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Modèle de contact dynamique pneumatique/chaussée

Dans ce travail, nous proposons une démarche de modélisation de contact dynamique entre pneumatique et chaussée. La démarche est basée sur les techniques de convolutions. Les fonctions de Green du pneumatique sont supposées connues. La démarche consite d'abord à décomposer ces fonctions dans une base modale, ensuite les paramètres identifiés sont utilisés pour construire une convolution rapide. Le déplacement est calculé par une convolution rapide entre forces de contact et fonctions de Green. Le problème de contact est traité en ajoutant une condition cinématique sur les vitesses. La démarche est appliquée sur un modèle simplifié de pneumatique sur une chaussée sinusoïdale.
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Le contact pneumatique/chaussée représente la source principale du bruit de trafic routier, en particulier pour des vitesses supérieures à 50 km/h. L'une des difficultés majeures de la modélisation de ce phénomène est la prise en compte de l'effort de contact dans le comportement dynamique du pneumatique. La complexité de la géométrie du couple chaussée/pneumatique rend le problème difficile. Ce genre de problème est souvent traité à l'aide de l'intégration temporelle en utilisant des approches basées soit sur la méthode de pénalisation [START_REF] Kanto | A dynamic contact buckling analysis by the penalty finite element method[END_REF] soit sur la méthode de multiplicateurs de Lagrange [START_REF] Bathe | A solution method for planar and axisymmetric contact problems[END_REF]. La plupart de ces méthodes sont souvent difficiles à mettre en oeuvre ou bien mènent à des calculs lourds. Les techniques de convolution peuvent être utilisées pour traiter ce genre de problème. La réponse dynamique est calculée par un produit de convolution entre les fonctions de Green du système dynamique et les forces de contact. Cette approche est largement utilisée dans la littérature [START_REF] Nordborg | Wheel/rail noise generation due to nonlinear effects and parametric excitation[END_REF][START_REF] Mcintyre | On the oscillations of musical instruments[END_REF][START_REF] Wang | New analysis method for a thin beam impacting against a stop based on the full continuous mode[END_REF][START_REF] Kropp | A model to describe the rolling noise of a smooth radial tire on a rough road surface[END_REF][START_REF] Larsson | Modelling of dynamic contact-exemplified on tire/road interaction[END_REF][START_REF] Andersson | Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness[END_REF]. La démarche que nous proposons dans ce travail est basée sur la décomposition de la fonction de Green dans une base modale. Les paramètres modaux identifiés sont ensuite utilisés pour construire une convolution plus rapide. Le contact est géré en utilisant les conditions de contact classique, puis en ajouttant une condition cinématique sur les vitesses de déplacements.

Convolution rapide

La fonction de Green est supposée connue. L'idée est d'approximer cette fonction par une combinaison linéaire de la contribution de chaque mode. Les paramètres modaux sont identifiés à l'aide de l'algorithme LSCE.

G(ω) ≈ k=N m ∑ k=1 A k -ω 2 + 2 jξ k ωω k + ω 2 k (1)
Après avoir déterminé les paramètres modaux A k , ω k et ξ k et tronqué la décomposition à un ordre N, le déplacement dans le domaine temporel peut être obtenu par une transformation de Fourier inverse de l'équation (1)

g(t) = k=2N m ∑ k=1 A k ω k d e -ξ k ω k t sin(ω d k t) (2) Avec ω k d = ω k 1 -ξ 2 k
Le déplacement peut être calculé par un produit de convolution

u(t) = Z t 0 g(τ)q(t -τ)dτ = Z t 0 g(t -τ)q(τ)dτ (3) 
On remplace l'expression de g(t) dans l'équation (3), puis on sépare les variables t et τ , nous pouvons écrire le déplacement sous la forme

u(t) = k=2N m ∑ k=1 A k ω d k e -ξ k ω k t sin ω d k t α k (t) -cos ω d k t β k (t) (4) 
où α k (t) et β k (t) sont calculés par les formules

α k (t) = Z t 0 e ξ k ω k τ cos(ω d k τ)q(τ)dτ (5) 
β k (t) = Z t 0 e ξ k ω k τ sin(ω d k τ)q(τ)dτ (6) 
3 Problème de contact

Démarche générale

Les conditions classiques de contact sont données par les équation suivantes

u(t) = u r (t) ; f c (t) > 0 (7) u(t) > u r (t) ; f c (t) = 0 (8) 
Où u(t) est le déplacement d'un point du système, u r (t) est l'amplitude du profile de la chaussée au même point et f c (t) la force de contact au même point. Le principe de calcul est détaillé ci-dessous :

1. Premièrement, l'historique du déplacement u h (n∆t) est calculé en supposant que f c (n∆t) = 0.

u h (n∆t) = k=N ∑ k=1 A k ω d k e -ξ k ω k n∆t sin ω d k n∆t α k ((n -1)∆t) -cos ω d k n∆t β k ((n -1)∆t) (9) 
2. L'historique du déplacement est comparé avec l'amplitude du profile de la chaussée.

∆x(n∆t) = u r (n∆t) -u h (n∆t) (10) 
3. Si l'hypothèse de non contact (∆x < 0) est vérifiée, le déplacement est calculé par :

u(n∆t) = u h (n∆t) (11) 
Ensuite, la même procédure est répétée pour le prochain pas de temps ( f c ((n + 1)∆t) = 0).

4. Si ∆x ≥ 0, la force de contact est calculée par le principe de déconvolution détaillé dans la prochaine section.

5. La même procédure est répétée pour le prochain pas de temps ( f c ((n + 1)∆t) = 0).

Déconvolution

la force et la fonction de Green dans le domaine temporel, le déplacement peut être calculé par un produit de convolution :

u(t) = Z t-∆t 0 g(t -τ)q(τ)dτ + Z t t-∆t g(t -τ)q(τ)dτ = Z t-∆t 0 g(t -τ)q(τ)dτ u h (t) + Z ∆t 0 g(τ)q(t -τ)dτ = u h (t) + Z ∆t 0 g(τ)q(t -τ)dτ (12) 
Si on dérive cette équation (12) on trouve

v(t) = u ′ (t) = Z t-∆t 0 g ′ (t -τ)q(τ)dτ + Z t t-∆t g ′ (t -τ)q(τ)dτ = Z t-∆t 0 g ′ (t -τ)q(τ)dτ v h (t) + Z ∆t 0 g ′ (τ)q(t -τ)dτ = v h (t) + Z ∆t 0 g ′ (τ)q(t -τ)dτ (13) Notant Y = [u(t) v(t)] T et Y h = [u h (t) v h (t)] T , on peut écrire Y = Y h + Ψ(q) (14) 
Où Ψ est un opérateur intégral qui traduit l'influence de la force de contact à l'instant t.

Dans le cas où, il y a contact, le déplacement est imposé par le profile de la chaussée qui est supposé rigide. On suppose aussi que le point de contact suit la chaussée, ce qui peut être traduit par les conditions suivantes :

u(t) = u r (t) ; v(t) = du r (t) dt ( 15 
)
Sous la forme vectorielle

Y = Y r = [u r (t) du r (t) dt ] T (16)
En utilisant la décomposition modale de la fonction de Green, on peut écrire

u(t) = k=N ∑ k=1 A k ω d k e -ξ k ω k t sin ω d k t α k (t) -cos ω d k t β k (t) (17) et v(t) = - k=N ∑ k=1 A k ξ k ω k ω d k e -ξ k ω k t sin ω d k α k (t) -cos ω d k t β k (t) + k=N ∑ k=1 A k e -ξ k ω k t cos ω d k t α k (t) + sin ω d k t β k (t) (18) 
Les équations ( 17) et (18), peuvent s'écrire sous la forme matricielle

Y = k=N ∑ k=1 B k x k (19) où x k = [α k (t) β k (t)] T (20) et B k = A k e -ξ k ω k t     sin(ω d k t) ω d k - cos(ω d k t) ω d k cos ω d k t -ξ k ω k ω d k sin ω d k t sin ω d k t + ξ k ω k ω d k cos ω d k t     (21) 
Les conditions de contact

Y r = Y h + Ψ(q) (22) 
L'objectif est de calculer la force de contact qui vérifie à la fois ces deux conditions. La force de contact est reliée avec le déplacement par l'opérateur Ψ.

∆Y = Y r -Y h =    Z ∆t 0 g(t -τ)q(τ)dτ Z ∆t 0 g ′ (t -τ)q(τ)dτ    (23) 
Ces intégrales peuvent être calculées en utilisant deux points de Gauss. Les valeurs de la force de contact aux deux points de Gauss sont calculées en inversant l'opérateur Ψ.

q = q 1 q 2 = Ψ -1 (t 1 ,t 2 )∆Y (24) 
Cet opérateur est donné par

Ψ =   g(t -t 1 ) g(t -t 2 ) g ′ (t -t 1 ) g ′ (t -t 2 )   ∆t (25) 
où,

g(t) = k=N ∑ k=1 A k ω d k e -ξ k ω k t sin ω d k t (26)
Dans l'intervalle de temps [t t + ∆t], la force de contact est la moyenne des valeurs de la force aux deux points de Gauss t 1 et t 2 qui sont définis par

t 1 = t + 1 - 1 (3) ∆t 2 ; t 2 = t + 1 + 1 (3) ∆t 2 (27)
Connaissant les valeurs de la force de contact aux deux point de Gauss t 1 and t 2 , on peut calculer les paramètres α k (t + ∆t) et β k (t + ∆t) par les équations de récurrence suivantes 

α k (t + ∆t) = α k h (t) + e ξ k ω k t 1 cos(ω d k t 1 )q 1 + e ξ k ω k t 2 cos(ω d k t 2 )q 2 2 ∆t ( 28 
)
β k (t + ∆t) = β k h (t) + e ξ k ω k t 1 sin(ω d k t 1 )q 1 + e ξ k ω k t 2 sin(ω d k t 2 )q 2 2 ∆t (29)

Conclusion

Une nouvelle formulation de contact dynamique entre pneumatique et chaussée a été présentée. Le formalisme a deux avantages : premièrement sa rapidité en utilisant une convolution basée sur une décomposition modale. Deuxièmement, l'introduction de la condition cinématique de contact facilite le calcul des efforts de contact. La méthode a été appliquée dans le cas d'un modèle simplifié de pneumatique sur une chaussée sinusoïdale, elle peut être encore plus avantageuse en terme de temps de calcul dans le cas d'un pneumatique réel sur une chaussée réelle. 
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 2 FIG. 2 -Forces de contact aux différents points de contact

4 Application

 4 La modélisation d'un pneumatique réel avec tous les détails est très complexe. Dans la littérature, le modèle d'anneau circulaire sous fondation élastique est souvent adopté pour modéliser un pneumatique dans les basses fréquence [0 500Hz] . Dans ce modèle la bande de roulement est modélisée par une poutre de Bernoulli, les propriétés élastiques du flanc et de la jante sont modélisées par des ressorts[START_REF] Meftah | Efficient computation of tire/road contact forces using an ARMA model of the Green function[END_REF].On suppose que la ligne de contact contient cinq points. La matrice des fonctions de Green est alors de taille 5x5, les figures 1 et 2 montrent respectivement les déplacements et les forces de contact de ces cinq points de contact.
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