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Finite element modelling of rate-dependent ratcheting in granular materials

Introduction

Granular materials are receiving increasing interest in modern industry due to their complex mechanical behavior which represents a challenging subject requiring a lot of research efforts. Different modeling approaches, based on discrete or continuum descriptions, have been used to study the response of these materials especially under cyclic loading. The discrete element methods such as the molecular dynamics (Cundall andStrack (1979, 1971); [START_REF] Gallas | Convection cells in vibrating granular media[END_REF]; [START_REF] Roux | Elasticity, quasistatic deformation, and internal state of sphere packings[END_REF]; [START_REF] Karrech | A computational procedure for the prediction of settlement in granular materials under cyclic loading[END_REF]) and contact dynamics [START_REF] Azema | Vibrational dynamics of confined granular material[END_REF]; [START_REF] Saussine | Modelling ballast behavior under dynamic loading, part1: A 2d polygonal discrete element method approach[END_REF]) are well adapted to study samples consisting of finite number of particles. Although the discrete element methods describe accurately the local mechanisms of energy dissipation caused by ratcheting effects, loss of contacts, and granular flow, these techniques cannot treat samples made of large number of grains. Continuum approaches represent convenient time saving alternatives though limited in predicting local inter-granular mechanisms such as contact losses [START_REF] Karrech | A causality analysis of settlement versus contacts loss in vibrated granular materials[END_REF]).

Research studies on cyclically loaded granular materials revealed that ratcheting, rate-dependency, and non associated flow are necessary features, which should be taken into account to formulate constitutive models (see [START_REF] Karrech | Comportement des materiux granulaires sous vibration: Application au cas du ballast[END_REF] and the references in there). Experimental studies of the same spirit showed that ratcheting can be described with a logarithmic function known as Chicago law [START_REF] Ben-Naim | Slow relaxation in granular compaction[END_REF]; [START_REF] Nowak | Density fluctuations in vibrated granular materials[END_REF]). This empiri-cal law was confirmed numerically using discrete element methods by [START_REF] Rosato | Microstructure evolution in compacted granular beds[END_REF], [START_REF] Bideau | Numerical model for granular compaction under vertical tapping[END_REF][START_REF] Bideau | Numerical model for granular compaction under vertical tapping[END_REF][START_REF] Rémond | Simulation of the compaction of confined mono-sized spherical particles systems under symmetric vibration[END_REF]. Both experimental and numerical results showed that granular materials exhibit a gradual decrease of the volume of voids resulting in a nonlinear permanent deformation with respect to the number of cycles. A similar decay was observed by [START_REF] Guérin | Identification expérimentale d'une loi de tassement du ballast[END_REF] and [START_REF] Bodin | Détermination expérimentale d'une loi de tassement du ballast des voies férrées soumises à un chargement latéral[END_REF] when studying the settlement of granular materials of railway platforms due to repeated loading.

In addition, [START_REF] Saussine | Modelling ballast behavior under dynamic loading, part1: A 2d polygonal discrete element method approach[END_REF] developed a discrete element model based on the contact dynamics which showed the same trend. More recently, [START_REF] Karrech | A computational procedure for the prediction of settlement in granular materials under cyclic loading[END_REF] developed a numerical algorithm based on molecular dynamics and showed that the logarithmic law is appropriate for long term settlement prediction in granular materials. The obtained empirical law proved to be an accurate description of the decaying phenomenon of cyclically loaded granular materials.

The present work is based on several existing computational procedures which involve the above mechanisms of energy dissipation within the framework of continuum mechanics. The purpose of this work is to combine some of the existing techniques and come-up with a comprehensive numerical tool which encompasses the observed logarithmic decay as well as the rate-dependency and frictional aspects. In this context [START_REF] Lu | Numerical approach of visco-elastoplastic analysis for asphalt mixtures[END_REF] suggested a numerical model to describe the behavior of asphalt concrete under cyclic loading where an exponential empirical law was introduced to describe the permanent deformation. However, the cyclic effect was included in the rate-dependency mechanism rather than ratcheting. [START_REF] Lorefice | Viscoplastic approach for ratedependent failure analysis of concrete joints and interfaces[END_REF] introduced a different model which was intended to describe the rate-dependent behavior of quasibrittle materials like concrete but without taking into account the ratcheting effect. Recently, [START_REF] Cvitanic | A finite element formulation based on non-associated plasticity for sheet metal forming[END_REF] formulated a theoretical and numeri-cal framework which is based on the non-associated plasticity with isotropic hardening. The numerical integration included the return mapping technique which consists in projecting the trial stress on the surface of yielding at every increment (see also [START_REF] Key | A finite element¨procedure for the large deformation dynamic response of axysimmetric solids[END_REF]; [START_REF] Dafalias | Elasto-plastic coupling within a thermodynamic strain space formulation of plasticity[END_REF]; [START_REF] Chen | Plasticity for Strctural Engineers[END_REF]; [START_REF] Cernocky | A non-linear uniaxial integral constitutive equation incorporating rate effects creep and relaxation[END_REF]; [START_REF] Marques | Some reflextions on elastopalstic stress calculation in finite element analysis[END_REF]; [START_REF] Loret | Accurate numerical solutions for druckerprager elastic-plastic[END_REF]). This technique which was first introduced by [START_REF] Wilkins | Calculation of elasto-viscoplastic flow[END_REF] was improved by [START_REF] Simo | Consistant tangent operators for ratedependent elastoplasticity[END_REF] and [START_REF] Hofstetter | A modified cap model: closest point solution algorithms[END_REF] who proposed the consistent tangent modulus. [START_REF] Liu | Implicit consistent and continuum tangent operators in elastoplastic boundary element formulation[END_REF]; [START_REF] Kang | A viscoplastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[END_REF], [START_REF] Kumar | A return mapping algorithm for cyclic viscoplastic constitutive models[END_REF] proved that the return mapping coupled with the consistent tangent modulus is an effective and robust tool to integrate nonlinear constitutive equations. Although, the cited models covered particular combinations of rate dependency, ratcheting, non-associated flows, and local compaction, none of them contains a comprehensive approach which takes into account these phenomena altogether to predict the response of granular materials.

The present study is developed in light of the above mentioned contributions while taking into account the (i) non associated flow rule, (ii) Drucker-Prager yield and plastic potential functions instead of the frequently used Von-Mises yield function, (iii) logarithmic ratcheting effect, and (iv) robust integration method based on the return mapping algorithm. This paper is divided into three major sections. The first section gives a brief description of the problem under consideration, defines the constitutive continuous model and highlights the assumptions adopted in the study. The second one describes the numerical procedure used to integrate the constitutive model. The last section is dedicated to the application of the developed model on particular examples.

Constitutive continuous model

The constitutive model developed in this paper is based on a linear combination of kinematic and isotropic hardening where the strain increment is defined by:

dǫ ij = dǫ e ij + dǫ i ij + dǫ κ ij = dǫ e ij + dǫ vp ij (1)
The superscripts e and vp denote respectively the elastic and viscoplastic strains. The viscoplastic strain is decomposed into an isotropic strain, dǫ i ij =

Mdǫ vp ij , and a kinematic strain, dǫ κ ij = (1 -M)dǫ vp ij where the constant M, describes the combination of both hardening effects. It takes the value 1 when the hardening is fully isotropic and 0 when it is fully kinematic. The elastic behavior is described with a linear law given by:

dσ ij = C ijkl (dǫ kl -dǫ vp kl ) (2) 
where C ijkl is a fourth order tensor describing the elastic behavior, ǫ ij and σ ij are second order tensors denoting respectively the strain and Cauchy stress.

The limit of elasticity is described by a Drucker-Prager yield function written as:

f (σ ij ) = f (σ ij -α ij ) = a 1 Î1 + 3 Ĵ2 = q (3)
where f is a convex function. The first and second invariants are expressed by Ĵ2 = 1 2 ŝij ŝij and Î1 = σ ii -α ii , respectively. The terms

s ij = σ ij -pδ ij , ŝij = s ij -α ij + 1
3 α ii δ ij , p, and δ ij represent respectively the deviatoric stress, kinematic stress, hydrostatic pressure, and Kronecker identity. In this model, we express the translation or backstress α ij using Prager's hardening rule as follows:

dα ij = cdǫ κ ij (4)
In order to describe the ratcheting effect we express the Prager parameter c in the above equation in terms of the number of loading cycles N. For a given periodic loading of frequency ω, a cycle corresponds to a period of time 2πω.

The Chicago logarithmic law obtained by [START_REF] Ben-Naim | Slow relaxation in granular compaction[END_REF]; [START_REF] Nowak | Density fluctuations in vibrated granular materials[END_REF]; [START_REF] Rosato | Microstructure evolution in compacted granular beds[END_REF]; [START_REF] Bideau | Numerical model for granular compaction under vertical tapping[END_REF] and [START_REF] Rémond | Simulation of the compaction of confined mono-sized spherical particles systems under symmetric vibration[END_REF] is used to express the kinematic hardening as follows:

c(N) = c 1 A 1 + c 2 ln N τ + 1 (5)
where c 1 , c 2 , and τ are material constants that can be estimated experimentally. This logarithmic effect is mainly due to the compaction of granular materials subjected to repeated loading as explained by [START_REF] Guérin | Identification expérimentale d'une loi de tassement du ballast[END_REF]; [START_REF] Bodin | Détermination expérimentale d'une loi de tassement du ballast des voies férrées soumises à un chargement latéral[END_REF]; [START_REF] Saussine | Modelling ballast behavior under dynamic loading, part1: A 2d polygonal discrete element method approach[END_REF], and [START_REF] Karrech | A computational procedure for the prediction of settlement in granular materials under cyclic loading[END_REF].

The term q in Equation ( 3) can be expressed in terms of yield strength using the particular case of uniaxial loading as follows:

f (σ e ) = a 1 σe + σe = q (6)
Therefore, it can be deduced that:

σe = a 1 Î1 + 3 Ĵ2 1 + a 1 (7)
Furthermore, a plastic potential in accordance with the Drucker-Prager equation is considered:

g(σ ij ) = a 2 Î1 + 3 Ĵ2 (8)
If the constants a 1 and a 2 are different, the material is non-associated. The flow rule in this case is defined by:

ǫvp ij = λ ∂g ∂σ ij (9)
where λ is a positive parameter which can be evaluated by selecting the ap-propriate viscous potential. In the present study, Perzyna's model is adopted to describe the rate-dependency. Therefore, the consistency parameter can be expressed as follows:

λ = ψ(f ) ζ ( 10 
)
where ζ is a fluidity parameter and ψ is a monotonically increasing function defined by:

ψ(f ) = f if f ≥ 0 and ψ(f ) = 0 otherwise. By defining f = f -ψ -1 ( λζ)
and using the principle of maximum dissipation, it can be seen that the Kuhn-Tucker conditions hold during the viscoplastic flow:

λ f = 0, λ ≥ 0, and f ≤ 0 (11)
These conditions can be used to determine the factor λ as will be shown in the next sections. Note that unlike the model of [START_REF] Suiker | A numerical model for the cyclic deterioration of railway tracks[END_REF] where the plastic strain evolution is expressed in terms of number of cycles, rate dependency in our approach requires an explicit dependency of the inelastic strain on time. This means that ratcheting and rate dependency can act as independent mechanisms.

Finite element Implementation

The algorithm used to integrate the developed non-linear material behavior is similar to those adopted for rate-independent cases. A computational procedure based on the implicit return mapping scheme developed by [START_REF] Simo | Consistant tangent operators for ratedependent elastoplasticity[END_REF] for associated plasticity and extended by [START_REF] Cvitanic | A finite element formulation based on non-associated plasticity for sheet metal forming[END_REF] for non-associated plasticity, is adopted in the present work to take into account the rate dependency of granular materials. A detailed description of the algorithm developed in this study is presented.

Return mapping

The return mapping starts from a converged configuration,

C n (σ n , ǫ vp n ),
where the state variables are known to deduce the new configuration, C n+1 (σ n+1 , ǫ vp n+1 ), which satisfies the material behavior. There are various techniques which can be used to integrate the behavior of materials [START_REF] Simo | Consistant tangent operators for ratedependent elastoplasticity[END_REF]; [START_REF] Hofstetter | A modified cap model: closest point solution algorithms[END_REF]). Most of them are based on predictor-corrector schemes which generally involve two steps. The first step uses the converged configuration, C n , Hooke's law (2), and a deformation increment, ∆ǫ, which can be evaluated using the incremental deformation theory [START_REF] Cvitanic | A finite element formulation based on non-associated plasticity for sheet metal forming[END_REF])

in order to calculate a trial elastic stress tensor as follows:

σ T ij = (σ ij ) n + C ijkl ∆ǫ e kl (12) 
If the elastic trial state does not violate the limit of elasticity, then it represents the solution of the problem. However, if the trial state is not admissible, a correction is required. The trial stress represents a starting point of the viscoplastic correction step which leads to the following result:

(σ ij ) n+1 = (σ ij ) n + C ijkl (∆ǫ kl -∆ǫ vp kl ) = σ T ij -C ijkl ∆ǫ vp kl (13)
The term on the right hand side of ( 13) is the correction or trial stress. The viscoplastic strain increment can be obtained from Equation ( 9) as follows:

∆ǫ vp ij = ∆λ ∂g ∂σ ij (14)

Consistency factor

One of the main features of the computational procedure is the computation of the consistency factor, which allows the projection of the trial state on the surface f = 0, for correction. Since the evaluation of the stress-strain relationship takes a considerable amount of computing time, the efficiency of the algorithm used to integrate the material behavior is crucial. In particular, the algorithm suggested herein uses Newton's method to calculate the consistency parameter and deduce the equivalent viscoplastic strain which is evaluated only once. Jointly with the consistent tangent modulus, which will be developed in the next subsection, this technique guarantees a high rate of convergence. The procedure is based on the enforcement of the consistency condition, which can be symbolically written in a scalar form as follows:

Γ(∆λ) = f ((σ ij ) n+1 ) = 0 (15)
using Equations ( 3), ( 7), and ( 13), it can be seen that

Γ(∆λ) = f σT ij -C ijkl ∆ǫ vp kl -c(1 -M)∆ǫ vp kl = 0 (16)
Equation ( 16) is approximated to the first order using Taylor Seris as follows:

Γ(∆λ) = f σT ij -∆λ ∂ f ∂σ ij C ijkl ∂g ∂σ kl -∆λc(1 -M) ∂ f ∂σ ij ∂g ∂σ ij = 0 (17)
Assume that after a given iteration of the Newton's method, an approximation ∆λ to the consistency factor is obtained. Let δ(∆λ) be the difference between this value and the exact solution to the consistency condition. This implies that:

Γ(∆λ + δ(∆λ)) = 0 (18)
Expanding the above equation in a Taylor series to the first order about the approximate consistency factor results in the following expression:

Γ(∆λ) = -δ(∆λ) ∂Γ(∆λ) ∂(∆λ) (19) 
Therefore, combining equations ( 17) and ( 19) leads to:

δ(∆λ) = f (σ n+1 ij ) -q -λζ -∆λ ∂ f ∂σ kl C ijkl ∂ f ∂σ kl -∆λc(1 -M) ∂ f ∂σ ij ∂g ∂σ ij ∂Γ(∆λ) ∂(∆λ) (20)
Equation ( 20) represents the correction of the consistency factor, which can be solved using Newton's method. The iterations consist in calculating δ(∆λ) and updating the consistency factor in an additive sense such that: ∆λ new = ∆λ old + δ(∆λ) until convergence is achieved. Once the consistency factor is known the stresses and strains can be deduced.

Consistent tangent modulus

Differentiating the incremental equation ( 13) and using equation ( 14), results in:

d∆(σ ij ) n+1 = C ijkl d∆ǫ kl -d∆λ ∂g ∂σ ij -∆λ ∂ 2 g ∂σ ij ∂σ kl d∆(σ ij ) n+1 (21) 
Therefore, it can be deduced that:

d∆(σ ij ) n+1 = D ijkl d∆ǫ kl -d∆λ ∂g ∂σ ij (22) 
where

D ijkl = C -1 ijkl + ∆λ ∂ 2 g ∂σ ij ∂σ kl -1
. The consistency condition ḟ = 0 can be applied in order to deduce the consistent tangent modulus:

d∆(σ ij ) n+1 = D ijkl - B ij B * kl H * d∆ǫ kl ( 23 
)
where

B kl = D ijkl ∂ f ∂σ ij , B * kl = D ijkl ∂g ∂σ ij , and H * = ∂ f ∂σ ij D ijkl ∂g ∂σ ij + (3a 1 a 2 + 3/2)(1 -M)c + M (1+a 1 ) 2 (a 2 Î1 + √ 3 Ĵ2 )Hp q + ζ λ ∆t .
In order to calculate D ijkl , it is necessary to note that:

∆λ∂ 2 g ∂σ ij ∂σ kl = 3 2 ∆λ X δ ik δ jl + δ il δ jk 2 - δ ij δ kl 3 - 3 2 ŝij ŝkl X 2 (24) 
where X = √ 3J 2 . Hence, it can be deduced that:

D ijkl = C -1 ijkl + 3 2 ∆λ X δ ik δ jl + δ il δ jk 2 - δ ij δ kl 3 - 3 2 ŝij ŝkl X 2 -1 (25) 
It can be noticed that the above tensor can be written as follows:

D ijkl = E -1 ijkl - ∆λ X v ij v kl -1 (26) 
After some simple mathematical identification it can be seen that:

E ijkl = γ K - 2 3 G δ ij δ kl - 3G∆λ X γKδ ij δ kl + 2γG δ ik δ jl + δ il δ jk 2 (27) where γ = X X+3G∆λ . Since ∆λ X << 1, therefore, a first order development results in γ ≈ 1 -3G∆λ X which means that 3G∆λ X γ ≈ 3G∆λ X .
Therefore,

E ijkl = K - 2 3 γG δ ij δ kl + 2γG δ ik δ jl + δ il δ jk 2 (28) 
When ∆λ X << 1 approaches zero, γ tends to 1. Therefore, it can be seen that the inverse of E ijkl can be reduced to C ijkl , in the above mentioned particular case. Applying Sherman-Morisson formula, Equation ( 26) can be rewritten as:

D ijkl = E ijkl - v ij E ijkl E ijkl v kl v ij E ijkl v kl -X ∆λ ( 29 
)
where

v ij = 3 2 ŝij X .
Substituting v ij and E ijkl in Equation ( 29) leads to the following expression.

D ijkl = K - 2 3 γG δ ij δ kl + γ2G δ ik δ jl + δ il δ jk 2 + β ŝij X ŝkl X ( 30 
)
where

β = -(3γG) 2 3γG-X ∆λ . Since ∆λ X << 1, then β ≈ -(3γG) 2 ∆λ X
. Using Equation (30), the terms of Equation ( 23) representing the consistent operator can be deduced:

B ij = D ijkl ∂ f ∂σ kl = 3Ka 1 δ ij + (3γG + β) ŝij X (31) B * kl = D ijkl ∂g ∂σ ij = 3Ka 2 δ kl + (3γG + β) ŝkl X (32) ∂ f ∂σ ij D ijkl ∂g ∂σ kl = 9βKa 1 a 2 + (3γG + β) (33) 
Therefore

H * = 9βKa 1 a 2 + (3γG + β) + (3a 1 a 2 + 3/2)(1 -M)c + M (1+a 1 ) 2 (a 2 Î1 + √ 3 Ĵ2 )Hp q + ζ λ ∆t (34)
It is worth noticing that this work presents a general formulation of the problem which can be reduced to known particular cases: (i) If α 1 = α 2 = 0, the yield and potential functions reduce from Drucker-Prager's to Von-Mises's form which is suitable for metallic materials. Most of the existing formulations where rate-dependency and mixed hardening are implemented can be classified within this category. For instance, [START_REF] Mayama | A constitutive model of cyclic viscoplasticity considering changes in subsequent viscoplastic deformation due to the evolution of dislocation structures[END_REF] [START_REF] Cela | Analysis of reinforced concrete structures subjected to dynamic loads with a viscoplastic drucker-prager model[END_REF] where inviscid description follows Drucker-Prager's equation. This description was used to predict the response of reinforced concrete structures subjected to dynamic loads (see also [START_REF] Cvitanic | A finite element formulation based on non-associated plasticity for sheet metal forming[END_REF] for the integration of an elasto-plastic behavior without ratcheting).

(iii) When ζ reduces to zero then the model produces the ratcheting effects in rate-independent materials (see for instance [START_REF] Chen | Plasticity for Strctural Engineers[END_REF]).

Numerical Examples

The numerical procedure at hand was implemented into the general purpose finite element code ABAQUS using the user material subroutine UMAT. In this section, we first examine the validity of the model through simple ex- scribed by the following stress-strain input (ǫ vp , σ e (MPa))={(0., 0.2), (0.001, 0.3), (0.005, 0.34), (0.01,0.4), (0.05,0.6)}. These parameters can be identified experimentally using triaxial tests at different rates of loading. The constants a 1 and a 2 can be related to the friction and dilatation angles, ϕ and ψ respectively:

a 1 = - 2 sin(ϕ) 3(3 -sin(ϕ))
and a 2 = -2 sin(ψ) 3(3 -sin(ψ)) (35)

It can be noticed that the model is non associated since a 1 is different than a 2 .

Cylindrical sample under monotonic triaxial loading

This example consists of a cylindrical sample with unit radius and length (see Figure 1). Radial and axial displacements are applied on the upper and circumferential faces while the bottom side is constrained from moving in the axial direction. It is assumed that ζ = c = 0 in this particular case, in order to examine the capability of the model in predicting the frictional Drucker-Prager behavior. We first calculate the analytical solution and then use the necessary simplifications to compare it with the numerical results. The displacement field which governs the motion takes the form:

x = φ(X, t) = X -a(t)Ze z -b(t)Re r (36)
Therefore, the total rate of stretches can be written as follows:

d = - ȧ 1 -a (e r ⊗ e r + e θ ⊗ e θ ) - ḃ 1 -b e z ⊗e z (37) 
The rate of plastic stretches can be expressed as:

d p = λ ∂g ∂σ = λ α 2 δ ij + 3 2 s ij X (38)
Hence, knowing that the mapping (36) creates no rotation, it can be deduced that the evolution of Cauchy stresses can be written as follows:

σ = K - 2 3 G tr(d -d p )1 + 2G(d -d p ) (39)
If the response is purely elastic then d p = 0. After integration of Equation ( 39) it can be seen that the elastic solution within the hypothesis of small perturbations reads:

σ zz = -K -2 3 G (2a + b) -2Gb σ rr = -K -2 3 G (2a + b) -2Ga σ θθ = σ rr , σ rθ = σ rz = σ θz = 0 (40)
Note that we used the first order development ln(1 + x) ≈ x for x << 1, since the displacements are small. The above equation can be used simultaneously with the first limit of elasticity a 1 (σ rr + σ θθ + σ zz )/3 + √ 3J 2 = q 0 to evaluate the solution at the plasticity threshold.

The inelastic phase involves the plastic rate of displacements. Assuming that the small deformation theory holds and combining equations ( 38) and (37-39) results in the stress state:

σ zz = -K -2 3 G (2a + b) -2Gb + 3a 2 λK + 3λG szz X σ rr = -K -2 3 G (2a + b) -2Ga + 3a 2 λK + 3λG srr X σ θθ = σ rr , σ rθ = σ rz = σ θz = 0 (41)
Hence, the solution of the problem can be presented in terms of pressure and deviatoric stress as follows:

q dev = 2G(b -a) + 3λG p = -K(2a + b) -3λa 2 K q(ǫ p ) = -3a 1 (2a + b)K -9a 1 a 2 λ + 2(b -a)G + 3λG (42) 
Figures 2 and5 show a comparison between the analytical and numerical results. It can be seen that all figures show good agreement between both methods. This demonstrates the accuracy of the numerical approach developed in this study in predicting the response of an elasto-plastic material obeying to the yield and plastic functions of Drucker-Prager.

Cylindrical sample under monotonic triaxial loading rates

In this paragraph, we study the response of the same sample (see Figure 1) but we subject it to a confining pressure of 0.07 MPa and a deviatoric stress of 0.275 MPa. We also use the same material properties and add a fluidity parameter ζ = 5MP as to take into account the rate dependency. Unfortunately, an analytical solution turned out to be difficult to obtain because of the additional non-linear viscous terms.

Figure 6 shows the sample's response under different strain rates. The curves indicate that the material becomes stiffer when the loading rate increases. It is worth noting that the curve (a) in the figure represents the rate independent case which is identical to the results shown in figure 2.

Cylindrical sample under cyclic triaxial loading

This example consists in subjecting a cylindrical sample to a confining pressure of 0.07 MPa and a sinusoidal deviatoric loading of the form S(t) = S 0 (1 -cos(ω 0 t)), where the loading amplitude is S 0 = 0.09 MPa and the circular frequency is ω 0 = 4π s -1 (see Figure 11). The rate-dependent effect is not taken into account in this particular example. To demonstrate the accuracy of the model, different time increments were used. The shortest time increment produces the closer results to the exact solution. Figure 7 shows the strain response corresponding to the applied load which indicates a good accuracy for different time increments.

The analysis also treated the variation of the radial and axial displacements as well as the volumetric change with respect to the number of cycles as shown in Figures 8910. Figures 8 and9 show that the permanent displacements decrease with respect to the number of cycles. This result was also observed by [START_REF] Karrech | Comportement des materiux granulaires sous vibration: Application au cas du ballast[END_REF], using the molecular dynamics (discrete element method)

to study the ratcheting effect in granular materials subjected to cyclic loading.

On the other hand, Figure 10 shows the logarithmic compaction with respect to the number of cycles in accordance with the introduced Chicago law. 

  developed a constitutive model for cyclically loaded viscoplastic stainless steel at room temperature. Kanga et al. (2003) suggested a similar model where isotropic and kinematic hardening effects were considered and validated the model through an experimental investigation on stainless steel at ambient temperature. Kumar and Nukala (2006) introduced a constitutive model which is based on multi-component forms of kinematic and isotropic hardening variables in conjunction with Von Mises yield criterion. (ii) If the constant M equals 1 then our hardening description reduces to the isotropic case where material ratcheting does not play a tangible role. The formulation then reduces to the elastoviscoplastic model of

  amples and then apply it to a particular case which is relevant to granular materials subjected to repeated loading. The material parameters used for simulation are summarized as follows: Young Modulus: E = 30MP a, Poisson's ratio: ν = 0.3, fluidity coefficient: ζ = 5MP as, friction angle: ϕ = 35 o , dilatation angle: ψ = 10 o , mixing hardening constant: M = 0.5, and Chicago law parameters: c 1 = 20MP a, c 2 = 2, and τ = 20. Isotropic hardening was de-
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 23456710 Fig. 1. Deformable cylinder under triaxial loading
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 13 Fig. 13. Accumulated vertical permanent deformation along the surface of the sample for different frequencies
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