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ABSTRACT: The calculation of high-frequency wave radiations in exterior domains by finite element methods can lead to large
computations. Boundary conditions have to be applied on thesurface of the radiating body or on a truncated domain to approximate
the behaviour of an infinite domain. In this paper, a different waveguide approach is proposed for computing wave radiation.
Propagation constants and wave modes are computed in a smallrib around the radiating body for different frequencies. Itis shown
that the solutions on the boundary of the radiating body and in the exterior domain can be determined efficiently from thisset of
waves. The method allows an efficient computation of radiation and scattering solutions by limiting the discretizationto a very
small part of the exterior domain. The error on the boundary condition can be controlled and the solution converges to theexact
solution by using a sufficient number of waves. It is shown that the condition is more efficient for high frequencies and canbe
complementary of the usual approaches involving simple finite or boundary elements. Analytical and numerical examplesare
computed to show the accuracy of the method.
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1 INTRODUCTION

Many approaches have been used in the past for computing the
solutions of wave problems in unbounded media. They can be
mainly classified into two groups : the domain methods for
which a substantial part of the exterior domain is meshed and
the surface methods for which only the surface of the domain is
meshed. In the domain methods the exterior domain is truncated
at some distance where local or global boundary conditions are
imposed at this artificial boundary. Boundary conditions atfinite
distance must simulate as closely as possible the exact radiation
condition at infinity and, to this aim, various methods have been
proposed, see [1], [2], [3], [4], [5] among many papers on this
subject. An alternative method is to use boundary elements as
described in numerous classical textbooks like [6], [7], [8]. It
consists in solving an equation on the boundary of the domain
only and so the radiation conditions are taken into account
analytically. However, the final problem usually involves full
matrices which are also often non symmetrical. So this method
can lead to heavy computations when the number of degrees
of freedom increases, for instance for high frequencies. To
try to overcome this problem, the fast multipole method was
developed by many authors like [9], [10], [11]. In this approach
the Green’s function of the problem is expended in multipole
by grouping the computation of the interactions between far-
away basis functions. Using a multilevel approach, the number
of operations can be reduced to the order ofO(N logN) where
N is the number of degrees of freedom on the boundary.
This considerably increases the potential of boundary element
methods but this needs complicated programming and must be
adapted for different Green’s functions.

In this paper, we propose a quite different approach consisting
in the description of the propagation in exterior domains using

variants of methods originally developed to describe waveguide
structures. Classically these structures are uniform or periodic
along an axis, which is not the case here, so this paper
describes how to adapt these classical methods for exteriorwave
propagation problems. The motivation is that such waveguides
have been the topic of much research and efficient descriptions
of wave propagation in these structures have been proposed both
theoretically and numerically.

One can find analytical or finite element models of waveguide
and people are generally interested by the computation of wave
propagations and dispersion curves or by the determination
of the frequency response functions. For general waveguides
with a complex cross-section, the displacements in the cross-
section can be described by the finite element method while
the variation along the axis of symmetry is expressed as a wave
function. Following these ideas, [12], [13], [14], [15] developed
the spectral finite element approach. This leads to efficient
computations of dispersion relations and transfer functions.

More general waveguides can be studied by considering
periodic structures. Numerous works provided interesting
theoretical insights in the behaviour of these structures,see for
instance the work of [16] and the review paper by [17]. Mead
also presented a general theory for wave propagation in periodic
systems in [18], [19], [20]. He showed that the solution can
be decomposed into an equal number of positive and negative-
going waves. The approach is mainly based on Floquet’s
principle or the transfer matrix and the objective it to compute
propagation constants relating the forces and displacements on
the two sides of a single period and the waves associated to
these constants. For complex structures FE models are used
for the computation of the propagation constants and waves.
The final objective is to compute dispersion relations to use
them in energetic methods or to find transfer functions in the
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waveguide, see [21], [22], [23], [24], [25]. In [26] the general
dynamic stiffness matrix for a periodic structure was foundfrom
the propagation constants and waves.

The aim of this paper is to link these two, apparently quite
different, subjects. Here, a waveguide method, based on ideas
related to wave finite elements as described in [5], [21], [26],
[27], is used to compute the solution in the exterior domain
using functions defined on a small rib around the radiating body.
Propagation constants and wave modes are introduced. It is
shown how the solution in the exterior domain can be computed
for various frequencies using a simple relation between domains
of homothetic sizes and their propagating modes.

This paper is divided into three sections and is outlined as
follows. In section two, waves are computed in a layer around
the radiating body and relations between layers are given. In
section three, numerical examples are given to test the efficiency
of the method before the conclusion.

2 WAVEGUIDE APPROACH

2.1 Introduction

The problem is illustrated in figure 1, where harmonic waves
propagate at the exterior of a bodyΩ. Consider a surfaceΓ in
the exterior domain around the body, this surface is obtained
from ∂Ω by a homothety of factorα. Only convex bodies are
studied here.

i
+Φ i

−Φ

outgoing incoming

Γ

Ω

fq

Ω

Figure 1. Exterior domain with incoming and outgoing waves.

We define the state vectors on Γ as the vector made of
the displacementq and a term proportional to the force1iω f.
Both terms are multiplied byαd whered = (n − 1)/2 andn
is the space dimension. Theαd term is introduced to allow the
conservation of the scalar product at different distances from the
surface as will be seen later. We suppose that a solution in the
exterior domain can be decomposed as a sum of incoming and
outgoing waves, with outgoing waves of amplitudesa+i on a
basisΦ+

i and incoming waves of amplitudesa−i on a basisΦ−
i .

So we get, forx ∈ Γ

s(x) =
(

αdq(x)
αdf(x)

)
=

i=N

∑
i=1

a+i Φ+
i (x)+

i=N

∑
i=1

a−i Φ−
i (x) (1)

It is supposed that the wavesΦ+
i are associated with energy

going towards the exterior while wavesΦ−
i are associated with

energy converging towards the body. The solution will be purely
radiating if a−i = 0 for all i. In the following, the objective is
to compute the basisΦ+

i and Φ−
i , at various frequencies and

to define boundary conditions on the surface ofΩ leading to
outgoing waves only.

2.2 Solutions on different surfaces

Consider now the situation of figure 2, where different surfaces
are located at homothetic distances from the reference surface
S0 = ∂Ω taken as the surface of the body.
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Figure 2. Exterior domain divided into zones of proportional
sizes.

For instance the surfaceSi is defined from the surfaceS0 by
a homothety on the distance from origin such thatri = αir0

wherer0 is the distance to the origin of a point onS0, ri is the
corresponding point onSi andαi is constant on the surfaceSi.
Functions on the surfaceSi are linked to functions onS0 by

S0 −→ Si

Pi(r0) 7−→ pi(ri) =
1

αd
i

Pi(
ri
αi
) (2)

The constantd is chosen to preserve the scalar product between
the different surfaces. We can check that

∫

Si

pi(ri)qi(ri)dsi =
∫

S0

Pi(
ri

αi
)Qi(

ri

αi
)ds0

=
∫

S0

Pi(r0)Qi(r0)ds0 (3)

meaning that the scalar product is preserved by the transforma-
tion.

Consider now the eigenvalue problem in the annular domain
Ωie between the surfacesSi andSe (see figure 2) in which one
associates the displacements and the forces on surfacesSi and
Se as





L(q)+ω2q = 0 in Ωie

αd
e qe(re) = λαd

i qi(ri)

αd
e fe(re) = λαd

i fi(ri)

(4)

where L is a second order partial differential operator (for
instance∆ or the linear elasticity operator). The relations on
the boundaries can also be written as

{
Qe(r0) = λQi(r0), on S0

Fe(r0) = λFi(r0), on S0
(5)
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2.3 Behaviour of a layer

A layer defined as the domainΩie, between surfacesSi andSe is
described by a finite element model. It is supposed that the inner
and outer surfaces have sizes proportional to the surfaces of the
body S0, that means that points on these surfaces are given by
xi = αix0 andxe = αex0 whereαi andαe are constants on their
respective surfaces. A layer can be meshed with an arbitrary
number of elements using the full possibilities of usual finite
element software. The discrete dynamic behaviour of a layer
obtained from a finite element model at a circular frequencyω
is given by

(K−ω2M)Q = F (6)

whereK andM are the stiffness and mass matrices respectively,
F is the loading vector andQ the vector of the degrees of
freedom. The stiffness and mass matrices could be obtained
from any commercial finite element software and so this allows
the consideration of layers with complex structures. The sizes of
these matrices depends on the number of elements used to mesh
the layer and can be arbitrarily increased for a better precision of
the results. Introducing the dynamic stiffness matrix of the layer
DL = K−ω2M, decomposing into boundary (B) and interior
(I) degrees of freedom, and assuming that there are no external
forces on the interior nodes, results in the following relation

[
DL

BB DL
BI

DL
IB DL

II

][
QB

QI

]
=

[
FB

0

]
(7)

The assumption that there are no forces on the interior degrees of
freedom is satisfied for free waves inside the structure for which
the forces on a layer are only produced by boundary forces from
the adjacent layers. The interior degrees of freedom can thus be
eliminated to get

FB = (DL
BB −DL

BI(D
L
II)

−1DL
IB)QB (8)

Dropping theB index, this relation is written in the sequel as

F = DLQ (9)

and only boundary degrees of freedom will be considered now.
Separating the dofs into the inner(i) and outer(e) boundaries
leads to [

DL
ii DL

ie
DL

ei DL
ee

][
Qi

Qe

]
=

[
Fi

Fe

]
(10)

By symmetry of the stiffness and mass matrices, the dynamic
stiffness matrix is also symmetric, which leads totDL

ii = DL
ii,

tDL
ee = DL

ee and tDL
ie = DL

ei, where the superscriptt indicates the
transpose.

Instead of working with the current variables defined on
surfacesSi andSe, we will work with reference variables defined
on the reference surfaceS0 as described in relation (2) such that

Qi = αd
i qi

Qe = αd
e qe

Fi = iωα−d
i fi

Fe = iωα−d
e fe (11)

This change of variable is introduced to preserve the scalar
product between functions defined onS0, Si and Se. The

relations in (11) should be identical in terms of displacement and
force density. However, the nodal values of the force in the finite
element model are obtained through an integration over surface
elements and so already include anα2d contribution. This leads
finally to theα−d

e term in the relation involving the nodal force
values. The termiω is introduced as a normalisation of the
scale between homothetic layers as will be seen later. Thus,
the behaviour of a layer is now given by
[

fi

fe

]
=

1
iω

[
α2d

i DL
ii αd

i αd
e DL

ie
αd

i αd
e DL

ei α2d
e DL

ee

][
qi

qe

]
=

[
Dii Die

Dei Dee

][
qi

qe

]

(12)

2.4 Eigenvalue problem

In terms of the variablesf and q, free wave propagation is
described by the discrete eigenproblem

{
qe = λqi

fe +λ fi = 0
(13)

whereλ is a propagation constant between the inner and outer
boundaries of the domainΩie. Combining these two relations
with relation (12) yields

(
Dii +Dee +λDie +

1
λ

Dei

)
qi = 0 (14)

The eigenvectorqi is thus the solution of a quadratic eigenvalue
problem. Taking the transpose of equation (14) shows thatqi is
both a right-eigenvector associated with the eigenvalueλ and
a left-eigenvector associated with the eigenvalue 1/λ . Since
the left and right eigenproblems have identical eigenvalues, it
follows that if λ is an eigenvalue then so, too, is 1/λ . These
represent a pair of positive- and negative-going waves.

Introducing the transfer matrix

T =

[
−D−1

ie Dii D−1
ie

−Dei +DeeD−1
ie Dii −DeeD−1

ie

]
(15)

such that

T
[

qi

fi

]
=

[
qe

fe

]
(16)

This matrix has a right eigenvector for the eigenvalueλi given
by

Φi =

[
q(λi)

(Dii +λiDie)q(λi)

]
(17)

and a left eigenvector associated withλi given by

Ψi =
[

tq( 1
λi
)(Dee +λiDie)

tq( 1
λi
)
]

(18)

whereq(λi) andq( 1
λi
) are the eigenvectors of (14) associated to

the eigenvaluesλi and 1/λi respectively. Orthogonality proper-
ties can be obtained from these relationships. Considering

TΦ j = λ jΦ j (19)

ΨiT = λiΨi (20)

which leads to

ΨiTΦ j = λ jΨiΦ j = λiΨiΦ j (21)

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 636



This quantity must equal zero ifλi 6= λ j, so, the left and right
eigenvectors are such that

ΨiΦ j = diδi j (22)

wheredi is some constant. A normalisation of the eigenvectors
could be chosen such thatdi = 1.

2.5 Wave decomposition in a layer

From the precedent section, it is clear that the2N eigenvalues
of equation (14) can be split into two sets ofN eigenvalues
and eigenvectors which are denoted by(λi,Φ+

i ) and(1/λi,Φ−
i ),

with the first set such that|λi| ≤ 1. In the case|λi|= 1, the first
set must contain the waves propagating in the positive direction,
which are such that Re

{
(iω)2qH

i fi
}
< 0. The inverse eigenvalue

1/λi, in the second set, is associated with the waves such that
Re

{
(iω)2qH

i fi
}
> 0.

These waves are now used as a basis in a layer. The inner state
vector is given by the following sum of positive and negative-
going waves with respective amplitudesa+i anda−i

xi =

[
qi

fi

]
=

i=N

∑
i=1

(
a+i Φ+

i +a−i Φ−
i

)
(23)

In the same way, the outer state vector is given by

xe =

[
qe

fe

]
=

i=N

∑
i=1

(
λia

+
i Φ+

i +1/λia
−
i Φ−

i

)
(24)

2.6 Solutions in homothetic zones

Consider now the situation of figure 2, where the bodyΩ is
surrounded by an infinite number of layers of homothetic sizes
such that the positions in zonesΩii+1 andΩi+1i+2 are related
by xi+1 = αxi, whereα is a constant parameter. Using the
results of the precedent section, eigenvalues and eigenvectors
are computed in the domainΩii+1 between surfacesSi andSi+1.
This eigenvalue problem is





L(q)+ω2q = 0 in Ωii+1

α(i+1)dqi+1 = λα idqi

α(i+1)dfi+1 = λα idfi

(25)

whereqi andqi+1 are the displacements on surfacesSi andSi+1

respectively, whilefi andfi+1 are the normal forces (divided by
iω). The eigenproblem in the following layer,Ωi+1i+2 is





L(q)+ω2q = 0 in Ωi+1i+2

α(i+2)dqi+2 = λα(i+1)dqi+1

α(i+2)dfi+2 = λα(i+1)dfi+1

(26)

This is the same eigenvalue problem as for zoneΩii+1 but for
the frequencyαω. More precisely, one has an eigenvector in
the domainΩi+1i+2 from an eigenvector in the domainΩii+1 by

Φi+1
j (αx,ω) = Φi

j(x,αω)

λ i+1
j (ω) = λ i

j(αω) (27)

where Φi
j(x,ω) denotes the eigenvectors (the value of the

solution on the inner surfaceSi) andλ i
j(ω) the eigenvalues of

zoneΩii+1 at the frequencyω. Finally, the eigenvectors and
eigenvalues in any domain can be computed from those of the
first domain by

Φi
j(α ix,ω) = Φ0

j(x,α iω)

λ i
j(ω) = λ 0

j (α iω) (28)

The solution in the exterior domain aroundΩ can be
decomposed on these eigenvectors. Defining the state vector
on the surfaceSi by si = t(α idqi α idfi) (with a normal towards
the exterior domain), the decomposition of the solution in term
of waves with amplitudesai is given by

si = Φi.ai =
j=2N

∑
j=1

ai
jΦ

i
j (29)

whereΦi is the matrix made of theΦi
j andai the vector of the

ai
j. So, between two consecutive layers, one gets

si+1 = Φi.Λi.ai

= Φi.Λi.Ψi.si

= Ti.si (30)

where the different matrices are defined by

Φi = [Φi
1, ...,Φ

i
2N ]

Ψi = [Ψi
1, ...,Ψ

i
2N ]

Λi = diag[λ i
1, ...,λ

i
2N ]

Ti = Φi.Λi.Ψi (31)

if we retainN positive-going andN negative-going waves. From
the properties seen previously, one has

Φi(ω) = Φi−1(αω) = Φ0(α iω)

Ψi(ω) = Ψi−1(αω) = Ψ0(α iω)

Λi(ω) = Λi−1(αω) = Λ0(α iω)

Ti(ω) = Ti−1(αω) = T0(α iω) (32)

So, for the complete exterior domain until surfaceSn, one has

sn = Tn−1...T0s0 = T0(αn−1ω)T0(αn−2ω)...T0(ω)s0 = Ttots0

(33)
Finally, the boundary condition must be such that the

amplitudes of the negative going waves are null, meaning that

Ψn
j(ω)Ttots0 = 0 (34)

for all j associated to incoming waves. The state vector on
surfaceS0 is written as

s0 =

[
q0

f0

]
(35)

and the matrix as

Ψ−(ω)Ttot =
[

F0 Q0
]

(36)

where Ψ−(ω) is a matrix made from the left vectorsΨn
j

associated to negative-going waves. Finally, the boundary
condition can be written as the impedance condition

F0q0+Q0f0 = 0 (37)

This gives the relation on the surface ofΩ approximating the
radiation condition.
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3 EXAMPLES

To illustrate the precedent approach we consider now three
simple examples.

3.1 One-dimensional waveguide

The pressure in a one-dimensional waveguide is solution of

p′′+ k2p = 0 (38)

in the domain[L,+∞[. The state vector is defined in terms of
the variablep andq = 1

ik p′ such thats = t(p q). The eigenvalue
problem in the interval[L,αL] is

p′′+ k2p = 0

p(αL) = λ p(L)
1
ik

p′(αL) =
1
ik

λ p′(L) (39)

Thus, the solutions of this problem, the eigenvalues and the
eigenvectors at pointL, are

Φ+(k) =

[
1
1

]

Ψ+(k) =
[

1
2

1
2

]

λ+(k) = ei(α−1)kL

Φ−(k) =

[
1
−1

]

Ψ−(k) =
[

1
2 −1

2

]

λ−(k) = e−i(α−1)kL (40)

In the interval[α iL,α i+1L] the eigenvalue problem is

d2p
dx2 + k2p = 0

p(α i+1L) = λ p(α iL)

q(α i+1L) = λq(α iL) (41)

and has the solutions

Φi+(k) =

[
1
1

]
= Φ+(α ik)

Ψi+(k) =
[

1
2

1
2

]
= Ψ+(α ik)

λ i+(k) = ei(α−1)α ikL = λ+(α ik)

Φi−(k) =

[
1
−1

]
= Φ−(α ik)

Ψi−(k) =
[

1
2 −1

2

]
= Ψ−(α ik)

λ i−(k) = e−i(α−1)α ikL = λ−(α ik)

(42)

In this case relation (42) yieldsΨ0(α ik)Φ0(α i−1k) = I, and
relation (33) leads finally to

sn = Φn−1Λn−1...Λ0Ψ0s0 (43)

and the amplitudes of waves are

an = Λn−1...Λ0a0 (44)

As the incoming waves should have null amplitudes at infinity,
the final relation isan− = 0, which can also be written in this
simple case as (see also relation (37))

Ψ0−
p p0+Ψ0−

q q0 = 0 (45)

HereΨ0−
p = 1

2 is the first component of vectorΨ0− andΨ0−
q =

−1
2 is the second component. So the final relation is

q0 =−(Ψ0−
q )−1Ψ0−

p p0 (46)

In the present case, this yields

p′(L) = ikp(L) (47)

which is the usual Sommerfeld condition.

3.2 Acoustic waves in an annular domain

3.2.1 Equations in an annular domain

Consider an annular circular domain with the internal radius ri

and the external radiusre. This domain is exterior to the surface
of a circular bodyΩ. We are looking for the pressurep, solution
of the eigenvalue problem

∆p+ k2p = 0
√

re pe = λ
√

ri pi√
re

ik
∂ pe

∂ r
= λ

√
ri

ik
∂ pi

∂ r
(48)

wherepi, pe are the internal and external values of the pressure
p andλ the eigenvalue. The state vector is defined as

s(r) =




√
rp(r,θ)√

r
ik

∂ p
∂ r

(r,θ)


 (49)

and so is made of a first component proportional to the pressure
and a second component proportional to the velocity.

The solution of the partial differential equation in the annular
domain is given by

p(r,θ) =
∞

∑
n=−∞

(
anH1

n (kr)+bnH2
n (kr)

)
einθ (50)

wherean, bn are complex coefficients andH1
n andH2

n are Hankel
functions of ordern of first and second types respectively.

The eigenvalue problem (48) can be written as
∣∣∣∣
√

reH1
n (kre)−λ√riH1

n (kri)
√

reH2
n (kre)−λ√riH2

n (kri)√
re

∂
∂ r H1

n (kre)−λ√ri
∂
∂ r H1

n (kri)
√

re
∂
∂ r H2

n (kre)−λ√ri
∂
∂ r H2

n (kri)

∣∣∣∣=0

(51)

The determinant is the quadratic function ofλ

λ 2+
πk
4i

√
rire(H

1
n (kri)H

2′
n (kre)+H1

n (kre)H
2′
n (kri)

−H2
n (kri)H

1′
n (kre)−H2

n (kre)H
1′
n (kri))λ +1= 0 (52)

It can be seen that the eigenvalues come in inverse pairsλn and
1/λn. Denoting byΦ+

n and Φ−
n the eigenvectors respectively

associated toλn and 1/λn, the solutions of equation (52) lead to
the decomposition
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s(ri)=

[ √
ri p(ri,θ)√

ri

ik
∂ p
∂ r

(ri,θ)

]
=

∞

∑
n=−∞

(
a+n Φ+

n (ri)+a−n Φ−
n (ri)

)
einθ

(53)
with the eigenvectors given by

Φ+
n (ri) =




{
−(

√
reH2

n (kre)−λn
√

riH2
n (kri))

√
riH1

n (kri)
+(

√
reH1

n (kre)−λn
√

riH1
n (kri))

√
riH2

n (kri)
}

1
ik

{
−(

√
reH2

n (kre)−λn
√

riH2
n (kri))

√
ri

∂
∂ r H1

n (kri)

+(
√

reH1
n (kre)−λn

√
riH1

n (kri))
√

ri
∂
∂ r H2

n (kri)
}




Φ−
n (ri) =




{
−(

√
reH2

n (kre)− 1
λn

√
riH2

n (kri))
√

riH1
n (kri)

+(
√

reH1
n (kre)− 1

λn

√
riH1

n (kri))
√

riH2
n (kri)

}

1
ik

{
−(

√
reH2

n (kre)− 1
λn

√
riH2

n (kri))
√

ri
∂
∂ r H1

n (kri)

+(
√

reH1
n (kre)− 1

λn

√
riH1

n (kri))
√

ri
∂
∂ r H2

n (kri)
}




(54)

To clarify the precedent relations, consider the case for large
values ofkri for which equation (52) simplifies to

λ 2−2λ cosk(re − ri)+1≈ 0 (55)

and the eigenvalues are approximately

λn ≈ eik(re−ri) (56)

1/λn ≈ e−ik(re−ri) (57)

as if the curvature of the boundary was neglected. The
eigenvectors can be normalised to get

Φ+
n (ri) ≈

[
1
1

]

Φ−
n (ri) ≈

[
1
−1

]
(58)

while

Ψ+
n (ri) ≈ 1

2

[
1 1

]

Ψ−
n (ri) ≈ 1

2

[
1 −1

]
(59)

One gets
Ψ0(α ik)Φ0(α i−1k) = I (60)

and following relation (33), the total matrix forN layers is

Ttot =
[

Φ(N−1)+ Φ(N−1)− ][ eik(rN−1−r0) 0
0 e−ik(rN−1−r0)

][
Ψ0+

Ψ0−

]

(61)
and relation (36) yields

ΨN−Ttot = e−ik(rN−1−r0)Ψ0− (62)

So the boundary condition is

Ψ0−s0 = 0 (63)

or
√

rp−
√

r
ik

∂ p
∂ r

= 0 (64)

We get the usual relation

∂ p
∂n

− ikp = 0 (65)

3.2.2 Results for the annular domain

Some numerical values are computed, first for the pseudo
wavenumber defined byK = logλ

i(re−ri)
. A cylinder of radius

ri = 1m is considered with a sound velocityc = 343m/s. The
first layer around the cylinder has a thickness of 0.01m. Figure
3 present the real and imaginary parts of the wavenumberK
versus the ordern of the Hankel functions. It can be observed
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Figure 3. Wavenumbers for the frequency 500Hz (upper graph)
and 1000Hz (lower graph).

that for low orders the wavenumber is real and becomes with
an imaginary part when a critical order is reached. A higher
frequency leads to more wavenumbers with purely real values.
So it is analogous to classical waveguides with a cut-off
frequency for which a given mode becomes propagative. Figure
4 presents the imaginary parts of the wavenumbers versus the
frequency for different ordersn. As long as the imaginary part
of the wavenumber is null, the mode is propagating. It can be
observed, for each mode, that the imaginary part becomes null
when the frequency is higher than a critical frequency depending
on the mode order.

Consider now axisymmetric problems (that means with only
the zero order Hankel function). The boundary impedance,
p/v at ri is computed for the present method with relation
(37) and compared to the analytical solution obtained with only
the radiating Hankel function which equals−iρc H0

H1
. Figure 5

presents the relative error for different numbers of layers. The
computations are made withri = 1m andα = 1.01 (re = αri).
It can be seen that a greater number of layers clearly improves
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Figure 4. Imaginary part of the wavenumber for different
orders.
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Figure 5. Error versus the number of layers.

the accuracy of the computation. Using only one layer can be
sufficient except for very low frequencies.

3.3 Numerical examples

We present now some examples of radiation and scattering of
acoustic waves by using the precedent numerical model.

3.3.1 Surface impedance on a cylinder

Consider the case where an annular domain is meshed with
one layer of four nodes linear acoustic elements. The cylinder
is of radius 1m and the sound velocity isc = 343m/s. The
results present the error between the analytical impedanceand
the impedance found by the present method for the case of a
uniform loading (independent of the direction). Three possible
thicknesses are considered for the layer and the results are
plotted in figure 6 for different numbers of elements in the mesh.
It can be seen that interesting results can be obtained with only
one layer and with a limited number of degrees of freedom.
Increasing the mesh density leads to much better results except
when the thickness of the layer and the frequency are so large
that the error is mainly controlled by a too large thickness.
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Figure 6. One layer withe = 0.01m (upper graph) ande =
0.001m (lower graph).

3.3.2 Scattering by a cylinder

Consider now the problem of scattering of a point source by a
rigid cylinder. The geometry is shown in figure 7. The cylinder

(0,0)
x

Source

(−1.5,0)

θ

Figure 7. Geometry of the circle used in the computations.

has a radius of 1m and the source is located at point(−1.5,0).
The mesh is made of 128 elements of thickness 0.005m. The
problem is similar to the precedent example but the forcef0 is
given by the nodal values of− 1

ik
∂ pinc

∂n wherepinc is the incident
pressure. This incident pressure is given byi

4H0(kr) wherer
is the distance between the source and the point of computation
and H0 is the Hankel function of first type and order 0. The
solution of the problem allows the computation of the scattering
pressure and by adding the incident pressure, the total pressure
is found around the cylinder. In figure 8, the pressure around
the cylinder is computed for three different frequencies. The
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results are presented versus the angle along the cylinder, the
source being located in the direction with angleπ.
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Figure 8. Pressure versus the angle along the cylinder for the
frequencies 300Hz (upper graph) and 900Hz (lower graph)
with a discretization of 128 elements.

The pressure is computed on the surface of the cylinder and
the analytical values along with the numerical results are plotted
for three frequencies. It can be observed a very good agreement
at low frequencies. As the frequency increases, the error also
increases.

4 CONCLUSION

It has been shown that simple computations of eigenvalues and
eigenvectors defined on a small rib around a radiating body
for various frequencies could solve the problem of acoustic
radiation in the complete exterior domain for any frequencyas
long as a sufficient number of layers or frequencies are involved
in the computation. Tests on circular cases have provided
accurate results. The approach has now to be extended to
solve numerically cases with more complex geometries and non
convex bodies.
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