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A wave based method for computing high-frequency radiation
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ABSTRACT: The calculation of high-frequency wave radiasan exterior domains by finite element methods can leadrtiela
computations. Boundary conditions have to be applied osufface of the radiating body or on a truncated domain tocqimate
the behaviour of an infinite domain. In this paper, a différeaveguide approach is proposed for computing wave radiati
Propagation constants and wave modes are computed in argnaatbund the radiating body for different frequenciess Ehown
that the solutions on the boundary of the radiating body arttié exterior domain can be determined efficiently from seisof
waves. The method allows an efficient computation of ragiiaind scattering solutions by limiting the discretizatiora very
small part of the exterior domain. The error on the boundandiion can be controlled and the solution converges texaet
solution by using a sufficient number of waves. It is showr tha condition is more efficient for high frequencies and ban
complementary of the usual approaches involving simpleefiar boundary elements. Analytical and numerical examates
computed to show the accuracy of the method.

KEY WORDS: Wave propagation; radiation; scattering; higfgliency; infinite domain; boundary condition; wave finiengent.

1 INTRODUCTION variants of methods originally developed to describe waidsg
structures. Classically these structures are uniform dogie
Many approaches have been used in the past for computingdighg an axis, which is not the case here, so this paper
solutions of wave problems in unbounded media. They can §€scribes how to adapt these classical methods for extesice
mainly classified into two groups : the domain methods f@jropagation problems. The motivation is that such wavesguid
which a substantial part of the exterior domain is meshed aRgve been the topic of much research and efficient desariptio
the surface methods for which only the surface of the dongaingf wave propagation in these structures have been proposid b
meshed. In the domain methods the exterior domain is tradcatheoretically and numerically.
at some distance where local or global boundary conditiods & One can find analytical or finite element models of waveguide
imposed at this artificial boundary. BOUndary conditionfsrate and pe0p|e are genera”y interested by the Computation of wa
distance must simulate as closely as possible the exaeti@di propagations and dispersion curves or by the determination
condition at infinity and, to this aim, various methods hagem of the frequency response functions. For general waveguide
proposed, see [1], [2], [3], [4], [5] among many papers o8 thiyith a complex cross-section, the displacements in theseros
subject. An alternative method is to use boundary elementssgction can be described by the finite element method while
described in numerous classical textbooks like [6], [7], [B  the variation along the axis of symmetry is expressed as & wav
consists in solving an equation on the boundary of the domajfhction. Following these ideas, [12], [13], [14], [15] ddwped
only and so the radiation conditions are taken into accoufie spectral finite element approach. This leads to efficient
analytically. However, the final problem usually involvesif computations of dispersion relations and transfer funstio
matrices which are also often non symmetrical. So this ntetho pjgre general waveguides can be studied by considering
can lead to heavy computations when the number of degr?@?iodic structures.  Numerous works provided interesting
of freedom increases, for instance for high frequencies. {ieoretical insights in the behaviour of these structuses, for
try to overcome this problem, the fast multipole method wasstance the work of [16] and the review paper by [17]. Mead
developed by many authors like [9], [10], [11]. In this apeh 550 presented a general theory for wave propagation ingtieri
the Green's function of the problem is expended in multipolg/stems in [18], [19], [20]. He showed that the solution can
by grouping the computation of the interactions between fage decomposed into an equal number of positive and negative-
away basis functions. Using a multilevel approach, the rmmtgoing waves. The approach is mainly based on Floquet's
of operations can be reduced to the ordeOONIogN) where principle or the transfer matrix and the objective it to carep
N is the number of degrees of freedom on the boundaptopagation constants relating the forces and displactnoen
This considerably increases the potential of boundary efémthe two sides of a single period and the waves associated to
methods but this needs complicated programming and mustiRgse constants. For complex structures FE models are used
adapted for different Green’s functions. for the computation of the propagation constants and waves.
In this paper, we propose a quite different approach cangist The final objective is to compute dispersion relations to use
in the description of the propagation in exterior domairiggis them in energetic methods or to find transfer functions in the
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waveguide, see [21], [22], [23], [24], [25]. In [26] the geak energy converging towards the body. The solution will bespur
dynamic stiffness matrix for a periodic structure was fotmedh  radiating ifa;” = 0 for all i. In the following, the objective is
the propagation constants and waves. to compute the basi®,” and ®;, at various frequencies and

The aim of this paper is to link these two, apparently quite define boundary conditions on the surface(feading to
different, subjects. Here, a waveguide method, based @sideutgoing waves only.
related to wave finite elements as described in [5], [21]],[26 ] i
[27], is used to compute the solution in the exterior domafh?2 Solutions on different surfaces
using functions defined on a small rib around the radiatirdybo Consider now the situation of figure 2, where different stefa
Propagation constants and wave modes are introduced. lhig located at homothetic distances from the referencacgirf
shown how the solution in the exterior domain can be computggl= 9Q taken as the surface of the body.
for various frequencies using a simple relation betweenaios
of homothetic sizes and their propagating modes.

This paper is divided into three sections and is outlined as
follows. In section two, waves are computed in a layer around
the radiating body and relations between layers are given. |
section three, numerical examples are given to test théezfig
of the method before the conclusion.

2 WAVEGUIDE APPROACH
2.1 Introduction

The problem is illustrated in figure 1, where harmonic waves..

propagate at the exterior of a bo@y Consider a surfack in R

the exterior domain around the body, this surface is obthine

from dQ by a homothety of factoa. Only convex bodies are

studied here. Figure 2. Exterior domain divided into zones of proportiona
sizes.

outgoing Qf incoming
T e @ For instance the surfac® is defined from the surfac® by
a homothety on the distance from origin such that airg
whererg is the distance to the origin of a point &, r; is the
corresponding point 0§ anda; is constant on the surfa&.
Functions on the surfac® are linked to functions o6y by

S —S
o0 R(ro) +— pi(r) = HR (L) @

The constantl is chosen to preserve the scalar product between
the different surfaces. We can check that

e [pmamds = [ REHQ(ds
S S aj
Figure 1. Exterior domain with incoming and outgoing waves.
g g going /SO R(ro)Qi(ro)dso @3)

We define the state vect@mon I' as the vector made of meaning that the scalar product is preserved by the transfor
the displacemeng and a term proportional to the forq%f. tion.
Both terms are multiplied byr® whered = (n—1)/2 andn Consider now the eigenvalue problem in the annular domain
is the space dimension. The' term is introduced to allow the Qie between the surface$ and S (see figure 2) in which one
conservation of the scalar product at different distanm@a the associates the displacements and the forces on sui$aeesl
surface as will be seen later. We suppose that a solutiorein f as

exterior domain can be decomposed as a sum of incoming and L(q)+w?q = 0inQ
outgoing waves, with outgoing waves of amplitudgs on a adge(re) = Aadq; Ei) (4)
basis®;" and incoming waves of amplitudes on a basisp; . ;dfe(re) _ }\aldf-l(r-l)

elelle - i\t

So we get, fox € '
o o where L is a second order partial differential operator (for
adq(x) T ot S o instanceA or the linear elasticity operator). The relations on
S(x) = ds = Zai D (x) + Z\ai e (x) (1) . . ‘
a“f(x) i & the boundaries can also be written as

It is supposed that the waves™ are associated with energy Qe(ro) = AQi(ro), onS 5
. . . : ) E — AF (5)
going towards the exterior while wavex are associated with e(fo) = i(ro), onS
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2.3 Behaviour of alayer relations in (11) should be identical in terms of displacetaad
force density. However, the nodal values of the force in thiecfi
element model are obtained through an integration oveaserf
elements and so already includea®f contribution. This leads

—d . . . .
body S, that means that points on these surfaces are givenflgﬂf"y to theag t(_arm_ in the relation involving th_e nqdal force
values. The termw is introduced as a normalisation of the

Xi = 0jXg andXe = OeXg Whereai andae are constants on their o b h hetic | il b | h
respective surfaces. A layer can be meshed with an arbitr%}ﬁf“e etween homothetic layers as will be seen later. Thus,

number of elements using the full possibilities of usualt@ni e Pehaviour of a layer is now given by
element software. The discrete dynamic behaviour of a layer fi 1 Gi Di Diel [qi
i BN B
(12

A layer defined as the domaihe, between surface§ andS; is
described by a finite element model. It is supposed that tier in
and outer surfaces have sizes proportional to the surfd¢bs o

a®D:  a%adDk
. .. . | 1 1 e-le
obtained from a finite element model at a circular frequesacy f dgdpL 2dpL

€ Cri ae el Cre ee

is given by '@

(K- w’™™M)Q=F (6)

whereK andM are the stiffness and mass matrices respectivefy? Eigenvalue problem

F is the loading vector an® the vector of the degrees ofln terms of the variable$ and q, free wave propagation is
freedom. The stiffness and mass matrices could be obtaimkscribed by the discrete eigenproblem

from any commercial finite element software and so this alow
the consideration of layers with complex structures. Thessof { e =Aqi (13)
these matrices depends on the number of elements used to mesh

the layer and can be arbitrarily increased for a better pi@tiof . . :

the results. Introducing the dynamic stiffness matrix &ftéyer Where.)\ Isa propagathn constant pe;tween the inner anq outer
DL — K — (-JJZM decomposing into boundary (B) and interiorbounda”es of the domaif?ie. Combining these two relations
(I) degrees of freedom, and assuming that there are no a;kte?’ﬁ"th relation (12) yields

forces on the interior nodes, results in the following rielat 1
(Dii+Dee+/\Die+ /\Dei) gi=0 (14)
Dgs Dg Qs Fe
L O = (1) . . . o
Dz Dy Qi 0 The eigenvectoq; is thus the solution of a quadratic eigenvalue

problem. Taking the transpose of equation (14) showscghiat
both a right-eigenvector associated with the eigenvaluend
left-eigenvector associated with the eigenvalya .1 Since
he left and right eigenproblems have identical eigenglite
follows that if A is an eigenvalue then so, too, igAL These
represent a pair of positive- and negative-going waves.

The assumption that there are no forces on the interior degrfe
freedom is satisfied for free waves inside the structure fociv
the forces on a layer are only produced by boundary forces fr
the adjacent layers. The interior degrees of freedom caslibu
eliminated to get

Fg = (D5g — D, (D)) ~!Dks) Qs (8) Introducing the transfer matrix
Dropping theB index, this relation is written in the sequel as T= —DiTalDii Di;l (15)
" | —Dg +DeeD.'Dji —DeeDit
. =] eeie UYii eeie
F=DQ ©)
such that
and only boundary degrees of freedom will be considered now. 719 Z |9 (16)
Separating the dofs into the inn@) and outer(e) boundaries fi fe
leads to bt DL [0 F This matrix has a right eigenvector for the eigenvalugiven
I (10) by
Dei Dee Qe Fe Q(/\')
|
By symmetry of the stiffness and mass matrices, the dynamic ®i = {(Dn +/\iDie)Q()\i):| a7

stiffness matrix is also symmetric, which leads '@} = Df;,
DL, = DL, and'D}, = DY, where the superscripindicates the
transpose.

Instead of working with the current variables defined on

surfaces§ andS;,, we will work with reference variables defined 1 ) )
on the reference surfa as described in relation (2) such thatVhered(4i) andq(;-) are the eigenvectors of (14) associated to
the eigenvalueg; and 1/ A; respectively. Orthogonality proper-

and a left eigenvector associated wihgiven by

W, — [tq()\—li)(Dee+/\iDie) tQ(Tli)} (18)

Q = aly ties can be obtained from these relationships. Considering
d
= q
Qe , eq‘id TO, = Ao (19)
Fi = lwai
_ d WT = AW (20)
Fe == |wae fe (11)

: . . which leads to
This change of variable is introduced to preserve the scalar

product between functions defined &, § and . The WiTO; =AW = AW, 0; (21)
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This quantity must equal zero & # Aj, so, the left and right zoneQji1 at the frequencyw. Finally, the eigenvectors and

eigenvectors are such that eigenvalues in any domain can be computed from those of the
first domain by
Yo, =dd; 22 o .
| I&J ( ) CDIJ-(CTIX,OJ) — CD?(X,UIOJ)
whered; is some constant. A normalisation of the eigenvectors A}(w) _ )\J-O(a‘w) (28)

could be chosen such thét= 1 o ) .
The solution in the exterior domain arour@d can be

2.5 Wave decompositionin a layer decomposed on these eigenvectors. Defining the state vector

i _tigidg  qidf) (wi
From the precedent section, it is clear that 2\ eigenvalues ohn the su.rfagéi by s _h(ad g a’fi) ,(W'thfa rr:orm?l towards
of equation (14) can be split into two sets Mf eigenvalues the exterior domain), the decomposition of the solutioreim

and eigenvectors which are denoted(hy@i*) and(1/A;, @), of waves with amplitudea' is given by

with the first set such thad;| < 1. In the caseA;| = 1, the first _ o =N
set must contain the waves propagating in the positive titimec s=0d=7% ao; (29)
which are such that R{e(iw Hfi} <0. The inverse eigenvalue =1

1/Ai, in the second set, is assomated with the waves such tmfereda' is the matrix made of th@' andal the vector of the

Re{( )% } >0 So, between two consecutive Iayers one gets
These Waves are now used as a basis in a layer. The inner stbt

vector is given by the following sum of positive and negative gt — A4
going waves with respective amplitudas anda;” — ALY d
a] _'D (ot = TS (30)
i = = ago O 23
X [fi} I; (& & 5 o) @3) where the different matrices are defined by
In the same way, the outer state vector is given by O = [D,... Dy
=N W= W Wy
— |Ye| _ atdpt AP L
Xe= | | = Zi (Aigt o +1/Ai8 ;) (24) A= diag[A}, ..., An]
= T = oA Y (32)

2.6 Solutionsin homothetic zones if we retainN positive-going andN negative-going waves. From

Consider now the situation of figure 2, where the bdalyis the properties seen previously, one has

surrounded by an_infinitg number of layers of homotheticssize dDi(a)) _ dJi*l(aw) o CDO(aiw)

such that the positions in zon€k;,; and Q; 1> are related i - 0 i

by X1 = ax!, wherea is a constant parameter. Using the Viw)= ¥ (aw) =%¥(a'w)

results of the precedent section, eigenvalues and eigemsec N(w)= AN YHaw) =A(a'w)

are computed in the domaf®; ;1 between surface§ andS ;. T(w= T aw) =T a'w) (32)

This eigenvalue problem is ] ) )
So, for the complete exterior domain until surf&eone has

L(a) +w?q = 0inQiia S =T"1. 79 =T%a" 1) T(a"2w)...TO(w)® = TSP
a9, = Ao, (25) 33)
al™ i, = Aadf; Finally, the boundary condition must be such that the

. amplitudes of the negative going waves are null, meaning tha
whereq; andqg;,; are the displacements on surfa&andS . 1 P 9 going g

respectively, whild; andfi. 1 are the normal forces (divided by qJ?(OJ)TtOt °=0 (34)

iw). The eigenproblem in the following laye®i . 1i+2 is for all j associated to incoming waves. The state vector on

L((q) J);wzq — 0 ir(1 Qi)—gli+2 surfaceS is written as
a*2dgi, = Aali+Ddg, (26) _| Qo
al+2df 5 = Aal+Ddf ¢ fo (3

This is the same eigenvalue problem as for zGge; but for and the matrix as

the frequencyaw. More precisely, one has an eigenvector in Y ()T = [ Fo Qo ] (36)

the domainQ;_ 1;+» from an eigenvector in the domaid; ., by _ . . n
where W~ (w) is a matrix made from the left vectord’;

(Di_+1(ax w) = ol (X, aw) associated to negative-going waves. Finally, the boundary
e J condition can be written as the impedance condition
AN w) = Aj(aw) (27)
Fodo+ Qofo=0 (37)

where ®|(x,w) denotes the eigenvectors (the value of thenis gives the relation on the surface @fapproximating the
solution on the inner surfac®) andAj(w) the eigenvalues of radiation condition.
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3 EXAMPLES As the incoming waves should have null amplitudes at infinity
Ilgg final relation isa"™ = 0, which can also be written in this

To illustrate the precedent approach we consider now th .
P PP simple case as (see also relation (37))

simple examples.

0- 0, Wo—0 _
3.1 One-dimensional waveguide Vo P+ % d =0 (45)
The pressure in a one-dimensional waveguide is solution of Herewg‘ = % is the first component of vecté#®~ andtng— =
—% is the second component. So the final relation is
p'+kp=0 (38)
. . o o’ = (W) ¥y p° (46)
in the domain[L,+o[. The state vector is defined in terms of
the variablep andq = %p’ such thas= '(pq). The eigenvalue In the present case, this yields
problem in the intervalL, al] is

(L) =ikp(L) (47)
P = 0 hich is th IS feld conditi
oal) — Ap(L) which is the usual Sommerfeld condition.
i glal) = i)\ g (L) (39) 3.2 Acoustic waves in an annular domain
ik ik 3.2.1 Equations in an annular domain
Thus, the solutions of this problem, the eigenvalues and t@ensider an annular circular domain with the internal radju
eigenvectors at poirit, are and the external radiug. This domain is exterior to the surface
of a circular bodyQ. We are looking for the pressupg solution
(k) — [ i ] of the eigenvalue problem
20 _
v = [} 3] fprkp — 0
At = dla-k ViePe = AVTipi
P (k) = [ 1 } ik or ik ar
W) = [1 1] wherep, pe are the internal and external values of the pressure
o 2 2 p andA the eigenvalue. The state vector is defined as
Af(k) — efl(afl)kL (40)
o Vrp(r,0)
In the interval[a'L, a'+L] the eigenvalue problem is s(r) = ﬁﬁ)(r 0) (49)
ik ar*”’
d?p ., . ) .
e +kp = 0 and so is made of a first component proportional to the pressur

and a second component proportional to the velocity.

i+1 _ i
pla™ L) = Ap(a'lL) The solution of the partial differential equation in the atan

qaL) = Aq(a'L) (41)  domain is given by
and has the solutions o ,
p(r,8)= 5 (anHq (kr)+bnH7 (kr))e"® (50)
. . N=—o0
o) = | 1| = @k
(ke gk wherea, by are complex coefficients attf: andH?2 are Hankel
qJ. (k) = [ 2 ?i] =¥ (or_ ) functions of orden of first and second types respectively.
Aitk) = éla-hak At(a'k) 42) The eigenvalue problem (48) can be written as
i 1 (i
(k) = L 1 J = o (a'k JFaHL (krg) — A FHE (kri) JFeHZ (Kre) — A JFH2 (k) o
. . oyl _ =0 41 (kr: 02 _ =0 12 (kr: =
Wk = [ —3] = wi(dk Tegr Hi (kre) —Ay/TigeHa (kri)  v/Tegy Hiy (kre) — A /T g Hy (ki) 1)
Ai=(k) = eil@-lak A~ (a'k) The determinant is the quadratic functionlof
In this case relation (42) yield#°(a'k)®°(a'~*k) =1, and A2 %I.(\/W(H%(kri)Hﬁ/(kre) + HY (kre)HZ (Kri)
relation (33) leads finally to I / )
—H2(kri)H7 (kre) —H2(kre)Ha (kri))A +1=0 (52)
s = " IAML AOWOP (43)

It can be seen that the eigenvalues come in inverse paasad
and the amplitudes of waves are 1/An. Denoting by®; and ®,, the eigenvectors respectively
associated td,, and 1/ A, the solutions of equation (52) lead to
a'= A"t A%0 (44) the decomposition
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VIip(ri, 6) o _
S(ri)=[ VIOp o | = Y (8O (n) +ay Py (i) €
i or O ] et
(53)
with the eigenvectors given by
{f(\/GHﬁ(kre)f/\nﬁan(kr ))\FHl(kru)
+(TeHE (kre) — Any/MiHE (kri)) /FiHE (kri) }

G = | R (THE (ko) — Ay THE k) i & Hi (k)
+(\/EH%(kre) Aanl(kr ))\Faer(kr')}

[ (reHR k0 — T ki) i )

)
o-(r) — (le(kre)f—fHWkn))ﬁHz(k”)}
T bR ) iR ) b )
(\ﬁHl(kre)—m\ﬁH%( kri)) Vi g HA (kr)} .
(54)

To clarify the precedent relations, consider the case fiaela

values ofkr; for which equation (52) simplifies to

A2 _2) cosk(re—ri)+1~0 (55)
and the eigenvalues are approximately
A o~ dkreni) (56)
1A ~ e 'Kreni) (57)
as if the curvature of the boundary was neglected.
eigenvectors can be normalised to get
1
d3n+(ri) ~ { 1]
_ 1
o) ~ | Y] (59
while
N 1
l-I-’n(l’i) P é[l l]
_ 1
Wo(ri) = 5[ 1 -1] (59)
One gets . _
Wo(a'k)dP(a' k) =1 (60)

and following relation (33), the total matrix fo¥ layers is

TO=[ oN-D+  N-1- ] { eik(fN(—)r'w efik(r,?flf"()) } { $§f }
and relation (36) yields ©1
W= Ttot — ki1 -ro) 0~ (62)
So the boundary condition is
Wwo-P—0 (63)
or
Vip— %% =0 (64)
We get the usual relation
% —ikp=0 (65)

The

639

3.2.2 Results for the annular domain

Some numerical values are computed, first for the pseudo

wavenumber defined b = ";%’\ri). A cylinder of radius
ri = Imis considered with a sound velocity= 343n/s. The
first layer around the cylinder has a thickness @fith. Figure
3 present the real and imaginary parts of the wavenurkber

versus the orden of the Hankel functions. It can be observed

50

[e] rea;(K)
40 H x  imag(K)

lOo'oooOOO
o

XXXXXXXXX QOOOOOOOOOOOOOO (el

wavenumber
)

“10f o
o

. . . . .
5 10 15 20 25 30
order n

T
o real(K)
40H x imag(K)

o X
xxxxxxxxxxxxxxxxxxx 000000000004

wavenumber
o

. . . . .
5 10 15 20 25 30
order n

Figure 3. Wavenumbers for the frequency 500Hz (upper graph)
and 1000Hz (lower graph).

that for low orders the wavenumber is real and becomes with
an imaginary part when a critical order is reached. A higher
frequency leads to more wavenumbers with purely real values
So it is analogous to classical waveguides with a cut-off
frequency for which a given mode becomes propagative. Eigur
4 presents the imaginary parts of the wavenumbers versus the
frequency for different ordems. As long as the imaginary part
of the wavenumber is null, the mode is propagating. It can be
observed, for each mode, that the imaginary part becomés nul
when the frequency is higher than a critical frequency ddjpen

on the mode order.

Consider now axisymmetric problems (that means with only
the zero order Hankel function). The boundary impedance,
p/v at r; is computed for the present method with relation
(37) and compared to the analytical solution obtained witly o
the radiating Hankel function which equaiSpc:—g. Figure 5
presents the relative error for different numbers of layé8iise
computations are made with= Imanda = 1.01 (e = ar;).

It can be seen that a greater number of layers clearly improve
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Figure 4. Imaginary part of the wavenumber for different \_ 3 cements
L — % 64 elements §
orders. 07
AN
§uot
10° :
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\ 10 layers "
‘\‘\‘ 50 layers 00 e
107 \ 200 layers|| OO0 X XXX XXX XXX XX
107"0 560 1600 15‘00 2060 25‘00 3&00 3560 4000
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Figure 6. One layer witle = 0.01m (upper graph) an@ =
0.001Im (lower graph).

3.3.2 Scattering by a cylinder

L L L L L
1000 1200 1400 1600 1800 2000

. . . .
0 200 400 600 800
Frequency (Hz)

Consider now the problem of scattering of a point source by a

Figure 5. Error versus the number of layers. rigid cylinder. The geometry is shown in figure 7. The cylinde

the accuracy of the computation. Using only one layer can be §
sufficient except for very low frequencies.
,,,,,, Some\e

(-1.5,0)

3.3 Numerical examples

We present now some examples of radiation and scattering of
acoustic waves by using the precedent numerical model.

3.3.1 Surface impedance on a cylinder

Figure 7. Geometry of the circle used in the computations.
Consider the case where an annular domain is meshed with

one layer of four nodes linear acoustic elements. The ogtind ) )

is of radius T and the sound velocity is = 343m/s. The has a radlu's ofh and the source is Iocateq at po(nt1.5,0).
results present the error between the analytical impedande The mesh is made of 128 elements of thickne€98n. The
the impedance found by the present method for the case d¥r@olem is similar to the precedent example but the fdss
uniform loading (independent of the direction). Three fizies given by the nodal values of & 2P wherepin is the incident
thicknesses are considered for the layer and the results jaressure. This incident pressure is givenj#io(kr) wherer
plotted in figure 6 for different numbers of elements in thesime is the distance between the source and the point of compntati
It can be seen that interesting results can be obtained with oand Hg is the Hankel function of first type and order 0. The
one layer and with a limited number of degrees of freedorsolution of the problem allows the computation of the scatte
Increasing the mesh density leads to much better resulepexgressure and by adding the incident pressure, the totaymess
when the thickness of the layer and the frequency are so largdound around the cylinder. In figure 8, the pressure around
that the error is mainly controlled by a too large thickness. the cylinder is computed for three different frequenciehie T
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results are presented versus the angle along the cylinuker, [4]
source being located in the direction with angle
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real part analytical

imaginary part analytical |

real part WFE
imaginary part WFE

T
real part analytical

imaginary part analytical |
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-0.25 - - - - : - [20]

1
Figure 8. Pressure versus the angle along the cylinder &r h’ﬁ ]
frequencies 308z (upper graph) and 960z (lower graph)

with a discretization of 128 elements. [22]

The pressure is computed on the surface of the cylinder a[r2133
the analytical values along with the numerical results éodgd [24]
for three frequencies. It can be observed a very good agrgeme
at low frequencies. As the frequency increases, the ersar aj2s)
increases.

[26]
4 CONCLUSION
It has been shown that simple computations of eigenvalugs azv]
eigenvectors defined on a small rib around a radiating body
for various frequencies could solve the problem of acoustic
radiation in the complete exterior domain for any frequeasy
long as a sufficient number of layers or frequencies are weaebl
in the computation. Tests on circular cases have provided
accurate results. The approach has now to be extended to
solve numerically cases with more complex geometries and no
convex bodies.
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