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ABSTRACT
We have studied two efficient sampling methods, Langevin and Hes-
sian adapted Metropolis Hastings (MH), applied to a parameter esti-
mation problem of the mathematical model (Lorentzian, Laplacian,
Gaussian) that describes the Power Spectral Density (PSD) of a tex-
ture. The novelty brought by this paper consists in the exploration
of textured images modeled by centered, stationary Gaussian fields
using directional stochastic sampling methods. Our main contribu-
tion is the study of the behavior of the previously mentioned two
samplers and the improvement of the Hessian MH method by using
the Fisher information matrix instead of the Hessian to increase the
stability of the algorithm and the computational speed.

The directional methods yield superior performances as com-
pared to the more popular Independent and standard Random Walk
MH for the PSD described by the three models, but can easily be
adapted to any target law respecting the differentiability constraint.
The Fisher MH produces the best results as it combines the advan-
tages of the Hessian, i.e., approaches the most probable regions of
the target in a single iteration, and of the Langevin MH, as it requires
only first order derivative computations.

Index Terms— Stochastic sampling, Monte Carlo Markov
Chains, Hessian, Fisher, texture.

1. INTRODUCTION

The sampling methods prove to be important tools in signal and im-
age processing, as they enable the exploration of intricate target laws
and permit their characterization by computing their statistical de-
scriptors based on the drawn samples.

The performances of these algorithms directly influence the per-
formances of the algorithms that embed them and this is why the
speed and the accuracy with which the resulting samples describe the
target are very important. We have investigated the performances of
two stochastic samplers, Langevin and Hessian adapted MH, in the
context of a parameter estimation problem for textured images.

First order derivative-based samplers have also been employed
in [1] and in the recent work [2], but these approaches explore the
Hamiltonian MH algorithm, whilst we have studied the Langevin
MH. However, our contribution is more significant in the case of
the second order derivative-based methods, where, in the present
estimation problem, we have provided an improvement, by modi-
fying the Hessian algorithm presented in [3] in the sense that the
concerns regarding the positiveness of the Hessian matrix are elim-
inated by its replacement with the Fisher information matrix. The
results obtained for the proposed problem are encouraging, confirm-
ing the stable behavior and speed performances of the second order
derivative-based samplers.

2. BAYESIAN SETTING

Although the sampling algorithms are able to explore any type of
target, not necessarily a probability density, we will establish from
the beginning a Bayesian context of a parameter estimation problem.
In this setting, we will use the following notations throughout the
paper: x is the set of observed data, θ is the set of parameters to
be estimated, f(x|θ) is the likelihood, describing the probability of
a certain observed data configuration given the parameters, and π
represents the target we intend to sample.

An MH algorithm, as described by [4], [5], relies on a transition
kernel consisting of two ingredients: an arbitrary transition kernel,
q(θ,φ), and an acceptance probability:

α(θ,φ) = min

{
1,

π(φ)q(φ,θ)

π(θ)q(θ,φ)

}
(1)

where θ is the current and φ is the proposed value for the parame-
ters. The process thus consists in formulating a proposal according
to the transition kernel, evaluating the acceptance probability of the
proposal and deciding to accept or reject it based on the computed
probability.

The functioning of an MH algorithm is:

1. Initialize the iteration counter j = 1 and set θ(0).
2. Propose a new value φ for the parameter, generated from the

density q(θ(j−1), ·).
3. Evaluate the acceptance probability α(θ(j−1),φ) given by

Eq.(1) and according to this value accept the proposal and
update the parameter θ(j) = φ, or reject it and keep the old
value for the parameter θ(j) = θ(j−1).

4. Update the counter and return to step 2 until convergence.

All analyzed samplers are convergent and accurately explore the
target, the differences between them being given by the different for-
mulation of the transition kernel and, implicitly, by the expression of
the acceptance probability. These differences translate into differ-
ent evolutions of the samples when exploring the target (and how
quickly the samples begin to be drawn from the most representative
regions) and in differences between the time needed by each sampler
to produce a sample.

Independent MH has a proposition law that does not depend on
the current position of the chain, Random Walk (RW) MH proposes
an isotropic displacement around the current value, while more ad-
vanced methods include a directional component for the proposal,
meaning that the proposal is built as follows: add to the current value
the directional component and then add the stochastic component,
i.e., make an isotropic move around this new value. In the class of
directional MH methods lie the Hamiltonian, Langevin and Hessian



adapted MH, the last two algorithms being those that were studied
here, with an emphasis on the Hessian method, which has been im-
proved by building a new transition kernel based on the Fisher infor-
mation matrix.

In the following we will present these algorithms, adapted to our
parameter estimation problem. In a Bayesian parameter estimation
algorithm the a posteriori law for the parameters, given the observa-
tions, is the law that dictates the probability distribution law in the
parameter space. Thus, this is the law we should explore, i.e., the
target, and extract the statistics from the yielding samples. Accord-
ing to Bayes’ law, the a posteriori distribution is proportional to the
product between the a priori distribution and the likelihood. With
the pre-requisite that the a priori will be embedded in the proposition
law, the likelihood accurately approximates the posterior distribution
law, and thus, we will sample, the Co-Log-Posterior(CLP ), where
CLP = − log f(x|θ), will be evaluated as being the target in order
to achieve the convexity of the target with respect to the parameters.

3. SAMPLING ALGORITHMS

The principle of stochastic methods is the sampling of a distribu-
tion by considering it as being the limiting distribution of a Markov
chain and simulating this chain until equilibrium is reached, as stated
in [6]. Furthermore, the class of MCMC methods has been narrowed
to the Metropolis Hastings (MH) family, due to its adaptation to sam-
pling intricate target laws.

3.1. Langevin Adapted Metropolis Hastings

Langevin algorithms are derived from diffusion approximations and
rely on the principle of using the information concerning the target
density, in the format ∇ log π, in order to build a proposal distri-
bution well-adapted to the problem in question [7]. The Langevin-
based MH algorithm proposes a random walk-like transition of the
form [8]:

θp = θc +
ε2

2
g(θc) + εN (0, I) (2)

where g(θc) = ∇CLP (θ)|θ=θc . The acceptance probability can
be obtained from (1), for:

q(θp,θc) = exp

[
− 1

2ε2
‖θc − θp −

ε2

2
g(θp)‖2

]
(3)

As compared to the non-directional MH methods, the complex-
ity of the Langevin MH is increased due to the form of the accep-
tance probability and to the necessity of evaluating the gradient for
every new proposal. However, the increased computation time per
iteration is compensated by the much smaller number of iterations
needed to reach convergence.

In regions far from the maximum of probability, the gradient is
large (the directional component is dominant), thus the algorithm
approaches the high probability regions with high amplitude jumps,
while, when near the maximum of probability, the gradient is small,
thus the stochastic component is dominant and the region of high
probability is explored due to the stochastic component.

3.2. Hessian Adapted Metropolis Hastings

This section is dedicated to a sampling method that has seldom been
explored and whose presence in the literature is scarce. The direc-
tional component of the proposal is in this case formulated using

Newton’s direction, which, for a quadratic law, indicates the maxi-
mum. In [3] a version of this sampler has been tested and compared
to methods such as Gibbs and optimal marginal data augmentation
(DA) samplers on a probit regression problem, proving that the per-
formances of this sampler are superior. The transition for the Hes-
sian sampler is of the form:

θp = θc + εΣ(θc) g(θc) +N (0, Σ(θc)) (4)

where Σ(θc) = −H(θ)−1|θ=θc . The acceptance probability will
be obtained from (1), for:

q(θp,θc) = N (θp − θc + εΣ(θc) g(θc), Σ(θc)) (5)

The advantage of the method is that, for quadratic and quasi-
quadratic distributions, the regions of high probability are ap-
proached in a very small number of iterations (ideally, a single
one) and then explored with the contribution of the stochastic part
of the proposition, a quadratic law of variance Σ(θc), which is
an accurate approximation of the target. However, it is clear that
this method is also rather complex, as each iteration translates in
the computation of the gradient and the Hessian matrix and the
evaluation of the acceptance probability.

3.3. Fisher Adapted Metropolis Hastings

Another concern is the need to perform the inversion of the Hessian
and in order to avoid matrix inversion problems that may occur if the
Hessian is not positive definite, the idea of replacing the Hessian by
the Fisher information matrix has been explored in the present work.

The Fisher matrix quantifies the amount of information that the
observations contain regarding the parameter θ. We have been able
to apply such an approximation, as in the case of our problem, we
have a great amount of independent observations, thus, a scenario
close to the asymptotic case. In such a situation, the a posteriori
distribution is consistent and normal of inverse variance equal to the
Fisher matrix [9]. Thus, instead of computing the Hessian, the quan-
tities:

Ipq(θ) = Ex|θ
[

∂2

∂θp∂θq
CLP (θ)

∣∣∣θ] (6)

are used in order to formulate the proposal and to evaluate the ac-
ceptance probability.

This approximation reduces the complexity of computations as,
instead of computing the Hessian, when applying the expectation
with respect to the data given the parameters, the term containing
second order derivatives becomes null. This fact is due to the partic-
ular problem we are addressing, i.e., the model chosen for our tex-
tures and to the fact that the coefficients in the Fourier domain have
the specific distribution detailed in Section 4. The performances of
the algorithm are enhanced by this approximation, as the time per
iteration is reduced because no second order derivatives of the target
must be computed and all is reduced to first order derivatives com-
putations. The major advantage brought by this innovation is that
matrix inversions are always possible and the algorithm is stable, no
matter if there are particular cases when the Hessian is not positive-
definite (case that is mentioned, but not dealt with in [3]).

4. TEXTURE CONTEXT

This section presents the application of the previously presented
sampling methods to a parameter estimation problem. The principle
is that, starting from texture images such as those in Fig.2, we esti-
mate the parameters that characterize the features of the texture and



Fig. 1: Samples evolution in the ν0
xν

0
y parameter space for the four samplers. To the left, observe the sparseness of the accepted samples

for Independent MH, for RW MH the evolution step is very small and undirected, while for Langevin MH the proposal is influenced
by the gradient. For Hessian (Fisher) MH, the strong probability regions are approached in a single iteration and then thoroughly
sampled, as these are the regions most representative for the target.

thus, reduce its description to a small number of numerical quanti-
ties. This approach is possible due to the particular nature of these
textures, i.e., to the fact that they can be modeled by zero-mean,
stationary Gaussian Random Fields (GRF) of covariance matrix R
[10].

As seen in Fig.2, this method of modeling the textures can de-
scribe a broad class of images, i.e., by the simple variation of a rela-
tively reduced set of parameters, various patterns and characteristics
appear.

Considering x as being the N2 pixel vector of such an image,
the model is completely described by its second order statistics and
a distribution law of the form:

f(x|R) = (2π)−N2/2 det(R)−1/2 exp

[
−1

2
xtR−1x

]
(7)

Working under the stationarity hypothesis, the R matrix has a
Toeplitz form and can be approximated by a circulant form R =
F†∆F, where ∆ is a diagonal matrix containing the eigenvalues
of R and F denotes the Fourier basis matrix of size N × N . After
further computation, Eq.(7) can be rewritten as:

f(x|R) ∝
N∏

n,m=1

s−1/2
nm exp

[
−1

2

N∑
n,m=1

|◦xnm|2/snm

]
(8)

In Eq.(8), |◦xnm|2 represent the squared moduli of the image’s
Fourier coefficients and snm are the discretized elements of the
PSD. The principle of the model does not consist in a discretization
of the PSD, which could lead to aliasing problems, but in the use
of the PSD values at discrete positions in order to describe the law

Fig. 2: Texture realizations using GRFs with structured PSDs.

governing the elements of the image in the Fourier domain. The
previously mentioned form is achieved using a Whittle approxima-
tion that enables the evaluation of the CLP in O(N logN). In fact,
the snm elements dictate the distributions of the image’s Fourier
transform coefficients in the following manner:

◦
xnm ∼ N (0, snm) (9)

This means that each Fourier coefficient ◦xnm has a zero-mean, nor-
mal distribution, of variance snm, thus we are in a scenario of inde-
pendent, but not identically distributed observations.

The PSD of the texture can be described by a wide variety of
positive-valued mathematical laws and the snm quantities that in-
tervene in Eq.(8) follow these laws. Our study is focused on the
Lorentzian, Laplacian and Gaussian functions and in the following
the Lorentzian form will be used to exemplify the computations:

SL (νx, νy,θ) =
γ

1 + (νx − ν0
x)2w2

x + (νy − ν0
y)2w2

y

(10)

where θ = [γ, ν0
x, ν

0
y , wx, wy] ∈ R5 is the parameter set that drives

the PSD and SL (νx, νy,θ) denotes the continuous PSD at position
(νx, νy) for the current value θ of the parameter set. Furthermore,
the previously mentioned snm elements are functions of θ and rep-
resent the value of the PSD at discrete positions in the frequency
domain, as shown by the expression:

snm(θ) = SL (n∆νx, m∆νy, θ) (11)

Eq.(11) illustrates the fact that the snm elements contain the contri-
bution of the parameter set θ through the mathematical model for the
PSD. Furthermore, as shown by Eq.(9), these elements of the PSD
govern the distribution of the texture’s Fourier transform. It is thus
obvious that the law of dependency of ◦xnm on θ is cumbersome, for
which reason stochastic methods were employed.

As mentioned in the previous section, the goal of the sampling
algorithms is to properly explore the a posteriori law. The direc-
tional character of the analyzed samplers would be fully exploited
if the CLP had specific convexity properties, and this is the rea-
son for which the change of parametrization λnm(θ) = snm(θ)−1

is proposed in order to render the target law convex with respect to
the elements of the PSD. Consequently, the expression of the CLP ,
convex with respect to λnm(θ), is:

CLP (θ) =
1

2

N∑
n,m=1

(
log

1

λnm(θ)
+ |◦xnm|2λnm(θ)

)
(12)



0 100 200 300

20

30

40

50

60

70

80

Hessian (Fisher) MH

Time

0 100 200 300

20

30

40

50

60

70

80

Time

P
a
ra
m
e
te
r 
v
a
lu
e

Independent MH

0 100 200 300

20

30

40

50

60

70

80

Langevin MH

Time

0 100 200 300

20

30

40

50

60

70

80

Random Walk MH

Time

Fig. 3: The stabilization of the recursive means for several chains in the case of each of the four studied methods. As expected, all the
algorithms converge to the same value, but the Hessian (Fisher) MH reaches equilibrium the fastest. Although superior in terms of
computation speed per iteration, the Independent MH and Random Walk MH require a longer interval to converge.

The algorithms presented in Section 2 employ the first and the
second order derivatives of the CLP , described by:

∂CLP

∂θp
=

N∑
n,m=1

(
|◦xnm|2 −

1

λnm(θ)

)
∂λnm(θ)

∂θp
(13)

∂2CLP

∂θp∂θq
=

N∑
n,m=1

1

λ2
nm(θ)

∂λnm(θ)

∂θp

∂λnm(θ)

∂θq
+

N∑
n,m=1

(
|◦xnm|2 −

1

λnm(θ)

)
∂2λnm(θ)

∂θp∂θq
(14)

5. RESULTS

The sampling methods presented in this paper are all convergent and
the use of one or another influences only the speed of convergence
and the mixing properties of the algorithm, not the actual equilibrium
state.

As the theory announced, all methods yield posterior histograms
showing that the samplers explore the law and produce samples with
the same posterior mean and variance. Consequently, in order to
compare the methods, the convergence time and the computational
cost is analyzed for each sampler. The improvement brought by the
directional methods consists in the fact that they approach the re-
gion of important probability in a small number of steps, proposing
transitions in the direction of probability increase and all at the same
time they thoroughly explore the regions most representative for the
target.

In Fig.3 it can be seen that, even if it requires the repeated eval-
uation of gradients, the Fisher RW has speed performances superior
to RW MH and better than those of Langevin RW. The parameter ε
that intervenes in all the tested methods was tuned in such a man-
ner as to obtain an acceptance rate of approximately 24%, which in
[7] is proven as being optimal in the sense that it provides the best
compromise between the amplitude of the transitions (that ensures
the samples are not too correlated) and the acceptance rate.

The advantage of the Fisher MH is given by the fact that it ap-
proaches the regions of high probability in a single iteration, requir-
ing for this only the evaluation of gradients, as opposed to gradients
and hessian matrices for Hessian MH. This approximation is pos-
sible due to our texture context that positions us in an asymptotic
scenario of independent, but not identically distributed observations.
This simplification brought by the method is given by the new form
of the proposal, as the second term in Eq.(14) becomes null, due to
the distribution of the Fourier coefficients in Eq.(9).

6. CONCLUSION AND PERSPECTIVES

The Fisher sampling method proved to be the best suited for the
problem of parameter estimation in the case of the texture with a
structured PSD, for several complex models. The presented direc-
tional sampling methods are also just as efficient in the case of any
distribution law, with the condition for it to be twice differentiable.

One of the most interesting directions of pursuit is to further ex-
ploit the Fisher approximation and perform a more detailed analysis
regarding the gain that such an approximation brings in stochastic
sampling applications for other types of targets.
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