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Summary

Many approaches, like the finite or boundary elements, have been used in the past for computing

the radiation of wave in unbounded media. However, both methods can lead to a large number of

degrees of freedom and, consequently, to heavy computations when the frequency increases. Here,

a waveguide approach is proposed for solving this problem in which propagating waves are first

computed on a small rib around the radiating body. The solution of the problem is then decomposed

into wave components and only radiating components are kept. This allows a solution of radiation

and scattering problems while limiting the discretization to a very small part of the exterior domain.
Examples are given to estimate the efficiency of the proposed method.

PACS no. 43.20.El, 43.40.Rj

1. Introduction

Many approaches have been used in the past for com-
puting the solutions of wave problems in unbounded
media. In the domain methods a large part of the ex-
terior domain is meshed and this computational do-
main is truncated at some distance where local or
global boundary conditions are imposed. These con-
ditions at finite distance must simulate as closely as
possible the exact radiation condition at infinity. This
approach leads to various methods like the Dirichlet
to Neumann (DtN) mapping proposed by [1], the use
of infinite elements proposed by [2] or the perfectly
matched layer proposed by [3]. However, meshing the
exterior domain leads to a large number of degrees
of freedom and consequently to heavy computations
when the frequency increases.

In the surface methods only the surface is meshed
and this is usually done by the boundary element
method described in numerous classical textbooks like
[4, 5, 6]. It consists in solving an equation on the
boundary of the domain only and the radiation condi-
tions are taken into account analytically. However, the
final problem usually involves full matrices which are
also often non symmetrical. So this method can lead
to heavy computations when the number of degrees
of freedom increases, for instance for high frequencies.
To try to overcome this problem, the fast multipole
method was developed by [7, 8]. In this approach the
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Green’s function of the problem is expended in multi-
pole by grouping the computation of the interactions
between far-away basis functions. Using a multilevel
approach, the number of operations can be reduced to
the order of O(N log N) where N is the number of de-
grees of freedom on the boundary. This considerably
increases the potential of boundary element methods
but this needs complicated programming and must be
adapted for different Green’s functions.

Here, a wave finite element method is used to find
propagation constants and wave modes using finite
element matrices defined on a small rib around the
radiating body. This near surface condition allows an
efficient solution of radiation and scattering problems
by limiting the discretization to a very small part of
the exterior domain. Solutions in the exterior domain
are computed by using relations between layers re-
lated by homothetic transformations, so the method
is named Homothetic Wave Finite Element (HWFE).
The error can be controlled and the solution converges
to the exact solution by using a sufficient number of
layers. It is shown that the approach is more efficient
for high frequencies and can be complementary of the
usual methods involving traditional finite or bound-
ary elements. This approach is based on wave finite
elements which are described in [9, 10, 11, 12].

This paper is divided into four sections and is out-
lined as follows. In section two, waves are computed
in a layer around the radiating body. In section three
relations between layers are given. In section four, nu-
merical examples are given to test the efficiency of the
method before the conclusion.
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2. Waves in a layer

2.1. Behaviour of a layer

Consider the general case of a convex body Q sur-
rounded by an infinite domain as in figure 1. Linear

Figure 1. Exterior domain with surfaces of homothetic
sizes.

waves are supposed to propagate in this exterior do-
main. A layer, defined as the domain ;. between
surfaces S; and S., is described by a finite element
model. It is supposed that the inner and outer sur-
faces have sizes proportional to the surfaces of the
body Sy, that means that points on these surfaces are
given by x; = a;x¢ and X, = a.Xg where a; and a,
are constants on their respective surfaces. A layer can
be meshed with an arbitrary number of elements using
the full possibilities of usual finite element software.
The discrete dynamic behaviour of a layer obtained
from a finite element model at a circular frequency w
is given by

(K —w’M)Q =F (1)

where K and M are the stiffness and mass matrices
respectively, F is the loading vector and Q the vector
of the degrees of freedom. Introducing the dynamic
stiffness matrix of the layer D¥ = K — w?M, elimi-
nating the interior degrees of freedom and separating
the dofs into the inner (i) and outer (e) boundaries
leads to

L L . .
i ot [a] - [+ g

which describes the behaviour of the layer. By sym-
metry of the stiffness and mass matrices, this dynamic
stiffness matrix is also symmetric.

Instead of working with the current variables de-
fined on surfaces S; and S., we will work with refer-
ence variables defined on the reference surface Sy such
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that
Q; = Oéi_d%
Qe = ae_dQe
Fi = a_g i
w
d
a
F, = —£f, 3
. 3

where d = (n — 1)/2 and n is the space dimension.
This change of variable is introduced to preserve the
scalar product between functions defined on Sy, S;
and S.. Relation (3) should be identical in terms of
displacement and force density. However, the nodal
values of the force in the finite element model are
obtained through an integration over surface elements
and so already include a a?? contribution. This leads
finally to the a? term in the relation involving the
force nodal values. The 1/w term is introduced as a
normalization of the scale between homothetic layers.
Thus, the behaviour of a layer is now given by

[fz} _ l[ o; 'Df; a; oy dee] {qz}
o7 ‘a;'Df o> DE, | [ac

w
o D Dje| |ai
n |:Dei Dee:| |:qe:| (4)
This matrix is also symmetric.

2.2. Eigenvalue problem

In terms of the variables f and q, free wave propaga-
tion is described by the discrete eigenproblem

qe = A\q;
{fe A =0 (5)

where ) is a propagation constant between the inner
and outer boundaries of the domain ;.. Combining
these two relations with relation (4) yields

1
(Du‘ + Dee + ADje + XDei> q; =0 (6)

The eigenvector q; is thus the solution of a quadratic
eigenvalue problem. Taking the transpose of equation
(6) shows that q; is both a right-eigenvector associ-
ated with the eigenvalue A and a left-eigenvector as-
sociated with the eigenvalue 1/A. Since the left and
right eigenproblems have identical eigenvalues, it fol-
lows that if A is an eigenvalue then so, too, is 1/\.
These represent a pair of positive- and negative-going
waves.
Introducing the transfer matrix

-D;.'Dy; D}
T= {Dei +D..D.'D; -D,.D'| D

such that

i) [F] @

(c) European Acoustics Association, ISBN: 978-84-694-1520-7, ISSN: 221-3767



FORUM ACUSTICUM 2011
27. June - 1. July, Aalborg

This matrix has a right eigenvector for the eigenvalue
A; given by

qo‘i) (9)

® = (Dsi + AiDic) a(\)

and a left eigenvector associated with \; given by

lI’i = [tq(,\L) (Dee + )\iDie) tq(%)} (10)

i

where q(\;) and q(i) are the eigenvectors of (6) as-
sociated to the eigenvalues \; and 1/)\; respectively.
Orthogonality properties can be obtained from these
relationships, so, the left and right eigenvectors are

such that

where d; is some constant. A normalization of the
eigenvectors could be chosen such that d; = 1.

2.3. Wave decomposition in a layer

From the precedent section, it is clear that the 2N
eigenvalues of equation (6) can be split into two sets of
N eigenvalues and eigenvectors which are denoted by
(\i, @) and (1/X;, ®;), with the first set such that
[Ai| < 1. In the case |\;| = 1, the first set must con-
tain the waves propagating in the positive direction,
which are such that Re {(iw)q/f;} < 0. The inverse
eigenvalue 1/)\;, in the second set, is associated with
the waves such that Re { (iw)q/f;} > 0.

These waves are now used as a basis in a layer.
The inner state vector is given by the following sum
of positive and negative-going waves with respective
amplitudes aj and a;

i=N
%, = m =3 (ar @t +ar ;) (12)
‘ i=1
In the same way, the outer state vector is given by

i=N
— |Ye| _ SR S
X, = |:fe:| = Z ()\zai o + )\iai <I>Z-> (13)

i=1

3. Solution in the exterior domain

3.1. Solutions in homothetic zones

Consider now the situation of figure 2, where the body
Q is surrounded by an infinite number of layers of
homothetic sizes such that the positions in zones €2;;1
and ;41,42 are related by x**! = ax?, where « is a
constant parameter. Using the results of the precedent
section, eigenvalues and eigenvectors are computed in
the domain ;11 between surfaces S; and S;;.
Consider the case where the discrete matrices are
obtained from the discretization of a second order par-
tial differential operator as the Laplacian in acous-
tics or the operator of linear elasticity for elastic wave
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Figure 2. Exterior domain divided into zones of propor-
tional sizes.

propagation. One gets an eigenvector in the domain
Qi1 from an eigenvector in the domain €;_1; by

!I’é(ozx,w) = <I>§_1(x,ozw) = <I>2(x, a'w)
)\é- (w) = /\éfl(aw) = /\?(Oziw) (14)

where ®(x,w) denotes the eigenvectors (the value of

the solution on the inner surface S;) and X (w) the
eigenvalues of zone ;11 at the frequency w.

Defining the state vector on the surface S; by
s’ = (a"Q; wa "F;) (with a normal towards the
exterior domain), the decomposition of the solution
in term of waves with amplitudes a’ is given by

=M
s'=®'a' = Z aé@é (15)
j=1

where ®° is the matrix made of the <I>§» and a’ the
vector of the aé.
3.2. Global solution in the exterior domain
Between two consecutive layers, one gets
sitl = ' Ala’
= A TS
=T (16)

where the different matrices are defined by

o = [®! .. P

U= (W, .

A' = diag[\y, ..., Nyl

T = &' A"’ (17)

and M = 2N if we retain N positive-going and N
negative-going waves. So, for the complete exterior
domain until surface S,,, one has
s" =T 1.T%"
= T " 'w)T (0" 2w)... T (w)s’
= Ttots’ (18)
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It is possible to compute the total matrix for different
frequencies by the following recurrence relation

T (w) = T (aw) T (w) (19)

So beginning by the highest frequency, the different
total matrices can be computed by determining only
TY(w) at each frequency and by computing the prod-
uct of relation (19).

Finally, the boundary condition must be such that
the amplitudes of the negative going waves are null,
meaning that

U (w)T*'s =0 (20)

where ¥~ (w) is a matrix made from the left vectors
W' associated to negative-going waves. The state vec-
tor on surface Sy is written as

0_ |90
s’ = {fo ] (21)
and the matrix as

T ()T = [Fo Qo (22)

Finally, the boundary condition can be written as the
impedance condition

Foqo + Qofo =0 (23)

This gives the relation on the surface of € approxi-
mating the radiation condition.

4. Numerical examples

We present here some examples of radiation and scat-
tering of waves by using the precedent model. Only
two-dimensional acoustic problems are computed.

4.1. Surface impedance on a cylinder

Consider the case of an annular domain meshed with
one layer of four nodes linear acoustic elements. The
cylinder is of radius 1m and the sound velocity is
¢ = 343m/s. The results in figure 3 present the error
between the analytical impedance and the impedance
found by the present method for the case of a uniform
loading (independent of the direction). Three possible
thicknesses are considered for the layer and the results
are plotted for different numbers of elements in the
mesh. It can be seen that interesting results can be
obtained with only one layer and with a limited num-
ber of degrees of freedom. The thickness e = 0.01m
is too large and lead to a loss of accuracy for high
frequencies. So increasing the mesh density leads to
much better results except when the thickness of the
layer and the frequency are so large that the error is
mainly controlled by the thickness.

In figure 4 the same computation is done for three
thicknesses of the first layer. The matrix is computed

Duhamel, Exterior acoustic waveguide
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Figure 3. One layer with e = 0.01m (a), with e = 0.001m
(b) and e = 0.0001m (c).

by the recurrence relation (19) starting from the high-
est frequency, here 2000H z and going towards lower
frequencies by fi+; = fi/a with f1 = 2000H z. A fixed
number of 200 points in frequency was used. When «
is small the accuracy is better for higher frequencies
but a large number of frequency points is needed to
get results for low frequencies. On the contrary for
large thicknesses, the frequency range is larger at the
expense of a reduced accuracy.
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Figure 4. Error when using the recurrence relation.

4.2. Scattering by a cylinder

Consider now the problem of scattering of a point
source by a rigid cylinder. The geometry is shown in
figure 5. The cylinder has a radius of 1m and the
source is located at point (—1.5,0). The mesh is made
of 128 elements of thickness 0.005m. The problem is
similar to the precedent example but the force fy of
relation (23) is given by the nodal values of —%
where p;,. is the incident pressure. This incident pres-
sure is given by L Hg(kr) where r is the distance be-
tween the source and the point of computation and
Hy is the Hankel function of first type and order O.
The solution of the problem allows the computation
of the scattering pressure and by adding the incident
pressure, the total pressure is found around the cylin-
der. In figure 6, the pressure around the cylinder is
computed for three different frequencies. The results
are presented versus the angle along the cylinder, the
source being located in the direction with angle .
The pressure is computed on the surface of the cylin-
der and the analytical values along with the numeri-
cal results are plotted for three frequencies. It can be
observed a very good agreement at low frequencies.
As the frequency increases, the error also slightly in-
creases.

4.3. Scattering by a rectangle

We study now the scattering by a rigid square of size
1m x 1m as shown in figure 5. The source is located
at point (—2,0) and is of unit amplitude as for the
scattering by a cylinder. The surface is meshed with
64 elements and the thickness of a layer is 0.005m.
It should be noticed that the thickness is not abso-
lutely constant as the external nodes of the layer are
obtained by multiplying the distance to origin of the
internal nodes by 1.005 to get a homothetic surface.
The number of layers is 100. The pressure is computed
version the frequency for the three points shown in fig-
ure 5. As no analytical solution is available, the results
have been compared to BEM computations. The re-
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Figure 5. Geometries of the circle and the square used in
the computations.

sults are presented in figure 7 and show a good agree-
ment except for low frequencies for which the number
of layers was not sufficient.

5. CONCLUSIONS

A new method founded on a waveguide approach has
been proposed for the computation of radiation and
scattering of waves. Homothetic relations between lay-
ers around the body allow the computation of the so-
lution in the whole exterior domain. Examples have
proved the accuracy of the method.
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