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Introduction

In this paper, we are interested in the so-called large solutions of a certain class of partial differential equations. Let us recall what they are: given Ω be a bounded domain of R N , N ≥ 1 and f ∈ C 1 (R), a large solution is a function u ∈ C 2 (Ω) satisfying [START_REF] Bandle | Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour[END_REF] ∆u = f (u) in Ω,

u = +∞ on ∂Ω,
where the boundary condition is understood in the sense that lim x→x 0 ,x∈Ω u(x) = +∞ for all x0 ∈ ∂Ω and where f is assumed to be positive at infinity, in the sense that

(2) ∃ a ∈ R s.t. f (a) > 0 and f (t) ≥ 0 for t > a.

When the boundary of Ω is smooth enough, existence of a solution of ( 1) is equivalent to the so-called Keller-Osserman condition :

(3)

+∞ dt F (t) < +∞,
where

F (t) = t a f (s) ds.
For a proof of this fact, see the seminal works of J.B. Keller [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and R.

Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] for the case of monotone f , as well as [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF] for the general case. From here on, we always assume that (3) holds. Uniqueness of solutions of (1) turns out to be delicate. As one might expect, it fails in the presence of oscillations. For example, if f (u) = u 2 sin 2 (u), the equation has infinitely many solutions (see [START_REF] Dumont | Back to the Keller-Osserman condition for boundary blow-up solutions[END_REF]). It is also known (see e.g. the remark on p. 325 in [START_REF]Generalized boundary value problems for nonlinear elliptic equations[END_REF]) that uniqueness fails for a nonlinearity of the form f (u) = u p , p > 1, if the domain is not smooth enough:

Proposition 1.1 Assume that Ω = B \ {0} is the punctured unit ball of R N , N ≥ 2. Let p ∈ (1, N N-2 ) if N ≥ 3 (respectively p ∈ (1, +∞) if N = 2
) and f (u) = u p . Then, there exists infinitely many solutions of (1).

However, one could hope that uniqueness holds under the simple assumptions that f is a nondecreasing function and that Ω has smooth boundary. As of today, this question remains open. In [START_REF] Costin | Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry[END_REF], we proved uniqueness in the case where Ω is a ball.

Theorem 1.2 ([3]) Assume that Ω is the unit ball in R N , N ≥ 1.
Assume that f is a nondecreasing function such that (2) and (3) hold. Then, there exists a unique solution of (1).

In this paper, we give a shorter proof of this fact. Under extra convexity assumptions, we obtain the following answer for a more general class of domains.

Theorem 1.3 Assume that ∂Ω is of class C 3 and that its mean curvature is nonnegative. Assume that f is a nondecreasing function such that (2) and (3) hold. Assume in addition that there exists M ∈ R such that √ F is convex in (M, +∞). Then, there exists a unique solution of (1).

Remark 1.4 If f is asymptotically convex, then so is √ F .

Let us turn to the proofs.

2 Proof of Theorem 1.2

Step 1. Reduction to the radial case.

Assume Ω is the ball. It is well-known (see e.g. Lemma 2.4 in [START_REF] Costin | Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry[END_REF]) that the equation has a minimal and a maximal solution, each of which is radial. That is, there exist two large radial solutions U1, U2 such that any large solution u satisfies U1 ≤ u ≤ U2. In particular, it suffices to prove that U1 ≥ U2.

Step 2. Let u be a large radial solution. There exists r0 ∈ (0, 1) such that in (r0, 1), u is strictly increasing and

(4) 1 2N F (u) ≤ du dr 2 ≤ 4F (u)
This is essentially Keller's classical argument (see [START_REF] Keller | On solutions of ∆u = f (u)[END_REF]): let u be a large radial solution. Using (2), it follows that for r close to 1,

(5)

r 1-N d dr r N-1 du dr = ∆u = f (u) ≥ 0.
Since u is unbounded, there exists r1 close to 1 such that du/dr(r1) > 0. By [START_REF] García-Melián | Uniqueness of positive solutions for a boundary blow-up problem[END_REF], du/dr > 0 in [r1, 1). Integrating (5), we also have for r ∈ (r1, 1),

r N-1 du dr = r N-1 1 du dr (r0) + r r 1 s N-1 f (u(s)) ds ≤ r N-1 1 du dr (r1) + f (u(r)) r N N .
Since f is nondecreasing and satisfies the Keller-Osserman condition (3), lim+∞ f = +∞. Using this in the above, given ǫ > 0, we find r2 ∈ [r1, 1) such that for r ∈ (r2, 1),

1 r du dr ≤ 1 N + ǫ f (u) Taking ǫ = 1 2(N-1)
and recalling that

d 2 u dr 2 + N -1 r du dr = f (u), we deduce that 1 2N f (u) ≤ d 2 u dr 2 ≤ f (u) in [r2, 1).
Multiplying by 2du/dr, integrating and letting c = du/dr(r2) 2 -F (u(r2)), we obtain

1 N F (u) + c ≤ du dr 2 ≤ 2F (u) + c for r ∈ [r2, 1)
and so we find r0 ∈ [r2, 1) such that (4) holds in [r0, 1).

Step 3. Change of independent variable. Thanks to Step 2, for r close to 1, given i ∈ {1, 2}, we may perform the change of variable u = Ui(r). Let r = ri(u) denote the inverse mapping of Ui and Vi = dU i dr • ri. By the chain rule,

Vi dVi du + N -1 ri Vi = f, while dri/du = 1/Vi, so that (7) 1 -ri = +∞ u 1 Vi du ′ . (6) 
Step 4. There exists u0 > 0 such that r1 ≥ r2 and V1 ≥ V2 in [u0, +∞). Since ri is the inverse mapping of Ui and U1 ≤ U2, we have r1 ≥ r2. By (6), the function z = V2 -V1 satisfies

dz du + (N -1) 1 r2 - 1 r1 = 1 V2 - 1 V1 f = - f V1V2 z.
Since r1 ≥ r2, we deduce that w satisfies the differential inequality

(8) dz du + az ≤ 0,
where a = f V 1 V 2 ≥ 0 for large u. By [START_REF] Montenegro | The sub-supersolution method for weak solutions[END_REF], we also have

+∞ u 1 V2 du ′ ≥ +∞ u 1 V1 du ′ .
So, there must exist u0 such that 1/V2(u0) ≥ 1/V1(u0) i.e. w(u0) ≤ 0.

Using this together with (8), we deduce that z ≤ 0 in [u0, +∞), as desired.

Step 5. The function

w = r 2N-2 1 V 2 1 -r 2N-2 2 V 2 2 is bounded. To see this, observe first that (9) dw du = 2(r 2N-2 1 -r 2N-2 2 )f.
Hence, w is a nonnegative nondecreasing function and

dw du ≤ 4(N -1)(r1 -r2)f = 4(N -1) +∞ u 1 V2 - 1 V1 du ′ f Now, if u0 is chosen so large that 1 2 ≤ r2 in [u0, +∞), ( 10 
) 1 V2 - 1 V1 = V 2 1 -V 2 2 V1V2(V1 + V2) ≤ 2 2N-2 w V1V2(V1 + V2) .
Integrating (9) and using (4), it follows that for u ≥ u0,

w(u) ≤ w(u0) + C(N ) u u 0 +∞ u ′ w F 3 2 du ′′ f du ′ .
Integrating by parts

w(u) ≤ w(u0) + C(N ) F (u) +∞ u w F 3 2 du ′ + u u 0 w F 1 2 du ′ .
Thanks to the Keller-Osserman condition (3), if u0 is chosen large enough,

u u 0 w F 1 2 du ′ ≤ w(u) +∞ u 0 1 √ F ≤ 1 2C(N )
w(u).

We have then obtained

(11) w(u) ≤ 2w(u0) + 2C(N )F (u) +∞ u w F 3 2 du ′ . Introduce G(u) = +∞ u w F 3 2
du ′ . Thanks to (4) and (3), we have G(+∞) = 0.

In addition, letting c = 2C(N ), ( 11) can be rewritten as

- dG du ≤ 2w(u0) F 3 2 + c F 1 2 G.
That is,

- d du G exp -c +∞ u 1 √ F du ′ ≤ 2w(u0) F 3 2 exp -c +∞ u 1 √ F du ′ ≤ 2w(u0) F 3 2
.

Integrating between u and +∞, we then obtain, using once again (3),

G(u) ≤ C +∞ u 1 F 3 2 = o 1 F .
Going back to (11), we deduce that w is bounded above.

Step 6. The difference U2(r) -U1(r) converges to 0 as r → 1.

Given r close to 1 and i ∈ {1, 2}, let ui = Ui(r). Then,

+∞ u 1 1 V1 du = 1 -r = +∞ u 2 1 V2 du.
That is,

u 2 u 1 1 V1 du = +∞ u 2 1 V2 - 1 V1 du.
Using ( 10), ( 4), and the previous step, we deduce that

u 2 u 1 1 √ F du ≤ C +∞ u 2 1 F 3/2 du. It follows that 0 ≤ u2 -u1 F (u2) ≤ C F (u2) +∞ u 2 1 F du
and the claim follows promptly.

Step 7. End of proof. Let w = U2 -U1. Since U2 ≥ U1 and f is nondecreasing, we see from the previous step that ∆w = f (U2) -f (U1) ≥ 0 in B, w = 0 on ∂B.

By the maximum principle, w ≤ 0 in B, as desired.

3 Proof of Theorem 1.3

Take a solution u to (1). Let a be the constant appearing in (2), M the constant beyond which √ F is convex, and fix M > max(0, a, M ). Fix ε > 0 so small that u > M in Ωε = {x ∈ Ω : dist(x, ∂Ω) < ε}.

Step 1. We begin by proving that there exists a sequence of functions (uN ) N∈N solving (12)

     ∆uN = f (uN ) in Ωε, uN = N on ∂Ω, uN = u on {x ∈ Ω : dist(x, ∂Ω) = ε}, such that (13) 0 ≤ uN ≤ u in Ωε.
We may always assume that f (0) = 0. * In particular, u = 0 and u = u are respectively a sub and supersolution of ( 12) and they are ordered. It follows that there exists a solution uN to [START_REF]Solutions singulières d'équations elliptiques semilinéaires[END_REF] such that (13) holds.

A standard application of the maximum principle shows that uN is the unique solution to [START_REF]Solutions singulières d'équations elliptiques semilinéaires[END_REF] and that (uN ) is a nondecreasing sequence. Thanks to [START_REF]Generalized boundary value problems for nonlinear elliptic equations[END_REF] and elliptic regularity, we may also assert that (uN ) converges in C 2 loc (Ωε \ ∂Ω) to a function ũ solving ( 14)

     ∆ũ = f (ũ) in Ωε, ũ = +∞ on ∂Ω, ũ = u on {x ∈ Ω : dist(x, ∂Ω) = ε},
Step 2. There holds

(15) |∇uN | 2 -2F (uN ) ≤ MN in Ωε,
where

(16) MN = sup dist(x,∂Ω)=ε |∇uN | 2 -2F (uN ) .
The proof is a straightforward adaptation of an argument due to Bandle and Marcus ( [START_REF] Bandle | Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour[END_REF]), which uses the method of P -functions. We give the full argument here for convenience of the reader. Let

PN = |∇uN | 2 -2F (uN ).
By a result of Payne and Stackgold ( [START_REF] Payne | Nonlinear problems in nuclear reactor analysis[END_REF], see also Chapter 5 in [START_REF] René | Maximum principles and their applications[END_REF]), there exists a bounded continuous vector field A, such that Since ∂uN /∂n > 0 and H ≥ 0, this implies that

∂ 2 uN ∂n 2 -f (N ) ≤ 0
and consequently ∂PN /∂n ≤ 0, as desired. We have just proved (15).

Step 3. The function ũ = limN→+∞ uN coincides with u in Ωε. The proof of this fact bears resemblances with a trick due to L. Nirenberg given in [START_REF] Brezis | Sublinear elliptic equations in R n[END_REF]. By [START_REF]Generalized boundary value problems for nonlinear elliptic equations[END_REF], we already have ũ ≤ u in Ωε and it remains to prove the reverse inequality. Thanks to [START_REF]Generalized boundary value problems for nonlinear elliptic equations[END_REF] and elliptic regularity, there exists a constant M such that 2M ≥ MN , where MN is given by ( 16). Now let F = F + M and define

vN = +∞ u N dt 2 F (t)
.

Then, (15) can be rewritten as

|∇vN | ≤ 1
in Ωε from which it easily follows that

(17) |∇ṽ| ≤ 1 in Ωε,
where we defined similarly ṽ = +∞ ũ dt

.

Let at last v = +∞ u dt 2 F (t)
.

It remains to prove that u ≤ ũ i.e. ṽ ≤ v in Ωε. Using the equations satisfied by u and ũ, we see that w = v -ṽ solves

-∆w = f 2 F (u) 1 -|∇v| 2 - f 2 F (ũ) 1 -|∇ṽ| 2 = f 2 F (u) - f 2 F (ũ) 1 -|∇ṽ| 2 + f 2 F (u) |∇ṽ| 2 -|∇v| 2 Since √ 2F is convex, f √ 2 F is nondecreasing.
Using this and (17), we deduce that

-∆w + b(x) • ∇w ≥ 0, in Ωε w = 0 on ∂Ωε, where b(x) = f √ 2 F (u)∇(v + ṽ
) is locally bounded in Ω. We may now apply the maximum principle to conclude that w ≥ 0 in Ω, as desired.

Step 4. End of proof. The rest of the proof is similar to an argument due to Garcia-Melian [START_REF] García-Melián | Uniqueness of positive solutions for a boundary blow-up problem[END_REF]. We take two arbitrary solutions u, u of our equation [START_REF] Bandle | Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour[END_REF]. We let uN , uN be the corresponding solutions to the approximated problem [START_REF]Solutions singulières d'équations elliptiques semilinéaires[END_REF]. In particular, wN = uN -uN solves (18) 

     ∆wN = f (uN ) -f (
(u -u) in Ωε,
with equality at some point z such that dist(z, ∂Ω) = ε. Now, we also have

∆w = f (u) -f (u) in Ω \ Ωε, w = u -u on {x ∈ Ω : dist(x, ∂Ω) = ε}.
By the maximum principle, we deduce that inequality (19) holds throughout Ω, with equality at the point z. The strong maximum principle implies that w is equal to a constant c. Since u, u solve (1), we deduce that f (u) = f (u + c), which is possible only if c = 0.

4 Proof of Proposition 1.1

We thank Laurent Véron ( [11]) for the following proof. Given p ∈ (1, N/(N -2)), k ∈ N and λ > 0, we begin by solving

(20) -∆u + u p = λδ0 in B, u = k on ∂B,
Since 0 is a subsolution, while a large constant multiple of the fundamental solution is a supersolution, we deduce from the method of sub and supersolution (see e.g. [START_REF] Montenegro | The sub-supersolution method for weak solutions[END_REF] for the appropriate statement) that there exists a solution u = u k to (20). By the maximum principle, u k is the unique solution to (20), and the sequence (u k ) is nondecreasing. Thanks to the Keller-Osserman estimate (see e.g. [START_REF] Keller | On solutions of ∆u = f (u)[END_REF]), the sequence (u k ) is uniformly bounded on compact subsets of the punctured ball B \ {0}. It follows from elliptic regularity that u k converges to a solution u = u λ of -∆u + u p = λδ0 in B, u = +∞ on ∂B, By the results of [START_REF]Solutions singulières d'équations elliptiques semilinéaires[END_REF], u λ behaves like a constant multiple of the fundamental solution near the origin. In particular, each u λ is a large solution in the punctured ball.

There exists yet another large solution. Simply note that for an appropriate constant c = c(N, p) > 0, the function u1(x) = c|x| -2/(p-1) solves ∆u = u p in R N \ {0}. Let also u2 be the unique solution to ∆u = u p in B, u = +∞ on ∂B,

Then, u = max(u1, u2) and u = u1 + u2 form an ordered pair of sub and supersolution to the equation in the punctured ball. The method of sub and supersolutions implies the existence of a new large solution u∞ which behaves like c|x| -2/(p-1) near the origin, hence distinct from u λ . Finally, observe that for the nonlinearity f (u) = u p , if u is a large solution and ǫ > 0, then (1 + ǫ)u is a supersolution. From this, the classification of singularities both at the origin (see [START_REF]Solutions singulières d'équations elliptiques semilinéaires[END_REF]) and on the boundary (see e.g. [START_REF] Bandle | Large" solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour[END_REF]), and the maximum principle, it easily follows that the set of positive large solutions in the punctured ball is exactly {u λ } λ∈(0,+∞] .
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