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Estimating level sets of a distribution function using a plug-in method:

a multidimensional extension

Elena Di Bernardino1, Thomas Laloë2

Abstract

This paper deals with the problem of estimating the level sets L(c) = {F (x) ≥ c}, with c ∈ (0, 1),
of an unknown distribution function F on R

d
+. A plug-in approach is followed. That is, given a

consistent estimator Fn of F , we estimate L(c) by Ln(c) = {Fn(x) ≥ c}. We state consistency
results with respect to the Hausdorff distance and the volume of the symmetric difference. These
results can be considered as generalizations of results previously obtained, in a bivariate framework,
in Di Bernardino et al. (2011). Finally we investigate the effects of scaling data on our consistency
results.

Keywords: Level sets, multidimensional distribution function, plug-in estimation, Hausdorff
distance.

Introduction

In this present paper, we consider the problem of estimating the level sets of a d-variate distribu-
tion function. To this aim, we generalize the results obtain in a previous paper (Di Bernardino et

al., 2011).

As yet remarked in Di Bernardino et al. (2011), considering the level sets of a distribution func-
tion, the commonly assumed property of compactness for these sets is no more reasonable. Then,
differing from the classical literature (Cavalier, 1997; Cuevas and Fraiman, 1997; Báıllo et al., 2001;
Báıllo, 2003; Cuevas et al., 2006; Biau et al., 2007; Laloë, 2009), we need to work in a non-compact
setting and this requires special attention in the statement of our problem.

We follow the same general approach than in Di Bernardino et al. (2011), and we will keep as
much as possible the same notation. Considering a consistent estimator Fn of the distribution
function F , we propose a plug-in approach (e.g. see Báıllo et al., 2011; Rigollet and Vert, 2009;
Cuevas et al., 2006) to estimate the level set

L(c) = {x ∈ R
d
+ : F (x) ≥ c}, for c ∈ (0, 1),

by
Ln(c) = {x ∈ R

d
+ : Fn(x) ≥ c}, for c ∈ (0, 1).

The regularity properties of F and Fn as well as the consistency properties of Fn will be specified
in the statements of our theorems.

As in Di Bernardino et al. (2011) our consistency results are stated with respect to two criteria of
“physical proximity” between sets: the Hausdorff distance and volume of the symmetric difference.
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If the consistency in term of the Hausdorff distance is a trivial extension of Theorem 2.1 in Di
Bernardino et al. (2011) (see Theorem 2.1 below), things are a little more complex for the volume
of the symmetric difference. In particular, in this latter case the convergence rate suffers from the
well-known curse of dimensionality (see Theorem 3.1).

A second aim of this paper is to analyze the effects of scaling data on our consistency results (see
Theorem 4.1).

The paper is organized as follows. We introduce some notation, tools and technical assumptions
in Section 1. Consistency and asymptotic properties of our estimator of L(c) are given in Sections
2 and 3. Section 4 is devoted to investigate the effects of scaling data on our consistency results.
Finally, proofs are postponed to Section 5.

1. Notation and preliminaries

In this section we introduce some notation and tools which will be useful later.

Let N∗ = N \{0}, R∗
+ = R+ \{0} and R

d
+
∗
= R

d
+ \{0}. Let F be the set of continuous distribution

functions Rd
+ → [0, 1] and X := (X1,X2, . . . ,Xd) a random vector with distribution function F ∈

F . Given an i.i.d sample {Xi}ni=1 in R
d
+ with distribution function F ∈ F , we denote by Fn an

estimator of F based on this finite sample.

Define, for c ∈ (0, 1), the upper c-level set of F ∈ F and its plug-in estimator

L(c) = {x ∈ R
d
+ : F (x) ≥ c}, Ln(c) = {x ∈ R

d
+ : Fn(x) ≥ c},

and
{F = c} = {x ∈ R

d
+ : F (x) = c}.

In addition, given T > 0, we set

L(c)T = {x ∈ [0, T ]d : F (x) ≥ c}, Ln(c)
T = {x ∈ [0, T ]d : Fn(x) ≥ c},

{F = c}T = {x ∈ [0, T ]d : F (x) = c}.
Given a set A ⊂ R

d
+ we denote by ∂A its boundary, and by β A the scaled set {β x, with x ∈ A}.

Note that, in the presence of a plateau at level c, {F = c} can be a portion of quadrant Rd
+ instead

of a set of Lebesgue measure null in R
d
+. In the following we introduce suitable conditions in order

to avoid this situation.

We denote by B(x, ρ) the closed ball centered on x ∈ R
d
+ and with positive radius ρ. Let

B(S, ρ) =
⋃

x∈S B(x, ρ), with S a closed set of Rd
+.

For r > 0 and ζ > 0, define

E = B({x ∈ R
d
+ : | F (x)− c |≤ r}, ζ),

and, for a twice differentiable function F ,

m▽ = inf
x∈E

‖(∇F )x‖, MH = sup
x∈E

‖(HF )x‖,

where (∇F )x is the gradient vector of F evaluated at x and ‖(∇F )x‖ its Euclidean norm, (HF )x
the Hessian matrix evaluated in x and ‖(HF )x‖ its matrix norm induced by the Euclidean norm.
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For sake of completeness, we recall that if A1 and A2 are compacts sets in R
d
+, the Hausdorff

distance between A1 and A2 is defined by

dH(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
x∈A2

d(x,A1)

}
,

where d(x,A2) = infy∈A2 ‖ x− y ‖.

The above expression is well defined even when A1 and A2 are just closed (not necessarily com-
pacts) sets but, in this case, the value dH(A1, A2) could be infinity. Then in our setting, in order
to avoid these situations, we introduce the following assumption.

H: There exist γ > 0 and A > 0 such that, if | t− c | ≤ γ then ∀ T > 0 such that {F = c}T 6= ∅
and {F = t}T 6= ∅,

dH({F = c}T , {F = t}T ) ≤ A | t− c | .

For further details about this assumption the interest reader is referred to Di Bernardino et al.

(2011), Cuevas et al. (2006), Tsybakov (1997). Remark that a sufficient condition for Assumption
H can be obtained in terms of the differentiability properties of F . Proposition 1.1 below is a
trivial extension in d−variate setting of Proposition 1.1 in Di Bernardino et al. (2011).

Proposition 1.1 Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R
d∗
+ . Assume there exist

r > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Then F satisfies Assumption H, with A = 2
m▽ .

Remark 1 Under assumptions of Proposition 1.1, {F = t} is a set of Lebesgue measure null in R
d
+.

Furthermore we obtain ∂L(c)T = {F = c}T = {F = c} ∩ [0, T ]d (we refer for details to Remark 1
in Di Bernardino et al., 2011 and Theorem 3.2 in Rodŕıguez-Casal, 2003).

2. Consistency in terms of the Hausdorff distance

In this section we study the consistency properties of Ln(c)
T with respect to the Hausdorff distance

between ∂Ln(c)
T and ∂L(c)T .

From now on we note, for n ∈ N
∗,

‖F − Fn‖∞ = sup
x∈Rd

+

| F (x)− Fn(x) |,

and for T > 0
‖F − Fn‖T∞ = sup

x∈ [0,T ]d
| F (x)− Fn(x) | .

The following result can be considered a trivially adapted version of Theorem 2.1 in Di Bernardino
et al. (2011).

Theorem 2.1 Let c ∈ (0, 1). Let F ∈ F be twice differentiable on R
d∗
+ . Assume that there exist

r > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Let T1 > 0 such that for all t : | t − c | ≤ r,
∂L(t)T1 6= ∅. Let (Tn)n∈N∗ be an increasing sequence of positive values. Assume that, for each n
and for almost all samples of size n, Fn is a continuous function and that

‖F − Fn‖∞ → 0, a.s.
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Then, for n large enough,

dH(∂L(c)Tn , ∂Ln(c)
Tn) ≤ 6A ‖F − Fn‖Tn

∞ a.s.,

where A = 2
m▽ . Therefore we have

dH(∂L(c)Tn , ∂Ln(c)
Tn) = O(‖F − Fn‖∞) a.s.

Under assumptions of Theorem 2.1, dH(∂L(c)Tn , ∂Ln(c)
Tn) converges to zero and the quality of

our plug-in estimator is obviously related to the quality of the estimator Fn. For comments and
discussions about this result we refer the interested reader to Remark 2 in Di Bernardino et al.

(2011).

3. L1 consistency

The previous section was devoted to the consistency of Ln(c) in terms of the Hausdorff distance.
We consider now another consistency criterion: the consistency of the volume (in the Lebesgue
measure sense) of the symmetric difference between L(c)Tn and Ln(c)

Tn . This means that we define
the distance between two subsets A1 and A2 of R+

d by

dλ(A1, A2) = λ(A1 △A2),

where λ stands for the Lebesgue measure on R
d and △ for the symmetric difference.

Let us introduce the following assumption:

A1 There exist positive increasing sequences (vn)n∈N∗ and (Tn)n∈N∗ such that

vn

∫

[0,Tn]d
| F − Fn |p λ(dx)

P→
n→∞

0,

for some 1 ≤ p < ∞.

We now establish our consistency result with convergence rate, in terms of the volume of the sym-
metric difference. We can interpret the following theorem as an extension of Theorem 3.1 in Di
Bernardino et al. (2011), in the case of a d−variate distribution function F .

Theorem 3.1 Let c ∈ (0, 1). Let F ∈ F be a twice differentiable distribution function on R
d∗
+ .

Assume that there exist r > 0, ζ > 0 such that m▽ > 0 and MH < ∞. Assume that for each n,
with probability one, Fn is measurable. Let (vn)n∈N∗ and (Tn)n∈N∗ positive increasing sequences

such that Assumption A1 is satisfied and that for all t : | t− c | ≤ r, ∂L(t)T1 6= ∅. Then, it holds

that

pn dλ(L(c)
Tn , Ln(c)

Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
.

The proof is postponed to Section 5. This demonstration is basically based on the proof of The-
orem 3.1 in Di Bernardino et al. (2011).

Theorem 3.1 provides a convergence rate, which is closely related to the choice of the sequence
Tn. Note that, as in Theorem 3 in Cuevas et al. (2006), Theorem 3.1 above does not require any
continuity assumption on Fn. Furthermore, as in Theorem 3.1 in Di Bernardino et al. (2011),

4



we remark that a sequence Tn, whose divergence rate is large, implies a convergence rate pn quite
slow. Moreover, this phenomenon is emphasized by the dimension d of the data, and we face here
the well-known curse of dimensionality. In the following we will illustrate this aspect by giving
convergence rate in the case of the empirical distribution function (see Example 1). Firstly, from
Theorem 3.1 we can derive the following result.

Corollary 3.1 Under the assumptions and notations of Theorem 3.1. Assume that there exists a

positive increasing sequence (vn)n∈N∗ such that vn ‖F − Fn‖∞ P→
n→∞

0. Then, it holds that

pn dλ(L(c)
Tn , Ln(c)

Tn)
P→

n→∞
0,

with pn an increasing positive sequence such that pn = o

(
vn

p

p+1 /Tn

d+(d−1) p
p+1

)
.

This result comes trivially from Theorem 3.1 and the fact that that vn ‖F − Fn‖∞ P→
n→∞

0 implies

∀ p ≥ 1, wn

∫

[0,Tn]d
| F − Fn |p λ(dx)

P→
n→∞

0, with wn =
vpn
T d
n

.

Let us now present a more practical example.

Example 1 (The empirical distribution function case)

Let Fn the d−variate empirical distribution function. Then, it holds that vn ‖F − Fn‖∞ P→
n→∞

0,

with vn = o(
√
n). From Theorem 3.1, with p = 2, we obtain for instance:

pn = o

(
n1/3

Tn
7/3

)
, for d = 3; pn = o

(
n1/3

Tn
10/3

)
, for d = 4.

The next section is dedicated to study the effects of scaling data.

4. About the effects of scaling data

Suppose now to scale our data using a scale parameter a ∈ R
∗
+. In our case, the scaled random vec-

tor will be (aX1, aX2, . . . , aXd) := aX. From now on we denote FaX (resp. FX) the distribution
function associated to aX (resp. to X). Using notation of Section 1, let

La(c) = {x ∈ R
d
+ : FaX(x) ≥ c}.

It is easy to prove (see for instance Section 3 in Tibiletti, 1993) that

La(c) = aL(c),

and
Ea = B({x ∈ R

d
+ : | FaX(x)− c |≤ r}, ζ) = aE.

Define now
m▽

a = inf
x∈Ea

‖∇FaX(x)‖.

First, we can obtain the following result whose proof is postponed to Section 5.
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Lemma 4.1 It holds that

m▽

a =
1

a
m▽, ∀ a ∈ R

∗
+.

Furthermore, if

MH = sup
x∈E

‖(HFX)x‖ < +∞ then MH,a = sup
x∈aE

‖(HFaX)x‖ < +∞, with a ∈ R
∗
+.

We can now consider the effects of scaling data on Theorem 2.1 and 3.1.

Theorem 4.1

1. Under same notation and assumptions of Theorem 2.1, for n large enough, it holds that

dH(∂La(c)
a Tn , ∂Ln, a(c)

a Tn) ≤ 6Aa ‖F − Fn‖Tn
∞ , a.s.

2. Under same notation and assumptions of Theorem 3.1 it holds that

pn, a dλ(La(c)
a Tn , Ln, a(c)

a Tn)
P→

n→∞
0,

with pn, a an increasing positive sequence such that pn, a = o

(
v

1
p+1
n /

(
a

d p

p+1 T
(d−1) p
p+1

n

))
.

Remark 2

1. The first result of Theorem 4.1 states that a change of scale of the data implies the same
change of scale for the Hausdorff distance.

2. The second result states that a change of scale of the data implies a rate in

o

(
v

1
p+1
n /

(
ad T (d−1)

n

)p/(p+1)
)

instead of

o

(
v

1
p+1
n /

(
T (d−1)
n

) p

p+1

)
.

So, we see logically that the scale factor a impacts the volume in R
d with an exponent d.

Conclusion

Starting from previous results obtained in Di Bernardino et al. (2011), we propose in this paper a
generalization to the estimation of level sets in the case of a d-variate distribution function. The
consistency results are stated in term of Hausdorff distance and volume of the symmetric difference.
We propose a rate of convergence for this second criterion. Moreover, we analyze the impact of
scaling data on our results. As a future work, a complete simulation study and an R-package are
in preparation.
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5. Proofs

Proof of Theorem 3.1

Under assumptions of Theorem 3.1, we can always take T1 > 0 such that for all t : | t − c | ≤ r,
∂L(t)T1 6= ∅. Then for each n, for all t : | t − c | ≤ r, ∂L(t)Tn is a non-empty (and compact) set
on R

d
+.

We consider a positive sequence εn such that εn →
n→∞

0. For each n ≥ 1 the random sets

L(c)Tn △ Ln(c)
Tn , Qεn = {x ∈ [0, Tn]

d : | F − Fn |≤ εn} and Q̃εn = {x ∈ [0, Tn]
d : | F − Fn |> εn}

are measurable and

λ(L(c)Tn △ Ln(c)
Tn) = λ(L(c)Tn △ Ln(c)

Tn ∩ Qεn) + λ(L(c)Tn △ Ln(c)
Tn ∩ Q̃εn).

Since L(c)Tn △ Ln(c)
Tn ∩ Qεn ⊂ {x ∈ [0, Tn]

d : c− εn ≤ F < c+ εn} we obtain

λ(L(c)Tn △ Ln(c)
Tn) ≤ λ({x ∈ [0, Tn]

d : c− εn ≤ F < c+ εn}) + λ(Q̃εn).

From Assumption H (Section 1) and Proposition 1.1, if 2 εn ≤ γ then

dH(∂L(c+ εn)
Tn , ∂L(c− εn)

Tn) ≤ 2 εn A.

From assumptions on first derivatives of F (see Assumption H and Proposition 1.1) and Propriety
1 in Imlahi et al. (1999), we can write

λ({x ∈ [0, Tn]
d : c− εn ≤ F < c+ εn}) ≤ (2 εn A) dT

d−1
n .

If we now choose

εn = o

(
1

pn T
d−1
n

)
, (1)

we obtain that, for n large enough, 2 εn ≤ γ and

pn λ({x ∈ [0, Tn]
d : c− εn ≤ F < c+ εn}) →

n→∞
0.

Let us now prove that pn λ(Q̃εn)
P→

n→∞
0. To this end, we write

pn λ(Q̃εn) = pn

∫
1{x∈[0,Tn]d: |F−Fn|>εn} λ(dx) ≤

pn
εpn

∫

[0,Tn]d
| F − Fn |p λ(dx).

Take εn such that

εn =

(
pn
vn

) 1
p

. (2)

So, from Assumption A1 in Section 3, we obtain pn λ(Q̃εn)
P→

n→∞
0. As pn = o

(
v

1
p+1
n /T

(d−1) p
p+1

n

)
we

can choose εn that satisfies (1) and (2). Hence the result. �

Proof of Lemma 4.1

First, we remark that

FaX(x) = FX

(x
a

)
.

Then, we obtain
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m▽

a = inf
x∈aE

∥∥∥∥
(

∂

∂x1
FX

(x
a

)
, . . . ,

∂

∂xd
FX

(x
a

))∥∥∥∥ ,

= inf
x∈aE

∥∥∥∥
1

a

(
∂FX

∂x1

(x
a

)
, . . . ,

∂FX

∂xd

(x
a

))∥∥∥∥ ,

=
1

a
inf
x∈E

∥∥∥∥
(
∂FX

∂x1
(x), . . . ,

∂FX

∂xd
(x)

)∥∥∥∥ .

=
1

a
m▽.

Second part of Lemma 4.1 comes down from trivial calculus. Hence the result. �

Proof of Theorem 4.1

Proof of 1.

Following the proof of Theorem 2.1, it holds that

dH(∂LaX(c)
a Tn , ∂Ln, a(c)

a Tn) ≤ 6
2

m▽
a

sup
x∈[0,a Tn]d

| FX

(x
a

)
− Fn

(x
a

)
| .

Using Lemma 4.1 and the fact that

sup
x∈[0,a Tn]d

| FX

(x
a

)
− Fn

(x
a

)
|= sup

x∈[0,Tn]d
| FX(x)− Fn(x) |,

we get the result. �

Proof of 2.

As in the proof of Theorem 3.1 and using same notation, we can write

λ({x ∈ [0, a Tn]
d : c− εn ≤ FaX < c+ εn}) ≤ (2 εn Aa) d ad−1 T d−1

n .

If we now choose

εn = o

(
1

pn, a ad T
d−1
n

)
(3)

we obtain that for n large enough 2 εn ≤ γ and

pn, a λ({x ∈ [0, a Tn]
d : c− εn ≤ FaX < c+ εn}) →

n→∞
0.

The second part of this demonstration is equal to proof of Theorem 3.1. Then we take εn such
that

εn =

(
pn, a
vn

) 1
p

. (4)

Then, from Assumption A1, in Section 3, we obtain pn, a λ({x ∈ [0, a Tn]
d : | FaX − Fa, n |>

εn}) P→
n→∞

0. As pn, a = o

(
v

1
p+1
n /

(
a

d p

p+1 T
(d−1) p
p+1

n

))
we can choose εn that satisfies (3) and (4).

Hence the result. �
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