) with j such that 27 < n. Then there exists a
constant C > 0 such that

9-i@s1-1)  9-j(2s2+]) 92
n n n? |’

E ((Bj,kcgj,k - 5j,kdj,k)2) <C ( + +—

e Suppose that H1, H2 and H3 hold. Let o) and c,j be given by (3.1), and 6, and
Cr be given by (3.4). Then there exists a constant C' > 0 such that

A4 1
E ((aT,kCT,k - aT,kCT,k)Q) < Cﬁ

The following theorem establishes the upper bound of the MSE of our estimator.

Theorem 5.1 Assume that H1, H2, H3, H4(s1) with s1 > 3/2 and H5(s2) with sy > 1/2
hold. Let & be given by (1.2) and & be given by (3.3) with jo such that n'/* < 2/0+1 < 2p1/4,
Then there exists a constant C' > 0 such that

E ((3 - 5)2) < c%.



Remark 5.1 Theorem 5.1 shows that, under some assumptions, our estimator (3.3) has
a better MSE than the one in Prakasa Rao (1995), i.e. q*(n)/n, where q(n) satifies
lim, 00 ¢(n) = 00 (g(n) is the tuning parameter of the considered projection orthogonal
series estimator).

The rest of the study is devoted to the estimation of § in the p-mixing case and the
a-mixing case. For details and applications of dependent nonparametric regression model
(1.1), see White and Domowitz (1984) and the references there in. For technical convenience,
the performance of (3.3) is explored via the MAE (not the MSE).

5.2 The p-mixing case

Now, we assume that (X3,Y7),...,(X,,Y,) coming from a p-mixing strictly stationary
process (X, Y;)iez process (for details see Definition 2.1).

Proposition 5.3 Consider the nonparametric regression model, defined by A(l.l). SuAppose
that H1, H2, H3 and (5.5) hold. Let B and d; be given by (3.2), and B and d;} be
given by (3.5). Then

e there exists a constant C > 0 such that

A 1
E((Bin - Bu)?) < O, (5.3)
e there exists a constant C > 0 such that
R 22j
E ((dj,k - dj,k)2) <o (5.4)

These inequalities hold with (Gr g, ¢r1) in (3.4) instead of (Bj,k, cij7k), and (o, cr ) in (3.1)
instead of (Bjx,d;r) for j =7.

Proposition 5.4 Consider the nonparametric regression model, defined by (1.1).

o Suppose that H1, H2, H3, H4(s1), H5(s2) and (5.5) hold, Let B; ) and d; be given
by (3.2), and Bj,k and Jj,k; be given by (3.5). Then there exists a constant C' > 0 such
that

9—i(s1=1/2)  9—j(s2+1/2) 2j>

E <|Bj,kcz‘,k - ﬁj,kdj,k!> <C ( 7 + NG =



e Suppose that H1, H2, H3 and (5.5) hold. Let o), and c.p, be given by (3.1), and
Grp and Crp be given by (3.4). Then there exists a constant C' > 0 such that

PR 1
E (|aT,kCT,k - a’T,kJCT,kD < C%

Theorem 5.2 determines the upper bound of the MAFE of our estimator in the p-mixing case.

Theorem 5.2 (The p-mixing case) Consider the nonparametric regression model, de-
fined by (1.1). Suppose that

o there exists a constant C, > 0 such that
oo
> pm < C, (5.5)
m=1

e H1, H2, H3, H4(s1) with s; > 3/2 and H5(s2) with s3 > 1/2 hold.

Let 0 be given by (1.2) and § be given by (3.3) with jo such that n'/* < 200+1 < 2n1/4. Then
there exists a constant C > 0 such that

E (|3 - 5|) < c\/lﬁ.

5.3 The a-mixing case

Here, we assume that (X1,Y7),...,(X,,Y,) coming from a a-mixing strictly stationary
process (X, Y;)iez process (for details see Definition 2.2).

Proposition 5.5 Consider the nonparametric regression model, defined by (1.1). Suppose
that H1, H2, H3, (5.8) and (5.9) hold. Let B and d;j be given by (3.2), and ;1 and
djx be given by (3.5) with j such that 27 < n. Then

e there exists a constant C' > 0 such that

Inn

E ((Bix — Bia)?) < 0, (5.6)
e there exists a constant C > 0 such that
A 227 Inn
E ((djx — djn)?) < O, (5.7)

These inequalities hold with (& i, ¢+ k) in (3.4) instead of (Bj,lm dj,k), and (or i, cr i) in (3.1)
instead of (Bjk,djx) forj=r.



Proposition 5.6 Consider the nonparametric regression model, defined by (1.1).
o Suppose that H1, H2, H3, H4(s1), H5(s2), (5.8) and (5.9) hold. Let ;1 and d;},
be given by (3.2), and Bj,k and dj,k be given by (3.5) with j satisfying 2/ < n. Then
there exists a constant C' > 0 such that

. . 1 . 1 1
£ (Wj,kdj,k — 5j,kdj7k|) ¢ (2_3(81_1/2) \ T 4 gileat/2), [0 o n") '
n n n

o Suppose that H1, H2, H3, (5.8) and (5.9) hold. Let aj, and c. i be given by (3.1),
and G, and ¢, be given by (3.4). Then there exists a constant C > 0 such that
Inn

E (’&T,k‘é’r,k - aT,kJCT,k‘D < C T

Theorem 5.3 investigates the upper bound of the MAE of our estimator in the a-mixing
case.

Theorem 5.3 (The a-mixing case) Consider the nonparametric regression model, de-
fined by (1.1). Suppose that

e there exists a constant C, such that

Vi <, (5:8)

e there exist two constant a > 0 and b > 0 such that the strong mixing coefficient
satisfies

am < ab™™, (5.9)

e H1, H2, H3, H4(s1) with s; > 3/2 and H5(s2) with s3 > 1/2 hold.

Let 6 be given by (1.2) and & be given by (3.3) with jo such that (n/Ilnn)'/* < 200+1 <
2(n/Inn)/%. Then there exists a constant C' > 0 such that

E (\5 - 5\) < cﬁ.

In this paper we introduce a new density-weighted average derivative estimator using wavelet
methods. We evaluate its theoretical performances under various dependence assumptions
on the observations. In particular, Theorems 5.1, 5.2 and 5.3 imply the consistency of
our estimator (3.3), i.e. limy oo 0 2 0, for the considered dependence structures. This
illustrates the flexibility of our approach. Our results could be useful to econometricians
and statisticians working with density-weighted average derivative estimation, as a simple
theory using dependent observations has been absent in this literature until now.

Conclusion

10



6 Proofs

6.1 On the construction of §
Proof of Proposition 3.1
Using supp(X1) = [—b,b], g(—b) = g(b) = 0 and an integration by part, we obtain

b b
5= [P(2)f(2)]", — 2 / @)@ (x)do = 2 / f@)gl@)g(@)da. (6.1)

Since fg € L%([—b,b]) and ¢’ € L?([—b,b]), we can expand these two functions on B as (2.1):

2: aTk¢Tk 4‘2: 2:/%kﬂbk

keAr J=T kEA;
where o, and §;, are (3.1), and
= crpbrale +szgk%k
keA, J=1 keA;

where ¢, ;, and d;, are (3.2). Observing that the integral term in (6.1) is the scalar product
of fg and ¢/, the orthonormality of B on IL2([—b,b]) yields

b o)
§=-2 / b f@)g@)g (@)de = =2 Y arperp+ > > Birdin

kEA, j=r ke,

Proposition 3.1 is proved. U

Proof of Proposition 3.2

e Since (Y1, X1),..., (Y, X,) are identically distributed, & and X; are independent for
any i € {1,...,n}, and E(&) = 0, we have

E(Bjx) = E(Vi(X1)) = E(f(X0);4(X1)) / (@) g(@)yn(x)de = By

Similarly, we prove that E(G, ;) = o .

11



e Using the identical distribution of X7, ..., X, E({1) = 0, an integration by parts and
g(b) = g(—b) = 0, we obtain

b
E(djr) = —E((r)(X1)) = —/_bg(ﬁf)(wj,k)/(x)dx

, b b
= (@@l - [ d@eu@in) = [ fovni = .
—b
Similarly, we prove that E(¢, ) = ¢, .

This ends the proof of Proposition 3.2. [J

6.2 Proof of the main results
6.2.1 The independent case

In the sequel, we assume that (X1,Y7),---,(X,,Y,) are independent. To bound the fouth
cental moment of the estimators, defined by (3.4) and (3.5), we use the following version of
the Rosenthal inequality. The proof can be found in Rosenthal (1970).

Lemma 6.1 Let n be a positive integer, p > 2 and Uy, ..., U, be n zero mean independent
random variables such that sup;cqy . 1 E(|Ui|P) < oo. Then there exists a constant C > 0

such that p
E( ) <C | E(UI) + (ZE(UE))
i=1

i=1
Proof of Proposition 5.1

n

D Ui

=1

e Observe that
1 " !
E ((Bj,k - 5j,kz)4> =B (Z(Yi%}k(Xi) - 5;',1:))

=1

Set
Ui = Y 1(Xi) — B, ic{l,...,n}.
Since (X1,Y1),...,(Xy,Y,) are i.i.d., we get that Uy, ..., U, are also i.i.d.. Moreover,

from Proposition 3.2, we have E(U;) = 0. Thus, Lemma (with p = 4) 6.1 yields
. 1
E ((Bj = B1)") < O3 (mE(U) + n(E(UD))?).

12



Using H1, H2, the Holder inequality, H3, the independence between & and X,
E(¢}) < oo, applying the change of variables y = 29z — k, and using the fact that 1)
is compactly supported, we have for any u € {2,4},

E(UT) < CE((M19;x(X1))") < C(CT + E(&)E((¢,£(X1))")

= C/ Iﬂjk dl‘<C/ %k dx
= Y22 / (h(z))tdx < C2=2/2, (6.2)
b

Therefore, since 21 < n, we obtain

. 1 . 1 1

E ((/Bj,k - 5j,k)4> <C <n32] + ) <C—=.
e We have that
1 = !
E <(dj,k: - dj,k)4) = E (Z(('l,bj,k)/(Xi) - dj,k))
i=1

Now, set

U, = (l/Jj,k)/(Xi) _dj,k7 S {1,...,77,}.
Since Xi,...,X, are i.i.d., it is clear that Uy,...,U, are also i.i.d.. Moreover, by
Propostion 3.2, we have E(U;) = 0. Hence, Lemma 6.1 (with p = 4) yields

- 1
E ((djs = dja)*) < O (nE(U}) + n*(E(UD)?).
Using H2, the Hoélder inequality, H3, (¢;x) (z) = 239/24/(27 2 — k), applying the

change of variables y = 272 — k, and using the fact that 1 is compactly supported and
CN=1 where N > 2, we have for any u € {2,4},

b
EUY) < CE((($54)(X1)") = C / (y) (2))"g )z < C / (030 @)
C2iGu-2)/2 / (0 ()" < C2IGu=2)/2 (6.3)

—b

Putting these inequalities together and using 2/ < n, we obtain
A 257 24J 94j
E((dj,k—d )><c< )<C
n3 = n?

Proposition 5.1 is proved. [J

13



Proof of Proposition 5.2

e We have the following decomposition

Bj,kcz',k — Birdjr = Bj,k(fzj,k —djr) + dj,k(Bj,k — Bjk) + (Bj,k — Bix)(djx — djk).

Therefore
E ((Bj,kd',k - /Bj,kdj,k)2> <3(Th +Tr + T3)
where ) )
T\ = B5,E ((dj,k - dj,k)2> ; Ty = d3E <(5j,k - /Bj,k)2>
and

Is=E ((Bj,k — Biw)*(djk — dﬂ'»’f)2> ‘

Upper bound for Ty. It follows from the Cauchy-Schwarz inequality, the second point
in Proposition 5.1 and H4(s;1) that

. . . 2j —j(2s1-1)
Ty < C3272(s1t1/2) \/IE ((dj,k: - dj,k)4> < 02_2](51“/2)27 = (12T

Upper bound for Ty. By the Cauchy-Schwarz inequality, the first point in Proposition
5.1 and H5(s2), we obtain

) R —j(2s2+1)
T, < 0522*2](6’%1/2) \/IE ((@.’k _ /3j,k)4> < 027

n

Upper bound for T3. The Cauchy-Schwarz inequality and Proposition 5.1 yield

3 ] 124 92j
T5 < \/(E ((Bj,k - /Bj,k)4) E ((dj,k - dj,k>4) < C\/; e

Combining the inequalities above, we obtain

o 2—j(2$1—1) 2—j(232+1) 22j
E ((ﬂj,kdj,k - 5j,kdj,k)2) <C ( + +—

n n n?

e The proof of the second point is identical to the first one but with the bounds |a x| <
C and |c, 1| < C thanks to H2 and H3.

This ends the proof of Proposition 5.2. [

The following Lemma will be very usefull for the proof of Theorem 5.1.

14



Lemma 6.2 Letn be a positive integer and Uy, . .., Uy, be n zero mean independent random
variables such that sup;cqq . ny E(U?) < co. Then

() ) = (5 veer)

Proof of Theorem 5.1

2

It follows from Proposition 3.1 that

Jo
0—0 = =2 (Grpbrk — arkCrn) =2 Y (Bindjx — Bikdjr)

keAr J=T1 kEA;
+ 2 ) D Biwdik
j=jo+1 keA,

Therefore

E ((5 - 5)2) < 12(W7 + Wa + Wa), (6.4)
where

2 . 2
Jo R R
W =E Z (GrkCrk — QrkCri) ; Wy =E Z Z (Bikdjr — Bjrdjk)
keA Jj=T k‘EAJ’

and )

W3 = Z Z Bjkdj

j=jo+1 kA,

Now, to bound Wj and W5, we use Lemma 6.2, see above.
Upper bound for Wy. Using Lemma 6.2, the second point of Proposition 5.2 and Card(A;) <
C', we obtain

2

1
< E ((&rxCrp — 2 <C-. .
Wi < k§¢ (@rprs — argers)?) | <O (6.5)

Upper bound for Wy. It follows from Lemma 6.2, the first point of Proposition 5.2,
Card(A;) < C27, the elementary inequality: va—+b+c < a + Vb + Ve, s1 > 3/2,

15



s3> 1/2 and 27 < nt/4 that

. 2
Jo
we < XD \/E ((5j,kdj,k—5j,kdj,k)2)
Jj=T7 ]CEA]'
. 2
o [9-3(251-1)  9—ij(2s2+1)  92j
o[ 5
jO = _ s _ .
9—i(51=3/2)  9—j(s2—1/2)  92j
< C —
= JZ< N
R P T R TR S PERTEVR NS B 2
< s 2—j s1—3/2 i 2—] so—1/2 - 22]
< C \/ﬁ; +\/ﬁ; +”j§
1 1 22%0)\? 1
< Cl—=+—+— < (C-. 6.6
- <\/ﬁ + vn L > ~ n (6.6)

Upper bound for W3. By H4(s1) with s; > 3/2, H5(s2) with so > 1/2 and 270! > nl/4)
we have

2 2
Wi < Z Z 1Biklldil | <C Z 9i9—i(s1+1/2)9=i(s241/2) | < C9~2do(s1+s2)
J=Jjo+1keA; Jj=jo+1
< 240 < Cl‘ (6.7)
n

Putting (6.4), (6.5), (6.6) and (6.7) together, we obtain
N 1
E ((5 - 5)2) <C-.
n
This ends the proof of Theorem 5.1. [J

6.2.2 The p-mixing case

In the sequel, we assume that (X1,Y7),...,(X,,Y,) coming from a p-mixing strictly sta-
tionary process (Xi, Y;)iez process (see Definition 2.1).

Proof of Proposition 5.3

e From Proposition 3.2, we have E(B]k) = Bj . It follows that
1 n
E ((m — m)?) =5V (Z Yiwj,k(xi>> =51 + Ss,
i=1

16



where

n v—1

S = TVORUKD), Sa= 5 30 Cov (VoK) Yihiu(X0).

v=2 f=1

Upper bound for S;. It follows from (6.2) with u = 2 that
1 ) 1
S1 < —E (Vi x(X1))%) < O

Upper bound for So. The stationarity of (X, Y;)iez implies that

n—1

1
S = — D " (n = m)Cov (Yo 1¥j(Xms1), Yithjr(X1))
m=1
1 n—1
< H ‘COV (Ym+1¢j7k(Xm+1)y Yle,k (Xl)) |
m=1

A standard covariance inequality for p-mixing gives

|Cov (Y197 1(Xim1), Y19 1(X1)) | < E(Y1vj£(X1))%) om

(see, for instance, (Zhengyan and Lu, 1996, Lemma 1.2.7.)).
Equation (6.2) with v = 2 yields

E((V1vj1(X1))?) < C.

Therefore, using (5.5),

S2<C ZPmSC megcf

m 1

Combining the inequalities above, we obtain
o 9 1
E ((@yk — Bjk) ) <C.

e Proceeding as for the first point but with (¢;4)'(X;) instead of Y1, ,(X;) and (6.3)
instead of (6.2).

Proposition 5.3 is proved. [J

17



Proof of Proposition 5.4

e We have the following decomposition

Bj,kcz',k — Birdjr = Bj,k(dj,k —djr) + dj,k(/éj,k — Bjx) + (Bj,k - ﬁj,k)(czj,k —djk).

Therefore
E (’Bj,kdj,k - 5j,kdj,k\) < +Tr+T;
where ) R
Ty = |B;k|E (|dj,k - dj,kl) , Ty = |dj,|E (|/8j,k - 5j,k|)
and

T3 =E (!(Bj,k — Bin)(djk — dj,k)\) :

Upper bound for Ty. Using the Cauchy-Schwarz inequality, the second point in Propo-
sition 5.3 and H4(s;), we obtain

A . , 2J 9—j(s1—1/2)
< —J(81+1/2)\/ o d-)2) < it/ 2 a2
Ty < Cy2 E ((dj — djp)?) < C2 =07

Upper bound for Ty. By the Cauchy-Schwarz inequality, the first point in Proposition
5.3 and H5(s2), we obtain

9—i(s2+1/2)
\/ﬁ

Upper bound for T3. The Cauchy-Schwarz inequality and Proposition 5.3 yield

A ~ 2 '
T3 < \/(E ((ﬁj,k: = ﬁj,kz)Q) E <(dj,k = dj,k;)2) <Oy %277] = C%~

The above inequalities imply that

T2 < 052—j(52+1/2) \/E ((Bj,k _ ﬁj,k‘)2) < C

o 9—3j(s1-1/2) 9—7j(s2+1/2) 97
E <|5j,kdj,k = ﬁj,kdj,k!> <C ( = .

Vi T T T

e The proof of the second point is identical to the first one but with the bounds |a ;| <
C and || < C thanks to H2 and H3.

This ends the proof of Proposition 5.4. [J
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Proof of Theorem 5.2

Using Proposition 3.1, we have

Jo
0= = =2 (rnbrp—arperr) =2 Y (Bindjn — Bind;k)

kA, j=7 keA;
+ 02 ) D Bikdjne
j=jo+1 keA,
Therefore
E(\S—é\) < Wi+ Wa + Wi, (6.8)
where

Jo
Wy = Z E (|&rkCrk — arpcril), Wy = Z Z E <|/Bj,kdj,k - Bj,kdj,k|) ,

ke, j=r keh,
and
o
W= > > IBjxlldjxl-
j=jo+1keA;

Upper bound for Wi. The second point of Proposition 5.4 and Card(A;) < C give

1
Wy <C——. 6.9
10 (6.9)
Upper bound for Wa. It follows from the first point of Proposition 5.4, Card(A;) < C27,
51> 3/2, s3> 1/2 and 270 < n'/* that

jo o _ o .

[ 9—i(s1i—1/2)  9—j(s2+1/2)  9j

Wy, < C)» 2 il
2= ]z; ( Jn T un n

1 Jo 1 Jo 1 Jo
< L 9—i(s1=3/2) L 1 9—i(sa=1/2) , 92j
< c| = z + = z +nz
1 1 22jo 1
< < C—. .
< C<ﬁ+\/ﬁ+n)—c\/ﬁ (6.10)

Upper bound for W3. By H4(s1) with s; > 3/2, H5(s2) with so > 1/2 and 270+ > nl/4)
we have

Wy <C Y 2727t/ mileatlf2) < ggiolsts2) < co~2o < oLl (6.11)
J=jo+1 vn

19



Putting (6.8), (6.9), (6.10) and (6.11) together, we obtain
N 1
E (|5 5|) <0~
This ends the proof of Theorem 5.2. [J

6.2.3 The a-mixing case

Recall that, here, we assume that (X1,Y7),...,(X,,Y,) coming from a a-mixing strictly
stationary process (X, Y;)iez process (see Definition 2.2).

Proof of Proposition 5.5
e Proposition 3.2 yields E(,@’j’k) = Bj k. Therefore,
R 1 n
E ((ﬁj}k - ,Bj,k:)Z) =3V < Yz'%,k(&)) = 51 + 52,
where

S1= %V(Y1¢j,k(Xl))7 Sy = —5 Cov (Yothj(Xo), Yeriju(Xe)) -

Upper bound for S;. It follows from (6.2) with u = 2 that

1 1
S1 < E]E (Vi 6(X1))?) < Cﬁ'

Upper bound for Se. The stationarity of (X, Y;)iez implies that

n—1

1
Sy = anZl(n—m)Cov (Y196 (Xm1), Y1951(X1))

-1
1
s n; |Cov (Vi1 (Xm+1), Y1v0(X1)) |-

Let [clnn] be the integer part of cInn where ¢ = 1/Inb. We have

n—1

Z |Cov (Y1) x(Xma1), Y19 1(X1)) | =

m=1
[clnn] n-1
> 1Cov (Vi1 (Xmg 1), Vi (X)) [+ > [Cov (Vo1 e (Xma1), Yitbp(X1)) |-
m=1 m=[clnn|+1
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On the one hand, the Cauchy-Schwarz inequality and (6.2) with v = 2 yield

|Cov (Vo196 (Xmt1), Vive(X1)) | < E((Y1eh6(X1))%) < C.

Hence
[clnn]

> [Cov (Yos19sk(Xmt1), Vit 1(X1)) < Clnn.

m=1

On the other hand, a standard covariance inequality for a-mixing gives, for any v €
(0,1),

|Cov (Yo 10i 6 (Xme1), Yitbj x(X1)) | < 10a], (E (|Y1wj,k(X1)\2/(14)>>1—v.

(See, for instance, Davydov (1970)).
Taking v = 1/2 and using (5.8), (5.9), again (6.2) with u = 2 and 27 < n, we obtain

n—1

> 1Cov (Y1t k(Xmsn), Yithy (X)) |
m=[clnn]+1

n—1
< OCsw @B (ea?) Y v
z€[—b,b] m=[clnn|+1

< C2j/2 Z bfm/2 < C\/ﬁbfclnn/Z < C.
m=[clnn]+1

Hence .
> 1Cov (Yo thn(Ximg), Vivhie(X1)) | < C.
m=[clnn|+1
Then |
Sy < 02
n

Combining the inequalities above, we obtain

E ((Bj,k - ﬁj,k)2) < cn

n .

e The proof is similar to the first point. It is enough to replace Yj; 1 (X;) by (v;1) (X5),
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apply (6.3) instead of (6.2) and observe that

n—1

Y 1Cov ((Wi) (Xims1), () (X1)) |

m=[clnn|+1

n—1
< |/ @B (Wwra?) Y v
z€R m=[clnn|+1
< C23j/22] Z b—m/Q < C22j\/ﬁb—clnn/2 < 022]

m=[clnn]|+1

Proposition 5.5 is proved. [

Proof of Proposition 5.6

The proof of Proposition 5.6 is identical to the one of Proposition 5.4. It is enough to use
Proposition 5.5 instead of Proposition 5.3 and to replace 1/n by Inn/n. O

Proof of Theorem 5.3

The proof of Theorem 5.3 is identical to the one of Theorem 5.2. It suffices to use Proposition
5.6 instead of Proposition 5.4 and to replace 1/n by lnn/n. O
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