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Abstract. Tire/road contact represents the major source of traffic noise with driving
speed above 50 km/h. One of the most important problems is to take into account the
contact conditions and to calculate the contact forces in an accurate way. As a general
approach, the dynamic response of the tire is calculated by convolving the contact forces
with the Green function of the tire. The disadvantage of this method is that the computa-
tion can be time consuming. In this paper, an alternative which is a modal decomposition
model is used. The developed method allows quicker calculations than the traditional con-
volution. It consists, at the first stage, on an approximation of the pre-calculated Green
function on a series of modal contributions with the Least Square Complex Exponential
(LSCE) algorithm then, on the calculation of the dynamic response in the time domain
as a series of SDoF systems response. For verification, the approach is tested by using a
Single Degree of Freedom (SDoF) oscillator where the system moves through a sinusoidal
road profile with a constant speed. Then, it is applied to the Ring on Elastic Foundation
(REF) Model.
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1 Introduction

In many advanced structures, the contact impact problems present an important inter-
est. In numerical modeling of the effect of contact on structures, two classic approaches
can be used. The Lagrange multiplier method [1] and the penalty method [2] are most
commonly used in dynamic contact problems.

The dynamic contact problems can also be treated by using theGreen’s functions. In
this approach the dynamic response is calculated by convolving the Green’s functions
with the contact forces. The convolution technique for contact problems is used by many
authors : M. McIntyre al. [3] have applied the approach to thestring/bow contact to study
large-amplitude oscillations of musical instruments. C. Wang and J. Kim. [4],[5] have
used the same approach for a thin beam impacting against a stop, A. Nordborq [6] for
the wheel/rail contact problem and many other authors have used this technique in the
tyre/road contact [7, 8, 9, 10].

The convolution technique for contact problems presents the advantage of simple im-
plementation and is relatively less time consuming than classical methods. However, the
time calculation for the convolution can be improved. G. Beylkin has developed [11] a fast
convolution with free space Helmholtz Green’s function. The convolution combines the
spatial and Fourier domains. In the space domain, the Green’s function is approximated
by a sum of decaying Gaussians with positive coefficients andin the Fourier domain by a
multiplication by a band-limited kernel.

In this paper, we present a fast convolution in which the Green’s function in the fre-
quency domain is approximated by a sum of modal contributions. The modal parameters
are identified by LSCE algorithm and used in the time domain toconstruct a fast and
accurate algorithm for computing convolutions with Green’s functions. Two examples
illustrate the efficiency of the method : first a SDoF system moving on a sinusoidal profile
and in the second a MDoF on a random profile.

2 Structural Green’s function

2.1 Standard convolution

A linear discretized dynamic problem can be generally expressed by a second order
differential equation in the time domain:

Mü(t) + Cu̇(t) + Ku(t) = q(t) (1)

whereM, C andK are the mass matrix, the damping matrix and the stiffness matrix,
respectively. In the frequency domain, the problem can be written:

[
−ω2M + jωC + K

]
U(ω) = Q(ω) (2)

The resolution of equation (1) first needs to search a generalsolutionug(t) of the as-
sociated homogeneous equation and then to find a particular solution of the full equation.
The computation of the Green’s functionG(ω) is a systematic tool to get this particu-
lar solution. The traditional method when the time Green’s functiong(t) is known, is to
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calculate the dynamic response of the system by convolving the contact forces with the
Green’s function:

u(t) = ug(t) +

∫ t

0

g(t − τ)q(τ)dτ (3)

When the system is at rest until a certain time taken as origint = 0, the solution of the
homogeneous problem is null (ug(t) = 0), and the solution is reduced to the relation:

u(t) =

∫ t

0

g(t − τ)q(τ)dτ (4)

Equation (4) can be discretized as follows:

uk =
k∑

m=0

gk−mqm (5)

Whereuk is the displacement at the timek∆t.

Let’s noteNt the number of time steps used to calculate the displacement,andNg the
number of time steps for the influencing Green’s function. The effect of the Green’s func-
tion is neglected when the amplitudes of oscillation at timegreater thanNg∆t are hundred
times smaller than the maximum of the Green’s functiong(t).

Equation (5) is reduced to :

uk =

min(k,Ng)
∑

m=0

gk−mqm (6)

The number of arithmetic operations necessary to obtain thedisplacement until the
timeNt∆t is of the same order asNtNg.

2.2 Modal decomposition

The idea is to express the Green’s function as a sum of modal contributions, and
through numerical manipulations, the modal parameters canbe identified. The Green’s
functionG(ω) is supposed to be known, andg(t) denotes its inverse Fourier transform.
For the sake of simplicity, we restrict to one component for the displacement, in this case
the Green’s functionG(ω) can be approximated as follows.

G(ω) ≃

k=N∑

k=1

[
Rk

jω − λk

+
R∗

k

jω − λ∗

k

]

(7)

One seeks to identify the modal parameters (residuesAk, dampingξk and frequencies
ωk). There exist several methods to deal with this kind of problems. The LSCE method
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(Least Square Complex Exponential) remains the reference in the applications of experi-
mental modal analysis. Equation (7) can be written in the equivalent form

G(ω) ≃

k=N∑

k=1

Ak

−ω2 + 2jξkωωk + ω2
k

(8)

The LSCE algorithm is used for the decomposition.
To check the accuracy of estimated modal data, the Green’s function is regenerated.

This method aims to find the best estimates of modal data that minimizes the error defined
in equation (9)

E =

∫ ωmax

0
|G(ω)−

k=N∑

k=1

Ak

−ω2 + 2jξkωωk + ω2
k

|dω

∫ ωmax

0
|G(ω)|dω

(9)

3 Fast convolution

After finding the modal parametersAk, ωk andξk, then truncating the decomposition
to an orderN , the Green’s function in the time domain can be written in theform of a
sum of the contribution of each mode:

g(t) =

k=N∑

k=1

Ak

ωd
k

e−ξkωkt sin(ωd
k t) (10)

with
ωd

k = ωk

√

1 − ξ2
k

The displacement can be calculated by a convolution product

u(t) =

∫ t

0

g(τ)q(t − τ)dτ =

∫ t

0

g(t − τ)q(τ)dτ (11)

Replacingg(t) by its decomposition in equation (11) yields

u(t) =

∫ t

0

k=N∑

k=1

Ak

ωd
k

e−ξkωk (t−τ) sin
(
ωd

k (t − τ)
)
q(τ)dτ (12)

By separating the variablest andτ , then rearranging the terms, we can write the dis-
placement in the form

u(t) =
k=N∑

k=1

Ak

ωd
k

e−ξkωkt
[
sin
(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]
(13)

whereαk(t) andβk(t) are given as
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αk(t) =

∫ t

0

eξkωkτ cos(ωd
k τ)q(τ)dτ (14)

βk(t) =

∫ t

0

eξkωkτ sin(ωd
k τ)q(τ)dτ (15)

(16)

At the timen∆t the discrete displacement is written

u(n∆t) =

k=N∑

k=1

Ak

ωd
k

e−ξkωkn∆t
[
sin
(
ωd

k n∆t
)
αk(n∆t) − cos

(
ωd

k n∆t
)
βk(n∆t)

]
(17)

The coefficientsαk(n∆t) andβk(n∆t) are calculated by the recurrence equations

αk((n + 1)∆t) = αk(n∆t) + eξkωkn∆t cos(ωd
k n∆t)q(n∆t)∆t (18)

βk((n + 1)∆t) = βk(n∆t) + eξkωkn∆t sin(ωd
k n∆t)q(n∆t)∆t (19)

The number of arithmetic operations necessary to obtain thedisplacement until the
time Nt∆t is of the same order thanNtNm, whereNm is the number of modes used to
represent the Green’s function.

4 Contact models using Green’s functions

4.1 General procedure

To illustrate the approach presented above, let us considera simple dynamic contact
problem. The purpose of this example is to test the fast convolution method and to com-
pare it with the traditional convolution. So we consider a mechanical system represented
by its Green’s function. The system is moving with a constantspeed on a surface without
slipping.

The displacementu(t) at timet, depends on the contact forces historyfc(t) imposed
by the texture of the surface. Two situations arise: either,there is a contact between the
system and the surface and the displacement of the system equals the height of the surface
ur(t), or there is no contact and in this case the contact force is null and the displacement
of the system is strictly higher than that of the surface. Only vertical displacements are
considered here.

The ideal conditions of unilateral contact are given by:

u(t) = ur(t) ; fc(t) > 0 (20)

u(t) > ur(t) ; fc(t) = 0 (21)

The procedure of the computation is described in the following.
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1. First the displacement historyuh(n∆t) is computed by assuming no contactfc(n∆t) =
0.

uh(n∆t) = ∆t

n−1∑

k=0

fc(k∆t)g((n − k)∆t) (22)

2. The displacement history is compared with the profile altitude:

∆x(n∆t) = ur(n∆t) − uh(n∆t) (23)

3. If the assumption of no contact (∆x < 0) is satisfied, the displacement is:

u(n∆t) = uh(n∆t) (24)

Then the procedure is repeated by assuming no contact for thenext time step
(fc((n + 1)∆t) = 0).

4. If ∆x ≥ 0, the contact force is computed from the cinematic conditions described
below.

5. The procedure is repeated by assuming no contact condition for the next time step
(fc((n + 1)∆t) = 0).

The same procedure is used for the modal decomposition model, but the displacement
historyuh(n∆t) is computed by

uh(n∆t) =
k=N∑

k=1

Ak

ωd
k

e−ξkωkn∆t

[
sin
(
ωd

k n∆t
)
αk((n − 1)∆t) − cos

(
ωd

k n∆t
)
βk((n − 1)∆t)

]
(25)

4.1.1 Cinematic condition

The standard convolution can be written as following

u(t) =

∫ t−∆t

0

g(t − τ)q(τ)dτ +

∫ t

t−∆t

g(t − τ)q(τ)dτ

=

∫ t−∆t

0

g(t − τ)q(τ)dτ

︸ ︷︷ ︸

uh(t)

+

∫ ∆t

0

g(τ)q(t − τ)dτ

= uh(t) +

∫ ∆t

0

g(τ)q(t − τ)dτ() (26)
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We derive the equation (26)

v(t) = u′(t) =

∫ t−∆t

0

g′(t − τ)q(τ)dτ +

∫ t

t−∆t

g′(t − τ)q(τ)dτ

=

∫ t−∆t

0

g′(t − τ)q(τ)dτ

︸ ︷︷ ︸

vh(t)

+

∫ ∆t

0

g′(τ)q(t − τ)dτ

= vh(t) +

∫ ∆t

0

g′(τ)q(t − τ)dτ (27)

let’s noteY = [u(t) v(t)]T andYh = [uh(t) vh(t)]
T , we can write

Y = Yh + Ψ(q) (28)

whereΨ is an integral operator which reflects the influence of efforts at the present
moment.

Where there is contact, the displacement is imposed by the rigid profile. We suppose
that the contact point follows the profile. We can write the following contact conditions

u(t) = ur(t) (29)

v(t) =
dur(t)

dt
(30)

(31)

In the vectorial form

Y = Yr = [ur(t)
dur(t)

dt
]T (32)

Using the modal decomposition convolution we have

u(t) =

k=N∑

k=1

Ak

ωd
k

e−ξkωkt
[
sin
(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]
(33)

and

v(t) = −
k=N∑

k=1

Akξkωk

ωd
k

e−ξkωkt
[
sin
(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]

+
k=N∑

k=1

Ake
−ξkωkt

[
cos
(
ωd

k t
)
αk(t) + sin

(
ωd

k t
)
βk(t)

]
(34)

Equations (33) and (34), can be written in the matrix form

Y =

k=N∑

k=1

Bkxk (35)
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where
xk = [αk(t) βk(t)]T (36)

and

Bk = Ake
−ξkωkt







sin(ωd
k

t)
ωd

k

−
cos(ωd

k
t)

ωd
k

cos
(
ωd

k t
)
− ξkωk

ωd
k

sin
(
ωd

k t
)

sin
(
ωd

k t
)

+ ξkωk

ωd
k

cos
(
ωd

k t
)







(37)

The contact conditions are

Yr = Yh + Ψ(q) (38)

The purpose is to find the contact force that verify simultaneously the conditions (32).
Contact forces are related to displacements and velocitiesby the operatorΨ.

∆Y = Yr − Yh

=







∫ ∆t

0

g(t − τ)q(τ)dτ
∫ ∆t

0

g′(t − τ)q(τ)dτ







(39)

Integrals can be computed using two Gauss points. The valuesof the contact force at
the two Gauss points are then calculated by inverting the operatorΨ

q =

[
q1

q2

]

(40)

= Ψ−1(t1, t2)∆Y (41)

The operatorΨ is given by

Ψ =





g(t − t1) g(t − t2)

g′(t − t1) g′(t − t2)



∆t (42)

where,

g(t) =

k=N∑

k=1

Ak

ωd
k

e−ξkωktsin
(
ωd

k t
)

(43)

On a time interval[t t + ∆t], the contact force is the medium of its two values at the
two Gauss pointst1 andt2.

where

t1 = t +

(

1 −
1

√

(3)

)

∆t

2
(44)

t2 = t +

(

1 +
1

√

(3)

)

∆t

2
(45)
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Knowing the values of the contact force at the Gauss pointst1 andt2 we can compute
the parametersαk(t + ∆t) andβk(t + ∆t) by the recursion equations

αk(t + ∆t) = αk
h(t) +

f c(t1)q1 + f c(t2)q2

2
∆t (46)

βk(t + ∆t) = βk
h(t) +

f s(t1)q1 + f s(t2)q2

2
∆t (47)

where

f s(t) = eξkωktsin(ωd
kt) (48)

f c(t) = eξkωktcos(ωd
kt) (49)

5 Examples

5.1 Case of a single DoF system

The simplest dynamic system considered in vibration problems is the Single Degree of
Freedom (SDoF) oscillator as shown in Figure (1). The analysis of this system is used to
compare the standard convolution with the developed approach.

In this example, the system moves through a profileur(x) with a constant speed
V0 = 0.1 m.s−1. It is supposed that the displacement is done without slipping as shown in
figure (1).

x
  

M

K C

u(t) ur(x)

V0

Figure 1: SDOF mass-spring system on a sinusoidal surface

Consider a sinusoidal profile

ur = A0 sin(ωrx) = A0 sin(
2π

λr

V0t) (50)

whereλr = 25 mm is the wavelength of the profile andA0 = 5 mm its amplitude.

The system verifies the equations:
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Mü + Cu̇ + Ku = −Mg + Fc (51)

u(t) ≥ ur(t) (52)

Fc ≥ 0 (53)

with the initial conditions:

u0 = u(0) = ur(0) (54)

v0 =
du(t)

dt
|t=0 = 0 (55)

If the mass is above the surface, there is no contact. The displacement and contact
forces are given by

u(t) = e−ξω0(t−tc)

[

uc cos(ωd(t − tc)) +
vc + ξω0uc

ωd

sin(ωd(t − tc))

]

(56)

Fc(t) = 0 (57)

whereuc andvc are respectively the displacement and velocity at the last contact mo-
menttc.

If the mass is below the surface, there is contact and the contact force is computed from
the cinematic conditions described previously.

The parameters used in the model for the simulations are given in Table (1).

M [Kg] K[N/m] ξ
1 4 105 0.02

Table 1: SDoF parameters used in the simulations

Figures (2) and (3) show respectively the displacementsu(t) and the contact forces
Fc(t) calculated by the standard convolution method and the modaldecomposition method.
Both methods give the same result. In the part where there is contact, we notice that the
displacement and contact force curves are fitting the shape of the surface. When this con-
tact force is null, the system enters on a free vibration regime.

Using standard convolution is costly in terms of computing time, especially with a
small time step. Indeed, from equations (5) and (17) we can see that in the case of a clas-
sical convolution, the number of calculation operations isproportional to the number of
time stepsN and to the size of the Green’s functionsNg while in the modal decomposi-
tion it is proportional toN and to the approximation order. Table (2) shows a comparison
of computing times between both methods.
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Figure 2: Displacement of a SDOF system on a sinusoidal surface : — profile,−+− standard convolution,
-2- modal decomposition
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Figure 3: Contact force of a SDOF system on a sinusoidal surface :− + − standard convolution,-2- modal
decomposition

Time step [ms] Nt
Standard convolution Modal decomposition

Ng Computing time [s] Nm Computing time [s]
0.1 2000 1900 0.06 1 0.03
0.1 20000 1900 1.01 1 0.17
0.01 20000 19000 5.50 1 0.26
0.01 200000 19000 105.14 1 2.80

Table 2: Comparison of the computing time: SDof system

5.2 Ring on Elastic Foundation Model

Modelling complex tire structures in details is a hard task.In the literature the ring
on elastic foundation model was frequently used. In this model, the main dynamical
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properties of the tire are taken into account. The tread is modelled by a circular Euler-
Bernoulli beam, the elastic properties of the sidewalls andthe rim are modelled by dis-
tributed springs as shown in Figure (4).

O

z

x

Z

X

θ

uθ

kθ

kθ

kθ

kθ
uz

kz

kz

kz

kz

qz

qθ

Ω

Figure 4: Ring on Elastic Foundation Model

The Green functions of the system is given by [12]:

G(ω) =

[
Gθθ Gθz

Gzθ Gzz

]

=
+∞∑

n=−∞

[
−ω2M + jωC + Ln

]
−1

ejnθ (58)

whereM the mass matrix,C the gyroscopic matrix andLn the matrix defined by equa-
tion (60):

M = ρS

[
1 0
0 1

]

; C = 2ρSΩ

[
0 1
−1 0

]

(59)

Ln =













(
EI

R4
+

K

R2
+

pb

R
+ ρSΩ

2

)

n2
+

pb

R
+ kθ −j

[
EI

R4
n3

+

(
K

R2
+

2pb

R
+ 2ρSΩ

2

)

n

]

j

[
EI

R4
n3

+

(
K

R2
+

2pb

R
+ 2ρSΩ

2

)

n

]
EI

R4
n4

+

(
pb

R
+ ρSΩ

2

)

n2
+

K

R2
+

pb

R
+ kz













(60)

Only the normal componentGzz of the Green function is computed for the contact prob-
lem. The parameters used for the simulation are given in Table (3).

We assume that the contact line contains three pointsA(θ = −π/100), B(θ = 0) and
C(θ = π/100). The matrix of Green functions is calculated at these three points. Figure
(5) shows the Green functions in the frequency rang[0 1000Hz]. The figures (6) and (7)
show the displacements and the contact forces at the three contact points.

12



R. Meftah and D. Duhamel

Parameters Values Unit
Young modulus(E) 108 Pa
Density (ρ) 2280 Kgm−3

Mean radius(R) 0.285 m
Thickness(h) 0.01 m
Width(b) 0.16 m
Membrane stiffness(kz) 1.64106 Nm−2

Circumferential stiffness(kθ) 2.19105 Nm−2

Table 3: Parameters used for the numerical simulations
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Figure 5: Green functionsB : − + − GAA = GBB = GCC , -2- GAB = GBC ,−o− GAC
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Figure 6: Displacements on the three contact points : — profile,−+− pointC, -2- pointB , −o− pointA
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Figure 7: Contact forces on the three contact points :− + − pointC, -2- pointB , −o− pointA

6 Conclusion

A unilateral contact dynamic model has been presented in this contribution. The model
is based on a fast convolution using a modal decomposition ofthe Green functions. First,
the Green function is approximated by a sum of a SDoF Green functions using the LSCE
algorithm, then the identified modal parameters are used to constract a fast convolution.
By exploiting the cinematic condition, the fast convolution can be inverted to calculate
the contact forces when the contact occurs. Two examples arepresented to prove the
efficiency of the model.
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