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Abstract

The present paper introduces a comprehensive model capable of describing the

behavior of granular materials under cyclic loading. Its main thrust is the introduc-

tion of the “Chicago” law in a continuum approach to account for the ratcheting

effects. It also emphasizes the rate-dependency as a dissipative mechanism which

acts independently or jointly with the ratcheting effect. Non-associated plasticity is

adopted since the paper mainly targets the long term response of granular mate-

rials that are widely encountered in railway tracks and pavements. The numerical

procedure is based on the return mapping algorithm where Newton’s method is

used to calculate the non-linear consistency parameter of the flow rule and obtain

the consistent tangent modulus. The model was validated using numerical examples

including multi-axial, and cyclic loading conditions.
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1 Introduction

Granular materials are receiving increasing interest in modern industry due

to their complex mechanical behavior which represents a challenging subject

requiring a lot of research efforts. Different modeling approaches, based on

discrete or continuum descriptions, have been used to study the response of

these materials especially under cyclic loading. The discrete element meth-

ods such as the molecular dynamics (Cundall and Strack (1979, 1971); Gal-

las et al. (1992); Roux (2004); Karrech et al. (2007)) and contact dynamics

(Azema et al. (2006); Saussine et al. (2005)) are well adapted to study samples

consisting of finite number of particles. Although the discrete element meth-

ods describe accurately the local mechanisms of energy dissipation caused by

ratcheting effects, loss of contacts, and granular flow, these techniques cannot

treat samples made of large number of grains. Continuum approaches rep-

resent convenient time saving alternatives though limited in predicting local

inter-granular mechanisms such as contact losses (Karrech et al. (2008)).

Research studies on cyclically loaded granular materials revealed that ratch-

eting, rate-dependency, and non associated flow are necessary features, which

should be taken into account to formulate constitutive models (see Karrech

(2007) and the references in there). Experimental studies of the same spirit

showed that ratcheting can be described with a logarithmic function known

as Chicago law (Ben-Naim et al. (1998); Nowak et al. (1998)). This empiri-
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cal law was confirmed numerically using discrete element methods by Rosato

and Yacoub (2000), Philippe and Bideau (2001), and Rémond (2003). Both

experimental and numerical results showed that granular materials exhibit a

gradual decrease of the volume of voids resulting in a nonlinear permanent

deformation with respect to the number of cycles. A similar decay was ob-

served by Guérin et al. (1999) and Bodin et al. (2006) when studying the

settlement of granular materials of railway platforms due to repeated loading.

In addition, Saussine et al. (2005) developed a discrete element model based

on the contact dynamics which showed the same trend. More recently, Karrech

et al. (2007) developed a numerical algorithm based on molecular dynamics

and showed that the logarithmic law is appropriate for long term settlement

prediction in granular materials. The obtained empirical law proved to be an

accurate description of the decaying phenomenon of cyclically loaded granular

materials.

The present work is based on several existing computational procedures

which involve the above mechanisms of energy dissipation within the frame-

work of continuum mechanics. The purpose of this work is to combine some

of the existing techniques and come-up with a comprehensive numerical tool

which encompasses the observed logarithmic decay as well as the rate-dependency

and frictional aspects. In this context Lu and Wright (1998) suggested a nu-

merical model to describe the behavior of asphalt concrete under cyclic loading

where an exponential empirical law was introduced to describe the permanent

deformation. However, the cyclic effect was included in the rate-dependency

mechanism rather than ratcheting. Lorefice et al. (2008) introduced a different

model which was intended to describe the rate-dependent behavior of quasi-

brittle materials like concrete but without taking into account the ratcheting

effect. Recently, Cvitanic et al. (2008) formulated a theoretical and numeri-
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cal framework which is based on the non-associated plasticity with isotropic

hardening. The numerical integration included the return mapping technique

which consists in projecting the trial stress on the surface of yielding at ev-

ery increment (see also Key (1974); Dafalias (1977); Chen and Han (1987);

Cernocky and Krempl (1979); Marques and Owen (1984); Loret and Prevost

(1986)). This technique which was first introduced by Wilkins (1964) was im-

proved by Simo and Taylor (1985) and Hofstetter et al. (1993) who proposed

the consistent tangent modulus. Liu (2001); Kang (2004), Kumar and Nukala

(2006) proved that the return mapping coupled with the consistent tangent

modulus is an effective and robust tool to integrate nonlinear constitutive

equations. Although, the cited models covered particular combinations of rate

dependency, ratcheting, non-associated flows, and local compaction, none of

them contains a comprehensive approach which takes into account these phe-

nomena altogether to predict the response of granular materials.

The present study is developed in light of the above mentioned contributions

while taking into account the (i) non associated flow rule, (ii) Drucker-Prager

yield and plastic potential functions instead of the frequently used Von-Mises

yield function, (iii) logarithmic ratcheting effect, and (iv) robust integration

method based on the return mapping algorithm. This paper is divided into

three major sections. The first section gives a brief description of the problem

under consideration, defines the constitutive continuous model and highlights

the assumptions adopted in the study. The second one describes the numer-

ical procedure used to integrate the constitutive model. The last section is

dedicated to the application of the developed model on particular examples.
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2 Constitutive continuous model

The constitutive model developed in this paper is based on a linear com-

bination of kinematic and isotropic hardening where the strain increment is

defined by:

dǫij = dǫeij + dǫiij + dǫκij = dǫeij + dǫvp
ij (1)

The superscripts e and vp denote respectively the elastic and viscoplastic

strains. The viscoplastic strain is decomposed into an isotropic strain, dǫiij =

Mdǫvp
ij , and a kinematic strain, dǫκij = (1 − M)dǫvp

ij where the constant M ,

describes the combination of both hardening effects. It takes the value 1 when

the hardening is fully isotropic and 0 when it is fully kinematic. The elastic

behavior is described with a linear law given by:

dσij = Cijkl (dǫkl − dǫvp
kl ) (2)

where Cijkl is a fourth order tensor describing the elastic behavior, ǫij and σij

are second order tensors denoting respectively the strain and Cauchy stress.

The limit of elasticity is described by a Drucker-Prager yield function written

as:

f(σ̂ij) = f(σij − αij) = a1Î1 +
√

3Ĵ2 = q (3)

where f is a convex function. The first and second invariants are expressed

by Ĵ2 = 1
2
ŝij ŝij and Î1 = σii − αii, respectively. The terms sij = σij − pδij ,

ŝij = sij −αij + 1
3
αiiδij , p, and δij represent respectively the deviatoric stress,

kinematic stress, hydrostatic pressure, and Kronecker identity. In this model,

we express the translation or backstress αij using Prager’s hardening rule as

follows:

dαij = cdǫκij (4)
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In order to describe the ratcheting effect we express the Prager parameter c

in the above equation in terms of the number of loading cycles N . For a given

periodic loading of frequency ω, a cycle corresponds to a period of time 2πω.

The Chicago logarithmic law obtained by Ben-Naim et al. (1998); Nowak et al.

(1998); Rosato and Yacoub (2000); Philippe and Bideau (2001) and Rémond

(2003) is used to express the kinematic hardening as follows:

c(N) =
c1A

1 + c2 ln
(

N
τ

+ 1
) (5)

where c1, c2, and τ are material constants that can be estimated experimen-

tally. This logarithmic effect is mainly due to the compaction of granular

materials subjected to repeated loading as explained by Guérin et al. (1999);

Bodin et al. (2006); Saussine et al. (2005), and Karrech et al. (2007).

The term q in Equation (3) can be expressed in terms of yield strength using

the particular case of uniaxial loading as follows:

f(σ̂e) = a1σ̂e + σ̂e = q (6)

Therefore, it can be deduced that:

σ̂e =
a1Î1 +

√

3Ĵ2

1 + a1

(7)

Furthermore, a plastic potential in accordance with the Drucker-Prager equa-

tion is considered:

g(σ̂ij) = a2Î1 +
√

3Ĵ2 (8)

If the constants a1 and a2 are different, the material is non-associated. The

flow rule in this case is defined by:

ǫ̇vp
ij = λ̇

∂g

∂σij

(9)

where λ̇ is a positive parameter which can be evaluated by selecting the ap-
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propriate viscous potential. In the present study, Perzyna’s model is adopted

to describe the rate-dependency. Therefore, the consistency parameter can be

expressed as follows:

λ̇ =
ψ(f)

ζ
(10)

where ζ is a fluidity parameter and ψ is a monotonically increasing function

defined by: ψ(f) = f if f ≥ 0 and ψ(f) = 0 otherwise. By defining f̄ =

f − ψ−1(λ̇ζ) and using the principle of maximum dissipation, it can be seen

that the Kuhn-Tucker conditions hold during the viscoplastic flow:

λ̇f̄ = 0, λ̇ ≥ 0, and f̄ ≤ 0 (11)

These conditions can be used to determine the factor λ̇ as will be shown in the

next sections. Note that unlike the model of Suiker and Borst (2003) where

the plastic strain evolution is expressed in terms of number of cycles, rate

dependency in our approach requires an explicit dependency of the inelastic

strain on time. This means that ratcheting and rate dependency can act as

independent mechanisms.

3 Finite element Implementation

The algorithm used to integrate the developed non-linear material behavior

is similar to those adopted for rate-independent cases. A computational pro-

cedure based on the implicit return mapping scheme developed by Simo and

Taylor (1985) for associated plasticity and extended by Cvitanic et al. (2008)

for non-associated plasticity, is adopted in the present work to take into ac-

count the rate dependency of granular materials. A detailed description of the

algorithm developed in this study is presented.
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3.1 Return mapping

The return mapping starts from a converged configuration, Cn(σn, ǫ
vp
n ),

where the state variables are known to deduce the new configuration, Cn+1(σn+1, ǫ
vp
n+1),

which satisfies the material behavior. There are various techniques which can

be used to integrate the behavior of materials (Simo and Taylor (1985); Hof-

stetter et al. (1993)). Most of them are based on predictor-corrector schemes

which generally involve two steps. The first step uses the converged configu-

ration, Cn, Hooke’s law (2), and a deformation increment, ∆ǫ, which can be

evaluated using the incremental deformation theory (Cvitanic et al. (2008))

in order to calculate a trial elastic stress tensor as follows:

σT
ij = (σij)n + Cijkl∆ǫ

e
kl (12)

If the elastic trial state does not violate the limit of elasticity, then it repre-

sents the solution of the problem. However, if the trial state is not admissible,

a correction is required. The trial stress represents a starting point of the

viscoplastic correction step which leads to the following result:

(σij)n+1 = (σij)n + Cijkl (∆ǫkl − ∆ǫvp
kl ) = σT

ij − Cijkl∆ǫ
vp
kl (13)

The term on the right hand side of (13) is the correction or trial stress. The

viscoplastic strain increment can be obtained from Equation (9) as follows:

∆ǫvp
ij = ∆λ

∂g

∂σij

(14)

3.2 Consistency factor

One of the main features of the computational procedure is the computa-

tion of the consistency factor, which allows the projection of the trial state

on the surface f̄ = 0, for correction. Since the evaluation of the stress-strain
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relationship takes a considerable amount of computing time, the efficiency of

the algorithm used to integrate the material behavior is crucial. In partic-

ular, the algorithm suggested herein uses Newton’s method to calculate the

consistency parameter and deduce the equivalent viscoplastic strain which is

evaluated only once. Jointly with the consistent tangent modulus, which will

be developed in the next subsection, this technique guarantees a high rate of

convergence. The procedure is based on the enforcement of the consistency

condition, which can be symbolically written in a scalar form as follows:

Γ(∆λ) = f̄ ((σ̂ij)n+1) = 0 (15)

using Equations (3), (7), and (13), it can be seen that

Γ(∆λ) = f̄
(

σ̂T
ij − Cijkl∆ǫ

vp
kl − c(1 −M)∆ǫvp

kl

)

= 0 (16)

Equation (16) is approximated to the first order using Taylor Seris as follows:

Γ(∆λ) = f̄
(

σ̂T
ij

)

− ∆λ
∂f̄

∂σij

Cijkl

∂g

∂σkl

− ∆λc(1 −M)
∂f̄

∂σij

∂g

∂σij

= 0 (17)

Assume that after a given iteration of the Newton’s method, an approximation

∆λ to the consistency factor is obtained. Let δ(∆λ) be the difference between

this value and the exact solution to the consistency condition. This implies

that:

Γ(∆λ+ δ(∆λ)) = 0 (18)

Expanding the above equation in a Taylor series to the first order about the

approximate consistency factor results in the following expression:

Γ(∆λ) = −δ(∆λ)
∂Γ(∆λ)

∂(∆λ)
(19)

Therefore, combining equations (17) and (19) leads to:
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δ(∆λ) =
f(σn+1

ij ) − q − λ̇ζ − ∆λ ∂f̄

∂σkl
Cijkl

∂f̄

∂σkl
− ∆λc(1 −M) ∂f̄

∂σij

∂g

∂σij

∂Γ(∆λ)
∂(∆λ)

(20)

Equation (20) represents the correction of the consistency factor, which can

be solved using Newton’s method. The iterations consist in calculating δ(∆λ)

and updating the consistency factor in an additive sense such that: ∆λnew =

∆λold + δ(∆λ) until convergence is achieved. Once the consistency factor is

known the stresses and strains can be deduced.

3.3 Consistent tangent modulus

Differentiating the incremental equation (13) and using equation (14), re-

sults in:

d∆(σij)n+1 = Cijkl

(

d∆ǫkl − d∆λ
∂g

∂σij

− ∆λ
∂2g

∂σij∂σkl

d∆(σij)n+1

)

(21)

Therefore, it can be deduced that:

d∆(σij)n+1 = Dijkl

(

d∆ǫkl − d∆λ
∂g

∂σij

)

(22)

where Dijkl =
(

C−1
ijkl + ∆λ ∂2g

∂σij∂σkl

)

−1
. The consistency condition ˙̄f = 0 can be

applied in order to deduce the consistent tangent modulus:

d∆(σij)n+1 =
(

Dijkl −
BijB

∗

kl

H∗

)

d∆ǫkl (23)

where Bkl = Dijkl
∂f̄

∂σij
, B∗

kl = Dijkl
∂g

∂σij
, and H∗ = ∂f̄

∂σij
Dijkl

∂g

∂σij
+ (3a1a2 +

3/2)(1 − M)c + M(1+a1)2(a2Î1+
√

3Ĵ2)Hp

q
+ ζλ̇

∆t
. In order to calculate Dijkl, it is

necessary to note that:

∆λ∂2g

∂σij∂σkl

=
3

2

∆λ

X

(

δikδjl + δilδjk
2

− δijδkl

3
− 3

2

ŝij ŝkl

X2

)

(24)
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where X =
√

3J2. Hence, it can be deduced that:

Dijkl =

(

C−1
ijkl +

3

2

∆λ

X

(

δikδjl + δilδjk
2

− δijδkl

3
− 3

2

ŝij ŝkl

X2

))

−1

(25)

It can be noticed that the above tensor can be written as follows:

Dijkl =

(

E−1
ijkl −

∆λ

X
vijvkl

)

−1

(26)

After some simple mathematical identification it can be seen that:

Eijkl = γ
(

K − 2

3
G
)

δijδkl −
3G∆λ

X
γKδijδkl + 2γG

δikδjl + δilδjk
2

(27)

where γ = X
X+3G∆λ

. Since ∆λ
X
<< 1, therefore, a first order development results

in γ ≈ 1 − 3G∆λ
X

which means that 3G∆λ
X

γ ≈ 3G∆λ
X

. Therefore,

Eijkl =
(

K − 2

3
γG

)

δijδkl + 2γG
δikδjl + δilδjk

2
(28)

When ∆λ
X
<< 1 approaches zero, γ tends to 1. Therefore, it can be seen that

the inverse of Eijkl can be reduced to Cijkl, in the above mentioned particular

case. Applying Sherman-Morisson formula, Equation (26) can be rewritten as:

Dijkl = Eijkl −
vijEijklEijklvkl

vijEijklvkl − X
∆λ

(29)

where vij = 3
2

ŝij

X
. Substituting vij and Eijkl in Equation (29) leads to the

following expression.

Dijkl =
(

K − 2

3
γG

)

δijδkl + γ2G
δikδjl + δilδjk

2
+ β

ŝij

X

ŝkl

X
(30)

where β = − (3γG)2

3γG−
X
∆λ

. Since ∆λ
X

<< 1, then β ≈ − (3γG)2∆λ

X
. Using Equation

(30), the terms of Equation (23) representing the consistent operator can be

deduced:

Bij = Dijkl

∂f̄

∂σkl

= 3Ka1δij + (3γG+ β)
ŝij

X
(31)

B∗

kl = Dijkl

∂g

∂σij

= 3Ka2δkl + (3γG+ β)
ŝkl

X
(32)
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∂f̄

∂σij

Dijkl

∂g

∂σkl

= 9βKa1a2 + (3γG+ β) (33)

Therefore

H∗ = 9βKa1a2 + (3γG+ β) + (3a1a2 + 3/2)(1 −M)c

+M(1+a1)2(a2 Î1+
√

3Ĵ2)Hp

q
+ ζλ̇

∆t

(34)

It is worth noticing that this work presents a general formulation of the

problem which can be reduced to known particular cases: (i) If α1 = α2 = 0,

the yield and potential functions reduce from Drucker-Prager’s to Von-Mises’s

form which is suitable for metallic materials. Most of the existing formulations

where rate-dependency and mixed hardening are implemented can be classified

within this category. For instance, Mayama et al. (2007) developed a consti-

tutive model for cyclically loaded viscoplastic stainless steel at room tem-

perature. Kanga et al. (2003) suggested a similar model where isotropic and

kinematic hardening effects were considered and validated the model through

an experimental investigation on stainless steel at ambient temperature. Ku-

mar and Nukala (2006) introduced a constitutive model which is based on

multi-component forms of kinematic and isotropic hardening variables in con-

junction with Von Mises yield criterion. (ii) If the constant M equals 1 then our

hardening description reduces to the isotropic case where material ratcheting

does not play a tangible role. The formulation then reduces to the elasto-

viscoplastic model of Cela (1998) where inviscid description follows Drucker-

Prager’s equation. This description was used to predict the response of rein-

forced concrete structures subjected to dynamic loads (see also Cvitanic et al.

(2008) for the integration of an elasto-plastic behavior without ratcheting).

(iii) When ζ reduces to zero then the model produces the ratcheting effects in

rate-independent materials (see for instance Chen and Han (1987)).
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4 Numerical Examples

The numerical procedure at hand was implemented into the general purpose

finite element code ABAQUS using the user material subroutine UMAT. In

this section, we first examine the validity of the model through simple ex-

amples and then apply it to a particular case which is relevant to granular

materials subjected to repeated loading. The material parameters used for

simulation are summarized as follows: Young Modulus: E = 30MPa, Pois-

son’s ratio: ν = 0.3, fluidity coefficient: ζ = 5MPas, friction angle: ϕ = 35o,

dilatation angle: ψ = 10o, mixing hardening constant: M = 0.5, and Chicago

law parameters: c1 = 20MPa, c2 = 2, and τ = 20. Isotropic hardening was de-

scribed by the following stress-strain input (ǫvp, σe (MPa))={(0., 0.2), (0.001,

0.3), (0.005, 0.34), (0.01,0.4), (0.05,0.6)}. These parameters can be identified

experimentally using triaxial tests at different rates of loading. The constants

a1 and a2 can be related to the friction and dilatation angles, ϕ and ψ respec-

tively:

a1 = − 2 sin(ϕ)

3(3 − sin(ϕ))
and a2 = − 2 sin(ψ)

3(3 − sin(ψ))
(35)

It can be noticed that the model is non associated since a1 is different than

a2.

4.1 Cylindrical sample under monotonic triaxial loading

This example consists of a cylindrical sample with unit radius and length

(see Figure 1). Radial and axial displacements are applied on the upper and

circumferential faces while the bottom side is constrained from moving in the

axial direction. It is assumed that ζ = c = 0 in this particular case, in order to

examine the capability of the model in predicting the frictional Drucker-Prager

behavior. We first calculate the analytical solution and then use the necessary
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simplifications to compare it with the numerical results. The displacement

field which governs the motion takes the form:

x = φ(X, t) = X − a(t)Zez − b(t)Rer (36)

Therefore, the total rate of stretches can be written as follows:

d = − ȧ

1 − a
(er ⊗ er + eθ ⊗ eθ) −

ḃ

1 − b
ez ⊗ez (37)

The rate of plastic stretches can be expressed as:

dp = λ̇
∂g

∂σ
= λ̇

(

α2δij +
3

2

sij

X

)

(38)

Hence, knowing that the mapping (36) creates no rotation, it can be deduced

that the evolution of Cauchy stresses can be written as follows:

σ̇ =
(

K − 2

3
G
)

tr(d − dp)1 + 2G(d − dp) (39)

If the response is purely elastic then dp = 0. After integration of Equation

(39) it can be seen that the elastic solution within the hypothesis of small

perturbations reads:

σzz = −
(

K − 2
3
G
)

(2a+ b) − 2Gb

σrr = −
(

K − 2
3
G
)

(2a+ b) − 2Ga

σθθ = σrr, σrθ = σrz = σθz = 0

(40)

Note that we used the first order development ln(1+x) ≈ x for x << 1, since

the displacements are small. The above equation can be used simultaneously

with the first limit of elasticity a1(σrr + σθθ + σzz)/3 +
√

3J2 = q0 to evaluate

the solution at the plasticity threshold.

The inelastic phase involves the plastic rate of displacements. Assuming that
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the small deformation theory holds and combining equations (38) and (37-39)

results in the stress state:

σzz = −
(

K − 2
3
G
)

(2a+ b) − 2Gb+ 3a2λK + 3λG szz

X

σrr = −
(

K − 2
3
G
)

(2a+ b) − 2Ga+ 3a2λK + 3λG srr

X

σθθ = σrr, σrθ = σrz = σθz = 0

(41)

Hence, the solution of the problem can be presented in terms of pressure and

deviatoric stress as follows:

qdev = 2G(b− a) + 3λG

p = −K(2a + b) − 3λa2K

q(ǫp) = −3a1(2a+ b)K − 9a1a2λ+ 2(b− a)G+ 3λG

(42)

Figures 2 and 5 show a comparison between the analytical and numerical

results. It can be seen that all figures show good agreement between both

methods. This demonstrates the accuracy of the numerical approach developed

in this study in predicting the response of an elasto-plastic material obeying

to the yield and plastic functions of Drucker-Prager.

4.2 Cylindrical sample under monotonic triaxial loading rates

In this paragraph, we study the response of the same sample (see Figure 1)

but we subject it to a confining pressure of 0.07 MPa and a deviatoric stress

of 0.275 MPa. We also use the same material properties and add a fluidity

parameter ζ = 5MPas to take into account the rate dependency. Unfortu-

nately, an analytical solution turned out to be difficult to obtain because of

the additional non-linear viscous terms.
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Figure 6 shows the sample’s response under different strain rates. The curves

indicate that the material becomes stiffer when the loading rate increases. It is

worth noting that the curve (a) in the figure represents the rate independent

case which is identical to the results shown in figure 2.

4.3 Cylindrical sample under cyclic triaxial loading

This example consists in subjecting a cylindrical sample to a confining pres-

sure of 0.07 MPa and a sinusoidal deviatoric loading of the form S(t) =

S0(1 − cos(ω0t)), where the loading amplitude is S0 = 0.09 MPa and the

circular frequency is ω0 = 4π s−1 (see Figure 11). The rate-dependent effect

is not taken into account in this particular example. To demonstrate the ac-

curacy of the model, different time increments were used. The shortest time

increment produces the closer results to the exact solution. Figure 7 shows

the strain response corresponding to the applied load which indicates a good

accuracy for different time increments.

The analysis also treated the variation of the radial and axial displacements

as well as the volumetric change with respect to the number of cycles as

shown in Figures 8-10. Figures 8 and 9 show that the permanent displacements

decrease with respect to the number of cycles. This result was also observed

by Karrech (2007), using the molecular dynamics (discrete element method)

to study the ratcheting effect in granular materials subjected to cyclic loading.

On the other hand, Figure 10 shows the logarithmic compaction with respect

to the number of cycles in accordance with the introduced Chicago law.
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5 Application: partially confined viscoplastic sample under cyclic

loading

In this section, the developed model is now used to simulate the response of

a partially confined cylindrical sample under cyclic loading. The sample has

a radius R = 0.075 m and a length L = 0.15 m. It is subjected to a cyclic

loading of the form S(t) = S0(1 − cos(ω0t)) where circular frequency ω0 is

varied. Figure 11 shows that the bottom surface of the sample is constrained

from moving in the axial direction, ez, and the lateral surface is constrained

from moving in the radial direction, er. However, the top surface of the sample

is partially loaded with an axial stress within the region of r < 0.5R. The

material properties presented in the last section are used for simulation.

One of the important applications of the proposed model is the prediction

of the accumulated permanent deformation in track platforms due to repeated

loading. Figure 12 shows the variation of axial displacements at the central

point (r=0,z=L), with respect to the number of cycles for various loading

frequencies. It can be seen that the axial displacement is decaying for all

frequencies as the number of cycles increases. This leads to an increasing

accumulation of permanent deformation. This result is in agreement with the

phenomena observed by Guérin et al. (1999) Bodin et al. (2006). The figure

also shows an increase of the permanent deformation slope when the frequency

increases from 1 to 100 Hz. The accumulation of permanent deformation along

the surface of the sample is plotted in figure 13 for a frequency of 10 Hz and

different number of cycles.
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6 Conclusion

A comprehensive viscoplastic constitutive model describing the behavior of

non-associated ratcheting granular materials is developed and implemented

in finite element. One of the main features of the model is the incorporation

of Chicago’s law which describes the compaction of granular materials. The

model was based on Drucker-Prager yield and potential functions and involves

a rate dependency behavior described by Perzyna’s theory. The integration

of the model was performed by applying the well known predictor-corrector

algorithm used for stress state estimation coupled with Newton’s method for

computing the consistency factor as well as the consistent tangent viscoplastic

operator.

The benchmarking of the model was performed through specific examples.

Good agreements between the analytical and computational results were ob-

tained in case of a multi-axial loading of a frictional sample. This demonstrated

the capability of the model in predicting one of relevant features of granular

materials. The model was then used to describe the effect of ratcheting and

rate dependency on a specific field case. The logarithmic permanent defor-

mation which was observed experimentally in cyclically loaded materials was

produced.

Future research work will take into account the dynamic aspects as recent

experimental work proved that the frequency affects the density profiles in

loaded samples. The transition from low to high loading frequencies is of par-

ticular interest, as the materials undergo phase’s transformation from solid

like to fluid like behavior due to vibration.
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un chargement latéral. Canadian Geotechnical Journal, 43:pp. 1028–1041.

Cela, J. (1998). Analysis of reinforced concrete structures subjected to dy-

namic loads with a viscoplastic drucker-prager model. Applied Mathematical

Modelling, 22:495–515.

Cernocky, E. P. and Krempl, E. (1979). A non-linear uniaxial integral constitu-

tive equation incorporating rate effects creep and relaxation. International

Journal Non-Linear Mechanics, 14:183–203.

Chen, W. and Han, D. (1987). Plasticity for Strctural Engineers. Springer-

Verlag, New York.

Cundall, P. A. and Strack, O. D. L. (1971). A computer model for simulating

progressive large scale movement of blocky rock systems. Proceedings of the

Symposium of the International Society of Rock Mechanics, Nancy, France,

1(8).

Cundall, P. A. and Strack, O. D. L. (1979). A discrete numerical model for

granular assemblies. Géotechnique, 29:47–65.
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Fig. 2. Variation of the deviatoric stress with respect to the axial strain in case of

quasistatic triaxial loading of a cylindrical sample with unit radius and length
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Fig. 3. Variation of the hydrostatic pressure with respect to the axial strain

27



0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Radial strain, − ε
rr
, %

D
ev

ia
to

ric
 s

tr
es

s,
 q

de
v, M

P
a

 

 

Numerical
Analytical

Fig. 4. Variation of the quadratic stress with respect to the radial strain in case of

quasistatic triaxial loading
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Fig. 5. Variation of the hydrostatic pressure with respect to the radial strain in case

of quasistatic triaxial loading
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Fig. 9. Cyclic axial displacement versus deviatoric stress
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