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Abstract. Tire/road contact represents the major source of traffic noise with driving
speed above 50 km/h. One of the most important problems is to take into account the
contact conditions and to calculate the contact forces in an accurate way. As a general
approach, the dynamic response of the tire is calculated by convolving the contact forces
with the Green function of the tire. The disadvantage of this method is that the computa-
tion can be time consuming. In this paper, an alternative which is a modal decomposition
model is used. The developed method allows quicker calculations than the traditional con-
volution. It consists, at the first stage, on an approximation of the pre-calculated Green
function on a series of modal contributions with the Least Square Complex Exponential
(LSCE) algorithm then, on the calculation of the dynamic response in the time domain
as a series of SDoF systems response. For verification, the approach is tested by using a
Single Degree of Freedom (SDoF) oscillator where the system moves through a sinusoidal
road profile with a constant speed. Then, it is applied to the Ring on Elastic Foundation
(REF) Model.
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1 Introduction

In many advanced structures, the contact impact probleesept an important inter-
est. In numerical modeling of the effect of contact on sties, two classic approaches
can be used. The Lagrange multiplier methidd [1] and the penathod [2] are most
commonly used in dynamic contact problems.

The dynamic contact problems can also be treated by usinGrben’s functions. In
this approach the dynamic response is calculated by comgpthe Green’s functions
with the contact forces. The convolution technique for eshproblems is used by many
authors : M. Mclintyre al.[I3] have applied the approach tosthieg/bow contact to study
large-amplitude oscillations of musical instruments. Gngy and J. Kim. [J4].[5] have
used the same approach for a thin beam impacting againspatdNordborq [6] for
the wheel/rail contact problem and many other authors haee this technique in the
tyre/road contact]7,/8] 9, 10].

The convolution technique for contact problems presemativantage of simple im-
plementation and is relatively less time consuming thassital methods. However, the
time calculation for the convolution can be improved. G. Reyhas developed]11] a fast
convolution with free space Helmholtz Green’s function.eTonvolution combines the
spatial and Fourier domains. In the space domain, the Gzdéenction is approximated
by a sum of decaying Gaussians with positive coefficientsatite Fourier domain by a
multiplication by a band-limited kernel.

In this paper, we present a fast convolution in which the &seunction in the fre-
quency domain is approximated by a sum of modal contribatidine modal parameters
are identified by LSCE algorithm and used in the time domaindiostruct a fast and
accurate algorithm for computing convolutions with Greefiinctions. Two examples
illustrate the efficiency of the method : first a SDoF systemvimgon a sinusoidal profile
and in the second a MDoF on a random profile.

2 Structural Green’sfunction

2.1 Standard convolution

A linear discretized dynamic problem can be generally esged by a second order
differential equation in the time domain:

Mii(t) + Cu(t) + Ku(t) = q(t) 1)

whereM, C andK are the mass matrix, the damping matrix and the stiffnessxmat
respectively. In the frequency domain, the problem can hitemr

[—w*M + jwC 4+ K] U(w) = Q(w) (2)

The resolution of equatiofl(1) first needs to search a gesehationu,(t) of the as-
sociated homogeneous equation and then to find a parti@ligran of the full equation.
The computation of the Green’s functi@(w) is a systematic tool to get this particu-
lar solution. The traditional method when the time Greeaisctiong(¢) is known, is to
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calculate the dynamic response of the system by convolViagontact forces with the
Green’s function:

u(t) = u,(t) + / ot — 1)q(r)dr 3)

When the system is at rest until a certain time taken as origird, the solution of the
homogeneous problem is null((¢) = 0), and the solution is reduced to the relation:

= [ " gt — P)q(r)dr @

Equation[[#) can be discretized as follows:

k
U, = Z gkfmqm (5)
m=0

Whereu,, is the displacement at the time\z.

Let's noteN; the number of time steps used to calculate the displacermedty, the
number of time steps for the influencing Green'’s functione €ffect of the Green’s func-
tion is neglected when the amplitudes of oscillation at tgresater thariV,At are hundred
times smaller than the maximum of the Green’s funcgjon).

Equation[(b) is reduced to :

min(k,Ng

w=
ms

=0

)
Gk—mm (6)

The number of arithmetic operations necessary to obtairdig@acement until the
time N;At is of the same order as; V.

2.2 Modal decomposition

The idea is to express the Green’s function as a sum of modhdtilsotions, and
through numerical manipulations, the modal parameterdeaidentified. The Green’s
function G(w) is supposed to be known, apd) denotes its inverse Fourier transform.
For the sake of simplicity, we restrict to one component li@r displacement, in this case
the Green'’s functioid-(w) can be approximated as follows.

k=N

G@):Z{ Be | B (7)

— Jw =M Jw— A}

One seeks to identify the modal parameters (residyeslampingé, and frequencies
wg). There exist several methods to deal with this kind of peoid. The LSCE method
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(Least Square Complex Exponential) remains the referenttesiapplications of experi-
mental modal analysis. Equatidd (7) can be written in thevedgnt form

=
l
Z

Glw) ~ A (®)

— —w? + 2j§wwy + wi

The LSCE algorithm is used for the decomposition.

To check the accuracy of estimated modal data, the Greencidfun is regenerated.
This method aims to find the best estimates of modal data timatrizes the error defined
in equation[(B)

k=N
Wmaz Z > |d
— —w? +2]§kwwk+wk
E= (9)

Jo " 1G(w)|dw

3 Fast convolution

After finding the modal parameters,, w, and¢;, then truncating the decomposition
to an orderN, the Green’s function in the time domain can be written infthren of a
sum of the contribution of each mode:

e

=N

p&\ =

g(t) = 37 Zhemtnt sin(uf 1) (10)

k=1

Wi = w1 — &

The displacement can be calculated by a convolution product

with

t t
u(t) = / g(T)q(t — T)dr = / g(t — 7)q(T)dr (11)
0 0
Replacingy(t) by its decomposition in equation{11) yields
t k N
/ e~ &k (7) gipy (wz (t — T)) q(T)dr (12)
k=1

By separating the variablésandr, then rearranging the terms, we can write the dis-
placement in the form

o A,

w
klk

&Wkt sm (wg t) o (t) — cos (wg t) ﬁk(t)} (13)

Mw

whereo” (t) and3*(t) are given as
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ozk(t) = /0 eERWRT cos(w,‘j T)q(T)dT (14)
ﬁk(t) = /0 oRwRT sin(wg T)q(T)dT (15)
(16)

At the timenAt the discrete displacement is written

=

=N

i

u(nAt) = ko~ thwrnAt [sin (wf nAt) o*(nAt) — cos (wi nAt) B¥(nAt)]  (17)

??‘E& ‘

k=1

The coefficients/* (nAt) and3*(nAt) are calculated by the recurrence equations

a"((n+ 1)At) = aF(nAt) + e "2 cos(wi nAt)g(nAt) At (18)
BF((n+ 1)At) = B*¥(nAt) + e+ "2 gin(wi nAt)q(nAt)At (19)
The number of arithmetic operations necessary to obtairdig@acement until the

time N, At is of the same order thaN,N,,,, whereN,, is the number of modes used to
represent the Green'’s function.

4 Contact modelsusing Green’s functions

4.1 General procedure

To illustrate the approach presented above, let us conaidanple dynamic contact
problem. The purpose of this example is to test the fast datisa method and to com-
pare it with the traditional convolution. So we consider achamnical system represented
by its Green’s function. The system is moving with a conssgeted on a surface without

slipping.

The displacement(t) at timet, depends on the contact forces histgryt) imposed
by the texture of the surface. Two situations arise: eitti@re is a contact between the
system and the surface and the displacement of the systeatselye height of the surface
u,(t), or there is no contact and in this case the contact forcelisind the displacement
of the system is strictly higher than that of the surface. yQudrtical displacements are
considered here.

The ideal conditions of unilateral contact are given by:

u(t) = un(t) ; fe(t) >0 (20)

u(t) > u(t) ; fo(t) =0 (21)

The procedure of the computation is described in the fotowi

5
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1. Firstthe displacement histony (nAt) is computed by assuming no contdidtnAt) =
0.

n—1

u(nAt) = ALY fu(kAt)g((n — k)At) (22)

k=0

2. The displacement history is compared with the profildéLale:

Ax(nAt) = u,(nAt) — u(nAt) (23)

3. If the assumption of no contach{ < 0) is satisfied, the displacement is:
u(nAt) = u"(nAt) (24)

Then the procedure is repeated by assuming no contact fondkietime step
(fc((n + 1>At> = 0)

4. If Az > 0, the contact force is computed from the cinematic condstidescribed
below.

5. The procedure is repeated by assuming no contact comdiitidhe next time step
(fe((n + 1)At) = 0).

The same procedure is used for the modal decomposition rmatehe displacement
historyu”(nAt) is computed by

[sin (wy! nAt) o"((n — 1)At) — cos (wg nAt) B*((n — 1)At)]  (25)
4.1.1 Cinematic condition
The standard convolution can be written as following

u(t) = / gt - )g(r)dr + / gt — T)q(r)dr

—At

[ w0 ey | gt - r)ar

v~

up(t)

At
= unt) + / g(r)a(t — 7)dr() (26)
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We derive the equatiofi {R6)

—ul)+ [ gt =yir @)
let's noteY = [u(t) v(t)]T andY,, = [ux(t) vu(t)]T , we can write

Y=Y,+V(q) (28)
whereV is an integral operator which reflects the influence of effaitt the present
moment.

Where there is contact, the displacement is imposed by g profile. We suppose
that the contact point follows the profile. We can write thikof@ing contact conditions

u(t) = ur(t) (29)
oy =20 (30)
(31)
In the vectorial form (s
Y=Y, = [u(t) “C’l"t( % (32)

Using the modal decomposition convolution we have

k=N

u(t) = Z A—’;e*&“”kt [sin (wi t) a®(t) — cos (wi t) B*(1)] (33)

w
k=1 k

and

— <« ARGk gt oo (A d 4\ ak
v(t) =  — Z o e [sin (wil t) o*(t) — cos (w t) B*(1)]
k=1

k=N
+ Z Ape™ 8 [cos (wil t) o (t) + sin (wi t) B*(t)] (34)
k=1

Equations[(33) and(B4), can be written in the matrix form
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where
X, = [oF(t) B ()] (36)
and
sin(u;g t) _cos(u;g t)
By — Aje 6t o - (37)

cos (w,‘j t) — %sm (w,‘j t) sin (u)g t) + %cos (w,‘j t)
k k

The contact conditions are

Y, =Y"+U(q) (38)

The purpose is to find the contact force that verify simultarsty the conditiond(32).
Contact forces are related to displacements and velobyi¢ise operatow.

AY =Y,-Y"
/0 gt — T)q(r)dr
/0 §(t — )g(r)dr

Integrals can be computed using two Gauss points. The vafube contact force at
the two Gauss points are then calculated by inverting theabpel

1]
(40)

= U (t, 1) AY (41)

(39)

The operato® is given by

gt —t) gt —to)
U= At (42)

gt—t) g(t—t2)

where,
k=N A
k—&wit d
t)y =) —e t 43
g(t) ;wge sin (w 1) (43)
On a time intervalt t + At], the contact force is the medium of its two values at the
two Gauss points; andts.
where
1 At
h=t+|1——F= | —= 44
NESIE “

= (45)

8
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Knowing the values of the contact force at the Gauss pojrasdt, we can compute
the parameters, (¢t + At) and g, (t + At) by the recursion equations

oF(t 4 At) = ok (1) + [ t)a ;r fc(t2)CJ2At (46)
Bt + A1) = i) + LD ; S t)as (47)
where
o) = e rsin(wit) (48)
fet) = eSrleos(wilt) (49)
5 Examples

5.1 Caseof asingle DoF system

The simplest dynamic system considered in vibration probles the Single Degree of
Freedom (SDoF) oscillator as shown in Figurde (1). The aisbyfsthis system is used to
compare the standard convolution with the developed approa

In this example, the system moves through a prafilér) with a constant speed
Vo = 0.1 m.s L. Itis supposed that the displacement is done without sigpps shown in

figure ().

Vo

Figure 1: SDOF mass-spring system on a sinusoidal surface

Consider a sinusoidal profile
. .2
u, = Agsin(w,x) = A sm()\—VOt) (50)
where)\, = 25 mm is the wavelength of the profile antl) = 5 mm its amplitude.

The system verifies the equations:



R. Meftah and D. Duhamel

Mi+ Ciu+ Ku=—Mg+ F. (51)
u(t) > u,(t) (52)
F.>0 (53)
with the initial conditions:
uo = u(0) = u,(0) (54)
du(t
Vo di )|t:0 =0 (55)

If the mass is above the surface, there is no contact. Théadepent and contact
forces are given by

Ve + Ewpte
Wy
F.(t)=0 (57)

u(t) = e 0t 1y cos(wa(t —t.)) + sin(wq(t —t.)) (56)

whereu,. andv, are respectively the displacement and velocity at the @stact mo-
mentt...

If the mass is below the surface, there is contact and thecbiatrce is computed from
the cinematic conditions described previously.

The parameters used in the model for the simulations ar@ giv&€able [1).

M[Kg]  K[N/m] ¢
1 410°  0.02

Table 1: SDoF parameters used in the simulations

Figures [2) and[{3) show respectively the displacemefts and the contact forces
F.(t) calculated by the standard convolution method and the nust@imposition method.
Both methods give the same result. In the part where therenisct, we notice that the
displacement and contact force curves are fitting the shiaipe surface. When this con-
tact force is null, the system enters on a free vibrationmnegi

Using standard convolution is costly in terms of computiimget, especially with a
small time step. Indeed, from equatiohk (5) dnd (17) we canlhss in the case of a clas-
sical convolution, the number of calculation operationprigportional to the number of
time stepsV and to the size of the Green’s functioi$ while in the modal decomposi-
tion it is proportional taV and to the approximation order. Tahlé (2) shows a comparison
of computing times between both methods.

10
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Displacement [m]

I I
0.5 0.2

TI me [S]].ZS 0.3

I I
0 0.05 0.1

Figure 2: Displacement of a SDOF system on a sinusoidalirfa— profile,— + — standard convolution,
-o- modal decomposition

2000

1800 -

1600 -

1400

1200 -

1000 -

Force [N]

800

600 -

400 -

200

o]

I I I
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0.15ms

Time [sf*"

Figure 3: Contact force of a SDOF system on a sinusoidal seirfa+ — standard convolutiong- modal
decomposition

Timestep[ms] N, Standard con.volu.tion Modal decompogition
N, | Computing time [s]| N,, | Computing time [s]
0.1 2000 1900 0.06 1 0.03
0.1 20000 | 1900 1.01 1 0.17
0.01 20000 | 19000 5.50 1 0.26
0.01 200000 | 19000 105.14 1 2.80

Table 2: Comparison of the computing time: SDof system

5.2 Ringon Elastic Foundation M odel

Modelling complex tire structures in details is a hard taBkthe literature the ring
on elastic foundation model was frequently used. In this ehothe main dynamical

11
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properties of the tire are taken into account. The tread idathed by a circular Euler-
Bernoulli beam, the elastic properties of the sidewalls @nedrim are modelled by dis-
tributed springs as shown in Figuté (4).

Figure 4: Ring on Elastic Foundation Model

The Green functions of the system is given by [12]:

Gog Go. o 2 . =1 jné
Gw) = Go G | = Z [—wM+ij+Ln} e (58)

whereM the mass matrixC the gyroscopic matrix and,, the matrix defined by equa-

tion (60):

n=—oo

10 0 1
M:pS[O 1} ,C:2pSQ{_1 0} (59)
BT K b oo b B (K by o
<R4+R2+R+pSQ>n +R+k9 j{Rﬂtn—i- R2+R+2pSQ n

| EL 4 K 2pb 9 EI , pb 2 o K pb
j[ﬁn +<ﬁ+f+2p59 n ﬁn%— E%—pSQ n+ﬁ+ﬁ+kz
(60)

Only the normal componerdt. . of the Green function is computed for the contact prob-
lem. The parameters used for the simulation are given ineT@)I

We assume that the contact line contains three poifds= —=/100), B(6 = 0) and
C'(6 = 7/100). The matrix of Green functions is calculated at these thoeetp. Figure
(@) shows the Green functions in the frequency rEntp00H z|. The figures[{p) and17)
show the displacements and the contact forces at the threaat@oints.

12
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Parameters Values | Unit
Young modulusk) 108 Pa
Density () 2280 Kgm™3
Mean radiusk) 0.285 m
Thicknesskt) 0.01 m
Width(b) 0.16 |m
Membrane stiffness() 1.6410% | Nm =2
Circumferential stiffnesgg) | 2.1910° | Nm 2

Table 3: Parameters used for the numerical simulations

Displacement [m]

0 160 260 361:ré6aué00 CyGéTH il‘)-r 860 960 1000

Figure 5: Green functionB : — + — Gaa = Gep = Geoc, -0- Gap = Gee, Gac
loxlo’3
E
o
c
(]
£
]
&)
<
o
B
@]
\KL ff}%%w T
_20 0605 061 0(;15 0‘ . 0625 0‘3 0635 064 0[‘)45 0.05
‘ ' ‘ “T’lme [ST ' ' ' '
Figure 6: Displacements on the three contact points : — grefit- — pointC, -o- point B, point A
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25

2 = )
) 5} [S)
T T T

Displacement [m]

(52
—

‘ ‘ ‘ L e e e e E TR P TEDEDPTDE
0.005 0.01 0.015 OCT_I rf)]OZeS [STS 0.035 0.04 0045 0.05

29

Figure 7: Contact forces on the three contact pointst: — pointC, -o- point B , point A

6 Conclusion

A unilateral contact dynamic model has been presentedsrctmtribution. The model
is based on a fast convolution using a modal decomposititimeoGreen functions. First,
the Green function is approximated by a sum of a SDoF Greettiturs using the LSCE
algorithm, then the identified modal parameters are usedrstract a fast convolution.
By exploiting the cinematic condition, the fast convolutican be inverted to calculate
the contact forces when the contact occurs. Two exampleprasented to prove the
efficiency of the model.
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