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Abstract

A set of 55 clarinet reeds is observed by holography, collecting 2 series of measurements
made under 2 different moisture contents, from which the resonance frequencies of the 15
first modes are deduced. A statistical analysis of the results reveals good correlations, but
also significant differences between both series. Within a given series, flexural modes are not
strongly correlated. A Principal Component Analysis (PCA) shows that the measurements
of each series can be described with 3 factors capturing more than 90% of the variance:
the first is linked with transverse modes, the second with flexural modes of high order and
the third with the first flexural mode. A forth factor is necessary to take into account
the individual sensitivity to moisture content. Numerical 3D simulations are conducted by
Finite Element Method, based on a given reed shape and an orthotropic model. A sensitivity
analysis revels that, besides the density, the theoretical frequencies depend mainly on 2
parameters: EL and GLT . An approximate analytical formula is proposed to calculate
the resonance frequencies as a function of these 2 parameters. The discrepancy between
the observed frequencies and those calculated with the analytical formula suggests that
the elastic moduli of the measured reeds are frequency dependent. A viscoelastic model is
then developed, whose parameters are computed as a linear combination from 4 orthogonal
components, using a standard least squares fitting procedure and leading to an objective
characterization of the material properties of the cane Arundo donax.

1 Introduction

Clarinettists experience every day the crucial importance of clarinet reeds for the quality of
sound. Their characterization is a real challenge for musicians who wish to obtain reeds that
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are suited to their personal needs. The present paper address this complex field of research. Its
scope is restricted to the development of an objective method for a mechanical characterization of
single reeds of clarinet type. >From the shape and the resonance frequencies of each individual
reed (measured with heterodyne holography), we intend to deduce the mechanical properties
of the material composing it. A subsequent study should then examine how these mechanical
properties are correlated with the musical properties of the reeds.

Generally, the physicist chooses a model in order to validate it by observations. In the present
study, the complexity of the problematic forced us to adopt the reverse attitude: We observe
the mechanical behavior of clarinet reeds with a statistically representative sample and exploit
afterward the statistical results for establishing a satisfactory mechanical model designed with a
minimal number of parameters.

Natural materials, as wood or cane, are often orthotropic and exhibit a different stiffness
along the grain (longitudinally) as in the others directions. The problem is then obviously mul-
tidimensional. Nevertheless, reed makers classify their reeds by a single parameter: the nominal
reed "strength" (also called "hardness"), in general from 1 to 5, which basically reflects the stiff-
ness of the material (cane, Arundo donax L.), since all reeds of the same model have theoretically
the same shape. The method of measurement is generally not publicized by manufacturers, but
this "strength" is probably related to the static Young modulus in the longitudinal direction EL.

"Static" (i.e. low frequency) measurements of the elastic parameters of cane are available
in the literature, for instance Spatz et al. [1]. A viscoelastic behavior has been reported in
experimental situations (see e.g. Marandas et al. [2], Ollivier [3] or Dalmont et al. [4]) and this
fact seems generally well accepted in wood sciences and biomechanics (for instance Speck et al.
[5, 6]). Marandas et al. proposed a viscoplastic model of the wet reed. Viscoelastic behavior for
cane was already demonstrated by Chevaux [7], Obataya et al. [8, 9, 10, 11] and Lord [12]. These
authors study only the viscoelasticity of the longitudinal Young modulus EL, leaving aside the
case of the shear modulus in the longitudinal/tangential plane GLT . Furthermore, they give no
really representative statistics about the variability of the measured parameters.

The observation of mechanical resonance frequencies can be achieved by different methods.
The methods used by Chevaux, Obataya and Lord are destructive for the reed, which cannot
be used for further musical tests. On the contrary, holography is a convenient non-destructive
method, the reed being excited by a loudspeaker. For instance Pinard et al. [13] measured with
this method the frequency of the 4 lowest resonances and focused their attention on the musical
properties of the reeds.

The digital Fresnel holography method was used by Picart et al. [14, 15] and Mounier et al.
[16] to measure high amplitude motion of a reed blown by an artificial mouth. Guimezanes [17]
used a scanning vibrometer.

Recent technological developments provide very efficient and convenient measurements with
holography, without having to manually identify the modes of resonance and to be satisfied
with a single picture of their vibration: in a few minutes hundreds of holograms are acquired
showing the response of a reed for many frequencies. The temperature and the moisture content
can be considered as constant during a measurement series1. The Sideband Digital Holography
technique provides additional facilities (see 2.1.1).

Different authors (among them Casadonte [18, 19], Facchinetti et al. [20, 21] and Guimezanes
[17]) modeled the clarinet reed by Finite Elements Method (FEM) and computed the first few
eigenmodes. They chose appropriated values of the elastic parameters in the literature, ignor-
ing however viscoelastic behavior. The goodness of fit between observations and model was of

1The significantly lower correlations between resonance frequencies (compared to our data) shows that it was
probably not the case in Pinard’s study. This fact may also reflect an unprecise determination of the resonance
frequencies.
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secondary importance, except for Guimezanes. This latter author built a 2-D elastic model of
the reed with longitudinally varying parameters. He fitted his model quite adequately with his
observations (only 5 resonances were measured), but the fitted parameters seem not really plau-
sible physically. His model didn’t respect the assumption of a radial monotonically decrease of
stiffness from the outer side to the inner side of the cane. Under such conditions, the frequency
of the first resonance would increase in comparison to homogeneous material, and not decreased,
as observed experimentally.

In Section 2 the measurement method is presented. The experimental setup is described in
Section 2.1 and the method for observing resonance frequencies is detailed in 2.2. The results
for 55 reeds are given in Section 3 (statistics, Principal Component Analysis (PCA)[22]).

In Section 4, the development and the selection of a satisfactory mechanical model with
minimal structure is described. First, a numerical analysis of the resonance frequencies of a reed
assumed to be perfectly elastic is done by Finite Element Method (FEM), and a metamodel
computing the resonance frequencies from elastic parameters is given in Section 4.3. This allows
solving the inverse problem in a fast way. However, because the elastic model is not very
satisfactory, viscoelasticity has to be introduced and some parameters are added to the model
in Section 4.4. The viscoelastic model has however too many degrees of freedom, according
to PCA. Consequently, the viscoelastic parameters of the model are assumed to be correlated
and PCA indicates that these parameters can be probably reconstructed from 4 orthogonal
components, as a linear combination, by multiple regression (Section 5). The relationships
between the components and the viscoelastic parameters is given, and finally the resulting values
for these parameters are discussed in Section 5.3 and compared with the results of the literature.

2 Observations by Sideband Digital Holography

2.1 Experimental setup

2.1.1 Holographic setup

The experimental setup is shown schematically in Fig. 1. A laser beam, with wavelength
λ = 650 nm (angular frequency ωL) is split into a local oscillator beam (optical field ELO) and
an illumination beam (EI); their angular frequencies ωLO and ωI are tuned by using two acousto-
optic modulators (Bragg cells with a selection of the first order diffraction beam) AOM1 and
AOM2: ωLO = ωL + ωAOM1 and ωI = ωL + ωAOM2, where ωAOM1,2 ≃ 2π × 80 MHz. The first
beam (LO) is directed via a beam expander onto a CCD camera, while the second beam (I) is
expanded over the surface of the reed, which vibrates at frequency f . The light reflected by the
reed (field E) is directed toward the CCD camera in order to interfere with the LO beam (ELO).
4 phases were used (phase shifting digital holography) and we select the first sideband of the
vibrating reed reflected light by adjusting ωAOM1,2 to fulfil the condition: ωAOM1 − ωAOM2 =
2π(f + fCCD)/4, where fCCD is the CCD camera frame frequency. The complex hologram
signal H provided by each pixel of the camera, which is proportional to the sideband frequency
component of local complex field E, is obtained by 4-phases demodulation: H = (I0 −I2)+j(I1 −
I3) where I0 . . . I3 are 4 consecutive intensity images digitally recorded by the CCD camera, and
j2 = −1. From the complex hologram H , images of the reed vibration are reconstructed by a
standard Fourier holographic reconstruction calculation [23]. These holographic reconstructed
images exhibit bright and dark interference fringes. Counting these fringes provides the amplitude
of vibration of the object (in the direction of the beam), which depends on the wavelength λ of
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Figure 1: Holographic setup. L: main laser; AOM1, AOM2: acousto-optic modulators; M:
mirror; BS: beam splitter; BE: beam expander; CCD: CCD camera; LS: loudspeaker exciting
the clarinet reed through the bore of a clarinet mouthpiece at frequency f = ω/2π.

the laser, and on the first Bessel function J1, for instance ±95nm for the first, ±770nm for the
5th and ±1.6µm for the 10th maximum (bright fringes) [24, 25]2.

This method has 3 main advantages:
(i) The time for data acquisition is very short, about 3 minutes for recording 184 holograms,

including holographic reconstruction.
(ii) The signal to noise ratio is significantly better than with traditional technology, particu-

larly through the elimination of signal at zero frequency.
(iii) The visualization of large-amplitude vibration (order of magnitude: 0.1 mm) is possible

by using high harmonics orders (up to several hundred times the excitation frequency).

2.1.2 Reed excitation

The reed was excited by a tweeter loudspeaker screwed onto an aluminium plate, connected to a
clarinet mouthpiece. The lay of this mouthpiece was modified to be strictly flat. A plastic wedge
of uniform thickness has been inserted between the lay and the reed, longitudinally to the same
height as the ligature (Vandoren Optimum), allowing free vibrations of the entire vamp (length:
about 38 mm), see Fig. 1. This ensures precise boundary conditions, avoiding any dependence
to deformations of the reed. The repeatability of the longitudinal placing of the wedge and of
the reed was ensured by a Claripatch ring [26].

This setup requires some comments:
(i) The reed is excited exclusively through the bore of the mouthpiece.
(ii) The pressure field in the chamber of the mouthpiece was not measured. Like for a real

instrument, the edges of the reed (protected by the walls of the chamber) are subject to a pressure
field, which is probably lower than the pressure acting on the rest of the vamp.

(iii) The boundary conditions are very different from those of a real instrument (no curved
lay, no contact with the lip). In addition, the reed was not moistened for the measurement.

2The original notation from the cited paper is kept. This notation is only valid for this paragraph.
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Figure 2: Typical holographic patterns of series A (asymmetrical sinusoidal excitation: the left
side of the reed is more strongly excited than the right side). Frequency range: 1.4 to 20 kHz by
steps of 25 cents (181 pictures ordered from left to right, continued on the next row; the tip of the
reed is down on each picture). Some modes are easily identified: F1 (1st row, 19th picture), T 1
(3rd row, 10th picture), F2 (4th row, 7th picture), T 2 (4th row, penultimate picture), X1 (5th
row, 5th picture) etc ... Modes T 3 and F3 are almost at the same frequency (6th row, 4th and
5th pictures, probably). The last picture of the 3rd row corresponds to an acoustic resonance
of the excitation device. It is present on all holograms of both series at the same frequency
(examine Fig.3). The excitation amplitude exponentially increases until the 73rd picture (3rd
line, 21th picture), being hold constant beyond.

(iv) The excitation device is almost closed. The acoustical resonances of the excitation device
are unknown, but may quite easily be deduced by comparing different measurements, because
they are always present at the same frequency.

2.2 Observation of resonance frequencies

2.2.1 Experimental protocol

55 clarinet reeds of model Vandoren V12 were purchased in a music shop: 12, 12, 20 and 11
reeds of nominal forces 3, 3 1

2 , 4 and 4 1
2 , respectively. 29 reeds were used for two preliminary

studies in order to develop the measurement protocol. Each of these reeds was played a total
of some tens of minutes, spread over several weeks before measurement with the final protocol.
The other 26 reeds were strictly new by measurement, which was performed immediately after
package opening (for 21 of them with the new hermetically sealed package by Vandoren, ensuring
a relative humidity between 45 and 70%, according to the manufacturer), without moistening
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Figure 3: Typical holographic patterns of series B (symmetrical sinusoidal excitation). The
modes X1 and T 3 cannot be distinguished anymore. Notice that T 1 is less marked than un-
der asymmetrical excitation (for some reeds even difficult to identify) and that the pattern has
a significant flexural component, strongly dependent of the lateral placing of the reed on the
mouthpiece. Notice that the symmetry of the patterns near T 1 depends on the excitation fre-
quency.
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(a)

(b) (c)

Figure 4: (a) Flexural modes F1, F2, F3, F4 and F5. Side view. (b) transversal modes T 1, T 2,
T 3, T 4, T 5. Front view. (c) Generic modes: X1, X2, X3, X4, X5 and X6. View from above.
The intersections of nodal lines with the sides of the reed are symbolized by the blue dots.

the reed.
Each reed was subject to 2 series of measurements:

• Series A (asymmetrical excitation: see Fig.2): the right half of the mouthpiece chamber
was filled with modeling clay to ensure a good excitation of antisymmetrical modes. 184
holograms were made ranging from 1.4 to 20 kHz (sinusoidal signal), by steps of 25 cents.
The amplitude of the excitation signal was exponentially increased in the range 1.4 to 4
kHz, from 0.5 to 16 V, then kept constant at 16 V up to 20 kHz. This crescendo limits the
amplitude of vibration of the first two resonances of the reed. The temperature was not
measured (about 20◦C).

• Series B (symmetrical excitation: see Fig.3): the modeling clay was removed. The proto-
col is otherwise identical to this of the first series. The reeds were inadvertently exposed
during one night to the very dry and warm air from the optical laboratory between the two
series of measurements. The reeds lost between 2 and 4% of their mass. In what follows
we try to interpret the influence of this fact. The temperature was around 23-25◦C.

2.2.2 Nomenclature of normal modes

Distinguishing 3 morphological classes, we classify the modes of a clarinet reed as follow : i) The
“flexural” (or “bending”, or “longitudinal”) modes, listed below F , whose frequencies mainly
depend on the longitudinal Young modulus (EL) and polarized mainly in the z axis, ii) the
“transversal” (or “ torsional”, or “twisting” ) modes, listed below T , mainly dependent on the
shear modulus in the longitudinal / tangential plane (GLT ), and iii) the “generic” (or “mixed”)
modes, listed below X , sensitive to both moduli EL and GLT (see Fig.4). A subclass of flexural
modes may be distinguished: the “lateral” modes (listed below L), polarized mainly in the y axis
(see Fig. 5). These modes were not observed in our study.

7



Figure 5: The clarinet reed: coordinates system. (a) top view, (b) front view, (c) side view. x,
y, z: Cartesian axes of the object. L, T, R: axes of the orthotropic material (L: longitudinal,
T: tangential, R: radial). In the software Catia used for the simulations, the orthotropic model
is Cartesian and not cylindrical. Therefore an exact equivalence between x, y, z, and L, T, R
respectively can be assumed since we observed no important deviation between the direction of
the grain and the axe of symmetry of the reed.

The modes have been numbered after the order of increasing frequencies from a preliminary
modal analysis we performed. In our analysis, however, the identification of a mode is based
upon morphological criteria. As a matter of fact, the mode number and the order of observed
frequencies are not necessarily identical for all reeds.

Strictly speaking, the optical method only allows to observe the resonance frequencies of the
reed and not the eigenfrequencies. Therefore the observed deformation patterns are a priori
not identical to the eigenmodes of the reed. Nevertheless in practice no major differences have
be found between the computed eigenmodes (see Section 4) and the observed or computed
deformation for a forced asymmetrical excitation at the corresponding frequency. For this reason
we use the terminology “mode” for the maximum amplitude of the response of the reed to a
forced excitation. This is somewhat abusive, because the small shift between the resonance
frequencies due to damping and the eigenfrequencies computed by FEM, without damping, is
ignored. Besides damping, the acoustic load is also able to shift the resonance frequencies. We
assume that this discrepancy is approximatively the same for all reed.

2.2.3 Analysis of holograms; mode identification

More than 30000 holograms were made for this study and analyzed as follows: The picture
where the number of interference fringes is locally maximum is determined. For some cases,
we chose the hologram that is most similar to our numerical simulations (by Finite Element
Method, see Section 4) or to other holograms (see Fig.6). The holograms corresponding to
an acoustical resonance of the system, present at the same frequency (4309 Hz) for all reeds,
have been eliminated. The identification of the different patterns to those calculated by FEM
was often quite simple. An exception have been encountered for F3 and T 3, whose frequencies
were often so close that our identification is sometimes uncertain. More sophisticated techniques
would certainly solve this problem. Notice that other boundary conditions (e.g. with clamping
closer to the tip of the reed) would also easily separate these two modes. The frequency of some
higher modes could not always be measured, either because their frequency was beyond 20 kHz,
or because their pattern could not be clearly identified.

8



(a) (b) (c)

Figure 6: Qualitative comparison with FEM computation, and typical variability of the experi-
mental results. (a) First row: Quasi-static pattern (at 605 Hz, with strong excitation by the LS).
2nd to 5th row: Flexural modes F1, F2, F3 and F4. Leftmost column: numerical simulation of
eigenmodes by FEM. Columns 2 to 7: Arbitrary selection representing the observed variability
(The first two rows correspond to the same selection of reeds). Notice the marked asymmetries
and the differences in the curvature of the interference fringes near the tip of the reed. (b) Rows
1 to 5: transversal modes T 1, T 2, T 3, T 4 and T 5 (probably). Columns: see (a). (c) Rows 1
to 6: Generic modes X1, X2, X3, X4, X5 and X6. The identification with X6 is sometimes
unlikely. Columns: see (a).
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3 Statistical analysis of resonance frequencies

4 flexural, 5 transversal, and 6 generic modes have been identified, namely all 15 first modes of
the reed, excluding lateral modes. This number is significant, compared to the 4 modes detected
by Pinard et al. [13]. The 6th mode (L1) could not be identified, as it is a lateral mode (flexural
mode moving mainly in the y axis), not excited by our loudspeaker. We tried to observe it by
rotating the mouthpiece to the side, without success. Notice that higher modes could probably
be identified using an ultrasonic loudspeaker.

3.1 Statistics

The statistics are displayed on Fig. 7 and detailed in Appendix A, with the analysis of correla-
tions. For 14 measurements of resonance frequencies of the two series, identification of the total
number of reeds (55) have been done. For other measurements, identification has been done only
for a part of this number. The value of the ratio of the standard deviation σ to the mean value
µ, i.e. the relative standard deviation, is found to be between 2 and 5% (about 1/3 tone). If
we admit Gaussian distribution for the measured frequencies, 99% of the observations typically
range about ±1 tone (±200 cents) around the mean value (i.e. µ ± 3σ), for all frequencies.

The identification of the mode X6 is uncertain: it seems to appear for frequencies lower than
those of our simulations. Mode T 5 is on the limit of the range we studied: this explains the
small value of the standard deviation.

Between series A and B, the flexural modes F1 to F4 lower their mid range, while the transver-
sal modes slightly increase it. The difference between the two series probably lies mainly in the
drying of the reeds, and this seems to have a statistically significant effect. This is surprising,
because drying decreases the density of the reed, and theoretically this should proportionally
increase all frequencies. In addition, according to Obataya et al. [11], drying is expected to
increase E′

L (at least around 400 Hz), which should also increase the resonance frequencies.
However Chevaux [7] observed that drying diminishes E′

L for material extracted from the inner
side of the cane and augments slightly E′

L for material extracted nearer from the outer side (for
cane suitable for oboe reeds), at least in the frequency range 100-500 Hz.

The hypothesis of an influence of the excitation method on the resonance frequencies seems
unlikely, as well as the hypotheses of a poor reproducibility of the position of the reed on the
mouthpiece between measurements or of the modification of the acoustic load, due to the mod-
eling clay.

3.2 Principal component analysis

Principal Component Analysis (PCA) is mathematically defined as an orthogonal linear transfor-
mation transforming the data to a new coordinate system, such that the greatest variance by any
projection of the data comes to lie on the first coordinate (called the first principal component or
first factor), the second greatest variance on the second coordinate, and so on [27]. Theoretically
PCA is the optimum linear transform for given data in terms of least squares. PCA is based
upon the calculation of the eigenvalue decomposition of the covariance (or of the correlation)
matrix (see e.g. [22]).

A PCA has been performed using the FACTOR module of SYSTAT [28]. The 14 variables
(observed frequencies) presenting complete measurements for all reeds have been selected (all
variables having 55 identified pattern, NA or NB = 55, see Table 7). Frequencies are rated in
cents.

The 4 largest eigenvalues have been selected. They capture 91.2% of the total variance of
our sample (respectively 53.6%, 21.4%, 10.8% and 5.4% for each factor). A fifth factor would
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Figure 7: Observed resonance frequencies for the different reeds of each series, according to the
results of Table 7. AF1 signifies mode F1, series A. The series A is in black, and the series B in
white (yellow online). In abscissa the frequencies in logarithmic (musical) scale. From the left
to the right, the different notes correspond to the following frequencies: 1568, 2093, 2637, 3136,
4186, 5274, 6272, 8372, 10548, 12544, 16744, 21096 Hz
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factor1 factor2 factor3 factor4

AT2 0.973 0.054 0.078 -0.008
BT2 0.953 0.055 -0.025 0.085
AT3 0.898 0.198 -0.237 -0.032
AX2 0.853 0.273 -0.073 -0.123
AT1 0.776 0.017 0.577 0.087
BT1 0.762 -0.033 0.541 0.177
AX3 0.761 0.472 0.090 0.217
AX1 0.740 0.451 0.356 0.115
AF3 0.223 0.891 0.076 0.080
AF2 0.143 0.791 0.519 0.064
AF1 0.085 0.360 0.870 -0.141
BF1 0.104 0.385 0.835 0.209
BF3 0.059 0.596 0.050 0.755

BF2 0.147 0.561 0.290 0.710

e1 0.958 -0.080 0.105 0.005
e2 0.059 0.969 0.082 0.098
e3 -0.075 -0.073 0.971 0.042
e4 -0.009 -0.081 -0.039 0.979

Table 1: Correlation (loadings) between rotated factors from PCA and : i) variables (measured
resonance frequencies) or ii) components from viscoelastic model (e[n], see Section 5.2), for
comparison, sorted in reverse order of magnitude. In bold: greater correlation for each variable.

capture only 2.5% variance more. The 14-dimensional data have been linearly projected onto a
4-dimensional factor space.

The factor space can afterwards be orthogonally rotated, for instance for maximizing the
correlations between rotated factors and observed variables. In the studied case, no a priori
knowledge about the orientation of the factor space is available. For an easy comparison, using
the VARIMAX algorithm, we choose to maximize the correlations between rotated factors and all
available variables (observed resonance frequencies and theoretical components from the model
described hereafter in Section 5.2).

We performed also a PCA separately for each measurement series (A and B: 9 and 5 variables,
respectively). From series A we detected 3 important factors capturing 90.8% of the variance
(56.9, 23.0, 11.0%, respectively). From series B we detected also 3 important factors capturing
94.1% of the variance (54.0, 26.8, 13.3%, respectively). A 4th factor would capture only 3.6%
more for series A and 3.4% for series B. One factor seemingly disappeared, compared with the
PCA performed on both series. A hypothesis is that this factor is related to the hygrometric
change between the two series.

>From Table 1, we see that all transversal and generic modes are well correlated with factor1;
factor2 correlates with high frequency flexural modes of both series (however notably better with
those of series A); factor3 well correlates with F1 of both series (and somewhat with other low
frequency modes: AT1, BT1 and AF2), whereas factor4 correlates quite well with high frequency
flexural modes of series B.

3.3 Conclusions from the statistical analysis

Fifteen modes of vibration of the clarinet reed have been observed, while previous studies investi-
gated 4 to 5 modes only [17, 13]. The observed resonance frequencies are often highly correlated,
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especially those among the “transversal” modes and, to a lesser extent, those among the “flex-
ural” modes. The nominal reed strength is surprisingly better correlated with the frequencies
of “transversal” modes as with those of “flexural” modes. The flexural modes within the same
series are poorly correlated.

A principal component analysis of the resonance frequencies identifies 4 main factors, cap-
turing 91.2% of the variance of the sample. The data can therefore be reconstructed with 4
uncorrelated factors only (error: RMSD = 21.8 cents, see Appendix D.2 and E). The effect of
hygrometric change between both measurement series can seemingly be described with 1 factor
only.

These statistical facts offer a guidance for modeling appropriately the mechanics of the clarinet
reed.

4 Development of a mechanical model

4.1 Choice of a viscoelastic model

In the present study our concern is to develop a model with a minimal number of physically
related components, that adequately reconstructs the observed resonance frequencies of our reeds.
We presume that these components offer an objective characterization of the material composing
each reed. A sensitivity analysis by FEM calculation assuming an orthotropic, elastic material
has been conducted, and showed that the longitudinal Young modulus EL and the longitudinal /
transverse shear modulus GLT play a leading role. Nevertheless taking into account the previous
result of 4 factors given by PCA, we will see that an elastic model is not sufficient to establish
a satisfactory model with 2 degrees of freedom only (i.e. variables EL and GLT per series.
Therefore a viscoelastic model is sought.

It is well known that the stiffness of natural materials like wood or cane varies with the
frequency of the applied stress and with the temperature. The material is stiffer at low tem-
perature and at high frequency. At low frequency or high temperature the material is almost
perfectly elastic and reaches the rubbery modulus. At high frequency or at low temperature
the glassy modulus is reached; the material is almost perfectly elastic, also, but stiffer. At mid
frequency or mid temperature, the apparent modulus (called storage modulus, i.e. the real part
of the complex Young modulus for this frequency) is between the two values. For a particular
frequency, called relaxation frequency, the storage modulus is exactly at the average of glassy and
rubbery moduli. Around this frequency dissipation is maximum. Once the characteristic curve
is known (for given temperature and different frequencies, or for given frequency and different
temperatures), the Arrhenius equation3 offers usually an adequate estimate of the stiffness for
any frequency and any temperature, within a quite broad range [29].

The determination of the mechanical parameters of a natural material requires to deter-
mine for each axis of the orthotropic material the value of 3 parameters (Young modulus, shear
modulus and Poisson’s ratio). These 9 parameters may exhibit viscoelastic behavior, requiring
theoretically for each one the fit of a viscoelastic model, such as the general linear solid (also
called Zener model or 3-parameter model, see [29, 30, 31, 32])4. The chosen model is based on

3The shift in relaxation time is: Ln(shift) = Ea

R

(

1

T
−

1

Tref

)

, where Ea is the activation energy, R is the

gas constant (8.314 J/K mol) and T and Tref the absolute temperatures in K. For instance, a shift of +10◦C
from a reference temperature of 20◦C decreases the relaxation time by 16%, if Ea is 13 kJ/mol.

4Other multidimensional viscoelastic models could be also considered. In order to fit a wide range of frequencies
(more than 2 decades), a 4-parameter model with fractional derivative would be required [32]. In addition, these
parameters are known to be sensitive to moisture content. Moreover, the cane is not homogeneous. The stiffness
varies in radial direction [7] and local irregularities may be important, as shown by J.-M. Heinrich [33].
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6 parameters (3 parameters for both variables EL and GLT ). Therefore the viscoelastic model
(Section 4.4) has many degrees of freedom (6, for each of the 2 series of measurements, compared
to the 4 factors detected by PCA for both series), for solving adequately the inverse problem
(see Section 5 for the reduction of the number from 12 to 4).

4.2 Computation method

Considering viscoelasticity leads to complex modes with complex eigenfrequencies. Compared
to the non-dissipative, elastic case computed by FEM, the main consequence of viscoelasticity,
besides dissipation, is that stress and strain are not in phase. For sake of simplicity, we limit
the computation to eigenfrequencies only, and assume that they depend on the storage moduli
only (i.e. dissipation has a negligible influence). Having reduced the viscoelastic problem to
an associated elastic one, the elastic solution may be used (see e.g. Ref. [29]). In order to
compute the resonance frequency ωr after an elastic model, according to Ref. [32], we admit
that E ≃ E′(ωr), where E′(ωr) is the real part of the complex modulus in the frequency domain.
This hypothesis implies that the calculation of the eigenfrequencies from the values of the storage
modulus is done by an iteration procedure, and allows to use a FEM software (Catia) which does
not allow computing with frequency-dependent coefficients.

Therefore we first present results of FEM simulations (Section 4.3), assuming an elastic
and orthotropic behavior of the reed (modeled in Section 4.3.1). This helps to identify the
modes in experiments, and allows obtaining a fit formula (Section 4.3.3) for computing the 11
lower resonance frequencies with respect to two parameters only, EL and GLT , detected after
a sensitivity analysis (Section 4.3.2). The fit formula, called "metamodel", is then used in the
iterative procedure for the computation of the viscoelastic model. It allows a great reduction of
computation time, compared to the FEM, and this is very useful for the inverse problem. Such a
metamodel could be directly computed for the viscoelastic model with an appropriate software,
but starting with the elastic model simplifies the fitting procedure.

4.3 Elastic model

4.3.1 Modeling the reed

The clarinet reed is defined in a Cartesian axis system x, y, z (see Fig. 5). The origin is located in
the bottom plane, at the tip of the reed. The material is defined as 3D orthotropic and assumed to
be homogeneous, whose longitudinal direction L is parallel to the x axis, the tangential direction
T parallel to the y axis and the radial direction R parallel to the z axis5.

The dimensions in the xy plane are consistent with the measurements given by Facchinetti
et al. [21]. The heel of the reed is made out of a cylinder section, diameter 34.8 mm, maximum
thickness 3.3 mm. The shape of the reed is defined in Appendix B.

During playing, the reed has two contact surfaces with the ligature. For the present simula-
tions, the reed is clamped in the same way than for normal playing, on two rectangular surfaces
23 × 1 mm, spaced laterally by 5 mm, 38.2 mm from the tip of the reed, simulating the contact
surfaces on the Vandoren Optimum ligature. However, unlike normal playing, the whole vamp
of the reed is free to vibrate (see Figure 1).

For the simulations, the “Generative Part Structural Analysis” module by Catia v.5.17 (Das-
sault Technologies) is used, with mesh Octree3D, size 2 mm, absolute sag 0.1 mm, parabolic
tetrahedrons. The generated mesh involves 5927 points, allowing both a good accuracy and a
reasonable computing time (around 35 seconds).

5Do not confuse the morphological mode classes L1, L2, T 1, T 2, T 3 and T 4 with the axes L and T of the
orthotropic material.

14



Coefficient F T X L All modes
EL 0.4087 0.1053 0.1835 0.2093 0.2235

GLT 0.0140 0.2681 0.1962 0.1067 0.1575
ET 0.0076 0.0976 0.0741 0.0166 0.0562

GLR 0.0438 0.0131 0.0257 0.0818 0.0341
ER 0.0176 0.0120 0.0135 0.0662 0.0207

GT R 0.0046 0.0092 0.0077 0.0215 0.0091
νT R 0.0015 0.0009 0.0015 0.0054 0.0019
νLT 0.0018 -0.0031 0.0004 0.0007 -0.0001
νLR 0.0009 0.0002 0.0005 0.0013 0.0007

Table 2: One-At-a-Time sensitivity study by FEM: Averaged ratio between relative change in
frequency and relative change for each elastic coefficient (i.e. ±10%), sorted by decreasing order
of magnitude, for the first 16 eigenmodes. F : flexural modes (F1 to F4), T : transversal modes
(T 1 to T 4), X : generic modes (X1 to X6), L: lateral modes (L1 and L2; these modes were not
observed in our study), All modes: averaged ratio over all modes. In bold: maximum absolute
value for each coefficient of the orthotropic material: EL, ET and ER: Young moduli; νLT , νLR

and νT R: Poisson coefficients; GLT , GLR and GT R: shear moduli.

4.3.2 Sensitivity analysis of elastic coefficients

For selecting the most relevant parameters, we conducted a One-At-a-Time sensitivity analysis
[34], varying each coefficient by ±10% and computing the first 16 modes, based on the following
reference values: EL =14000 MPa, ET = ER = 480 MPa, νLT = νLR = νT R =0.22, GLT =
1100 MPa, GLR = GT R = 1200 MPa. The density ρ was set to 520 kg/m3, according to the
estimation by Guimezanes [17]. The results are shown in Table 2. Notice that EL and GLT

plays a decisive role, while ET plays a marginal role and all other parameters have an almost
negligible influence on the resonance frequencies. As a consequence, the moduli EL and GLT

are the variables retained in the model. The approximate value of ET has been estimated
according to the morphology of the patterns of higher order modes. This value is consistent with
measurements given by Spatz et al. [1].

Notice that these results show the validity of a 2D approach, the reed being modeled as a
thin plate. This should be used for further studies.

4.3.3 Metamodel approximating the resonance frequencies

The following analytic formula ("metamodel") predicts quickly and efficiently the resonance fre-
quencies of a clamped/free clarinet reed. It was established in the following way: Frequencies
of the first 16 modes were computed by FEM, according to a network of 92 separate pairs of
values for EL and GLT , ranging from 8000 to 17000 MPa and 800 to 1700 MPa, respectively.
The other elastic coefficients were held constant, according to the reference values cited above.
For the range of simulation values, this arbitrary formula (developed by trial and error) provides
a very good fit (generally better than ±5 cents, see Table 9). Expected resonance frequencies f
are first found in cents (FC) from the note F6 (1396.9 Hz), and finally in Hz:

f(m, EL, GLT ) = 1396.9 × 2F C/1200, where (1)

FC = am,0 + am,1 Ep + am,2Gp + am,3 Ep Gp + am,4 E2
p + am,5G2

p,

Ep = EL
−0.66643 and Gp = GLT

0.7627.
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E2
E1

E3

Figure 8: Schematic representation of the standard linear solid: two springs E1, E2 and a dashpot
E3.

The index m is the number of the mode defined in Appendix C, Table 9, where the values of the
coefficients am,q are given (EL and GLT are expressed in MPa).

The influence of the density is easy to predict: frequencies vary proportionally to ρ−1/2. The
computing cost of this metamodel is about 107 times lower than with FEM, largely simplifying
the inverse problem.

4.3.4 Efficiency of the metamodel

Equation (1) can be used to estimate the values of EL and GLT , providing a faithful reconstruc-
tion of the observed resonance frequencies. Theoretically these values could be computed for any
pair of modes, after their respective observed frequencies. Unfortunately, this method gives no
consistent results. A least squares fit is a more robust technique for such a computation. This
leads however to systematic errors in the predicted frequencies: low-order modes are system-
atically overestimated, while high-order modes are underestimated. This can be corrected by
adjusting the coefficients am,0 (from Table 9), but this cannot explain the bad correlation among
flexural modes within the same series (see Table 6). According to the elastic model, these corre-
lations should be in all cases greater than 0.998. A hypothesis for resolving this contradiction is
that the moduli are varying with the frequency in an individual way for each reed. Thus in the
next paragraph we consider a viscoelastic model, where EL and GLT are frequency dependent.
This leads to the addition of some parameters, which are to our mind more important that
the other elastic coefficients. The fit of such a model requires many observations at different
frequencies, in order to reduce the influence of measurements errors and of local irregularities in
the structure of cane.

Alternative hypotheses could be considered in this context, as damping, acoustic load [21],
local variations in stiffness or in density, local deviations in thickness, compared to the assumed
theoretical model. However, these hypotheses are probably unable to explain the hygrometric-
induced individual variations we observed for each reed, thus our preference for the viscoelastic
hypothesis.

4.4 Viscoelastic model

In this section, a Zener model is considered (see e.g. Refs [29, 30, 31, 32]). This model is applied
to both moduli EL and GLT . The scheme of the standard viscoelastic solid is presented on Fig.8,
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with two springs E1 and E2 and a dashpot E3
6. At low frequencies, E2 and E3 have practically

no effect (the rubbery modulus E1 dominates). At high frequencies, E3 has practically no effect
(the glassy modulus E1 +E2 dominates). In the frequency range near E2/(2πE3) the dissipation
due to E3 is maximal and the apparent modulus (storage modulus) is in the mid-range. The
stress σ and the strain ε are related by the constitutive equation:

σ + τ1σ̇ = E1(ε + τ2ε̇) (2)

in which τ1 = E3/E2 is called the relaxation time and τ2 = E3(E1 + E2)/(E1E2) the retardation
time. E1 is called rubbery modulus and E1 + E2 glassy modulus. In harmonic regime, for an
angular frequency ω, the Young modulus is complex:

E∗(ω) = E1 + E2 − E2
2

E2 + jωE3
= E1 + E2 +

−E2 + jωE3

1 + (ωE3/E2)
2 (3)

The second formulation separates the real part (E′(ω): storage modulus) and the imaginary part
(E′′(ω): loss modulus) of E∗(ω). The storage modulus can thus be written as:

E′(ω) = E1 + E2 − E3
2

E2
2 + ω2E2

3

= E1
1 + ω2τ1τ2

1 + ω2τ2
1

. (4)

Notice the properties:

E′(0) = E1 ; E′(1/τ1) = E1 + E2/2

E′(∞) = E1 + E2 ;
∂E′

∂ω

( 1

τ1

)

=
E3

2
.

For the sake of simplicity, the parameters corresponding to EL and GLT are denoted E1, E2,
E3, and G1, G2, G3, and the storage moduli given by Equation (4) E′(ω) and G′(ω), respectively.
Therefore for each reed (and each series), the model requires 6 parameters instead of 2 (while
experiments gave 4 main factors only for the whole set of results).

>From the knowledge of the 6 parameters, the resonance frequencies can be deduced by an
iteration procedure. For each mode the starting point of the iteration is the mean value f (0) of
the experimental resonance frequency (see Table 7), then the storage moduli are deduced from
Equation (4), then a new value f (1) by using Equation (1), etc... The convergence of the iteration
method is fast, actually one iteration is enough. This can be understood by the fact that the
derivative of the iterated function is small (notice that the two first rows of Table 2 correspond
to the derivative of EL and GLT with respect to frequency). If we give an arbitrary value, for
instance f (0) = 6000, one iteration more is required for a comparable precision. In all hypotheses
(see Appendix D.6), we used one iteration only. This procedure allows the determination of f(m)
from the coefficients E1, E2, E3, G1, G2, G3 for a given reed and a given series.

5 Inverse problem and selection of a robust model

5.1 Simplification of the model by multiple regression

In order to solve the inverse problem for each reed (and each series), we use a classical Mean
Squared Deviation method, from the experimental values of the 11 resonance frequencies listed
in Table 9 (see Appendix C). The results are given and discussed in Section 5.3.

6This notation allows to write the parameters of the model as a vector, as required by the computations, but
unfortunately it hides the fact that the nature of E3 (dashpot) is physically different from E1 and E2 (springs).
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However for each reed the viscoelastic model provides 12 parameters, i.e., 12 DoF, and the
PCA showed that this number needs to be reduced. Actually this model conducts sometimes
to non-physical results (negative rubbery modulus, for instance). This problem comes out be-
cause the observed resonance frequencies are far from 0, so the rubbery modulus E1 cannot be
estimated precisely. For that purpose multiple regression (see Appendix D for details) is used,
by introducing correlations among parameters and reducing the degrees of freedom to a number
of 4, called “components", which are linearly related to the parameters. The 4 components are
very similar to the 4 factors computed by the PCA, but, because Eqs. (1 and 4) are nonlinear,
a small deviation is inevitable for optimal results. Factors and components are consequently
strongly correlated (>0.95, see Table 1).

We tested different hypotheses to establish a satisfactory robust model (denoted H1 to H9
and described in Appendix D), together with the detailed computation method. Each hypoth-
esis leads to a given number of components related to the parameters through the regression
coefficients. Notice that the parameters and components depend on both the reed and series,
while the regression coefficients which correlate the parameters are independent of the reed and
the series. A constant value elastic model (the parameters are fixed, and do not depend on
the reed or the series, Hypothesis H1) is not sufficient. Similarly a 2-parameter elastic model
(EL and GLT , independent of the series, Hypothesis H2) is not sufficient as well. Conversely a
linear model without constraints (with 60 independent coefficients, corresponding to a matrix
of order 12(4+1) elements7, Hypothesis H7) is not necessary, because many coefficients are very
small. Eventually a 9 coefficient linear model (H4) has been found to be very satisfactory and
is described in Section 5.2. The following ideas were applied: after eliminating the very small
coefficients and fitting the observations with the remaining coefficients, it is observed that the
predictive quality of the model is almost not affected by the simplification. This was done step
by step. The problem of non-physical values for certain parameters can be corrected by setting
that the damping parameters E3 and G3 are constant, independent of the reeds and of the se-
ries (typical values: E3 = 0.28 and G3 = 0.02). It remains 4 parameters for each series and
reed, E1, E2 and G1, G2 (i.e. 8 parameters for each reed). This ensures generally that these
parameters fall in a plausible range, when fitting the model. Moreover a hierarchical structure
can be introduced in the model, isolating the hygrometric component, bringing the remaining
3 components to a common basis (Section 5.2) and simplifying the problem (reduced to only 9
regression coefficients) and giving some insight in the data structure.

The RMSD (Root Mean Square Deviation, see Appendix D.2) is found to be 30.4 cents for
Hypothesis H4, very close to 29.8 cents for H5 with 9 coefficients more. Moreover the standard
deviation of the residuals for Hypothesis H4 (and also Hypothesis H5) varies very few over the
different resonance frequencies (all around 30 cents).

The fit quality cannot be considered as a perfect and definitive proof that our model reflects
the true values of the corresponding storage moduli. The influence of some missing parameters in
the model should be examined (for instance differences in thickness between reeds, non constant
modulus ET , non constant density ρ or radial variation of EL). Anyways, the presented model
reflects real mechanical differences between the reeds, very similar to those objectively detected
by the PCA.

7For this example, the component vector has 4 elements to be determined, plus a fifth element, which is a
constant.
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5.2 Robust estimation of the parameters of the viscoelastic model (Hy-
pothesis H4)

Hypothesis H4 is chosen so that no coefficient can be removed without impacting notably the
quality of fit. It can be thought as the minimal structure allowing an adequate reconstruction
of the observed resonance frequencies, in conjunction with the viscoelastic model (Eq. (4))
and the metamodel (Eq. (1)). This minimal structure makes the model more robust against
measurements errors, even if it probably introduces some bias.

As a first step, our concern is to eliminate the influence of the moisture content and to
bring both series of measurements to a common basis (i.e. predict the effect of drying on the
viscoelastic parameters of series B, the series A being taken as a reference). e1[n], e2[n], e3[n]
and e4[n] are the 4 independent components characterizing the mechanical properties of the reed
n. The choice of the notations is as follows: ek[n] is the kth element of the vector e[n]., which
depends on n. These components are conditioned similarly to PCA as orthogonal factors: mean
0, standard deviation 1 and intercorrelation 0. The elimination of the moisture content can be
achieved by reducing the components to a number of 3 for each series s = 1 (series A) and s = 2
(series B): for reasons explained in Appendix D.4, these components are denoted ě1[s, n], ě2[s, n]
and ě3[s, n] .

For series A, the components remain unmodified (series A is taken as reference):

ě1[s = 1, n] = e1[n]

ě2[s = 1, n] = e2[n]

ě3[s = 1, n] = e3[n] (5)

For series B, the effect of drying on the components is predicted by:

ě1[s = 2, n] = c10 + e1[n]

ě2[s = 2, n] = c20 +
1

2
(e2[n] + e4[n])

ě3[s = 2, n] = c30 + e3[n] (6)

With this choice of components, the viscoelastic parameters of the model for series s and reed
n can then be estimated as follows:

E1 = d10 + d12(ě2[s, n] + ě3[s, n])

E2 = d20 + d12(2ě2[s, n] − ě3[s, n])

E3 = d30

G1 = d41(6 + ě1[s, n])

G2 = 2d41(3 + ě1[s, n] − ě3[s, n])

G3 = d60 (7)

This implies some other interesting relationships:

E1 + E2 = d10 + d20 + 3d12ě2[s, n]

G1 + G2 = d41(12 + 3ě1[s, n] − 2ě3[s, n])

2E1 − E2 = 2d10 − d20 + 3d12ě3[s, n]

2G1 − G2 = 2d41(3 − ě3[s, n]) (8)
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Figure 9: Hypothesis H4: plot of the storage moduli E′

L(ω) and G′

LT (ω) [in MPa], according to
Equations (4 to 7), computed for the mean value of all reeds. (a): E′

L series A, (b): E′

L series B,
(c): G′

LT series A and (d): G′

LT series B. For G′

LT , the moduli are multiplied by 10. The abscissa
of the relaxation frequencies [in Hz] is denoted by dashed lines (series A) and dotted lines (series
B). The corresponding numerical values are listed in Tables 4 and 5. Only the portions of the
curves between 2 and 18 kHz could be fitted adequately. The curves outside this range are
purely hypothetical: we have no measurements.

Notice that the glassy modulus of EL (i.e., E1 + E2) depends linearly only on ě2[s, n]. The
quantities 2E1 − E2 and 2G1 − G2 depend linearly only on ě3[s, n], however with opposed signs.

The values of the 9 coefficients are: c10=1.011, c20= -2.197, c30=0.8294, d10=10300, d12=640.5,
d20=7309, d30=0.2822, d41=115.7, d60=0.02038. The coefficients in Eq. (1) are adjusted (in or-
der to remove systematic errors) by adding to am,0 (from Table 9) the following values, for m = 1
to 11: -26.27, 32.24, -50.05, 4.80, -26.87, -65.28, -48.64, 0.07, -52.98, -76.61 and -111.55 cents.

The change in density between the two series of measurements was not measured precisely
(about -2 to −4%). In the model, density is considered as constant.

Fig. 9 shows an approximation of the frequency dependence of EL and GLT , computed for
the mean value of all reeds. For Series A, the storage modulus E′(ω) increases from 11700 MPa
at 2 kHz (F1) to 17200 MPa at 16.8 kHz (F4), while for Series B, it increases from 11100 to 13300
MPa. Therefore under "normal" hygrometry the reed bends in a notably viscoelastic manner,
whereas the ultra-dry reed bends in an more elastic manner. For GLT , the reed is generally
notably viscoelastic, according to our model. The corresponding values are: 783 to 1290 MPa
for Series A, and 896 to 1436 MPa for Series B. Corresponding statistics are displayed on Table
3. Drying seems to increase GLT and decrease EL (except around 2300 Hz), explaining the good
correlation between the variables AF1 and BF1.

This simplified model permits interesting conclusions about the structure of our data:

• The component e1 is related exclusively to GLT ;

• e2 is related exclusively to EL;

• e3 increases proportionally to the rubbery modulus of EL (and not its glassy modulus),
and decreases proportionally to the glassy modulus of GLT (and not its rubbery modulus);
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Increase in EL GLT

storage modulus Series A Series B Series A Series B

Mean 31% 16% 38% 36%
Standard deviation 5% 6% 10% 9%
Minimum 20% 1% 13% 15%
Maximum 44% 32% 52% 49%

Table 3: Optimal 9-coefficients model (hypothesis H4): Statistics of the frequency-dependent
increase in storage modulus (for Series A or B and EL or GLT ), between the 1st and the 4th

flexural mode: 1 − E′(2πfF 1)/E′(2πfF 4) or 1 − G′(2πfF 1)/G′(2πfF 4), with fF 1 = 1996Hz
and fF 4 = 16784Hz. Between both series, the correlation is 0.83 for EL and 1 for GLT (as a
consequence of the simplification of the model)

.

it regulates therefore the viscous component common to EL and GLT
8;

• e4 takes into account the variation in moisture content between series A and B.

Notice that the product of the rubbery moduli for the series A, E1G1 is correlated at 72%
with the nominal reed strength. Individually, these moduli correlate only at 50% and 55% with
the nominal reed strength, respectively.

5.3 Results and discussion

Tables 4 and 5 show our results for hypotheses H4 and H5. A comparison with results by
other authors is difficult or even quite impossible, because of the disparate structure of the
measurements. Such a comparison requires the reconstruction of the measurement data (when
possible), the fit of a viscoelastic model or the extrapolation of the values, in order to reach the
frequency and temperature range of our measurements. The validity of such a highly speculative
task is questionable. For the storage modulus E′

L, all reconstructed values from other authors fall
in the range around the average of our measurements ±3 times the standard deviation, however
most of the time in the lower range. This probably shows that the selected value for the density
ρ is somewhat too high. No representative statistics are available by the other authors.

The most important disagreement, compared with our model (hypotheses H4 and H5), is
about the relaxation frequency. The explanation is probably because the studied frequency
range was not same. For GLT , we found no viscoelastic measurements by other authors. Our
results are summarized in Tables 4 and 5. For E′

L, between hypotheses H4 and H5, fr and E′

L at
4 kHz agree well, whereas E1 and E2 diverge by about 1-2 SD. This divergence comes because
the observed frequency range was not broad enough. For the shear modulus, G1 and G2 are in
good agreement for both hypotheses (and consequently fr and G′

L at 4 kHz also).
Our model is valid only for "ambient dry" reeds (since the ultra-dry conditioning was not

controlled), in a frequency range which should not exceed one decade. We checked that a
fractional derivative model after Gaul et al. [32] is not necessary in our narrow frequency range.
Such models are however really efficient to cover a broad frequency range. For instance, the
data by Lord for dry material [12] could be fitted very well (E0 = 8108 MPa, E1 = 2964 MPa,
p = 0.298 MPa·sα, α = 0.546). Notice that the order of the derivative (α) is 1 in our viscoelastic
model.

8The parameter E2 (respectively G2) determines the influence of the Maxwell arm in the Zener model, since
E3 (respectively G3) is constant in our simplified model; if E2 = 0 the model is perfectly elastic and the viscous
component disappears
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Model Storage Young modulus E′

L(ω) at about 20◦C
E1 [MPa] E2 [MPa] fr [Hz] E′

L at 4 kHz

Hypothesis H4, series A
10300,
SD 906

7309,
SD 1432

4123,
SD 808

13781,
SD 897

Hypothesis H5, series A
9377,
SD 844

8336,
SD 1552

4027,
SD 750

13449,
SD 839

Hypothesis H4, series B
9423,
SD 784

3964,
SD 1109

2236,
SD 626

12338,
SD 885

Hypothesis H5, series B
7844,
SD 753

5459,
SD 1217

1947,
SD 434

12168,
SD 882

Table 4: Summary of our results for hypotheses H4 and H5 about the viscoelastic behavior of
the longitudinal Young modulus EL in cane. E1, E2 and fr (relaxation frequency): parameters
from Zener model. E′

L at 4 kHz : storage modulus at 4 kHz [in MPa]. SD: standard deviation
(the value preceding SD is the average). The model is valid only between 2 and 18 kHz.

Model Storage Shear modulus G′

LT (ω) at about 20◦C
G1 [MPa] G2 [MPa] fr [Hz] G′

LT at 4 kHz

Hypothesis H4, series A 694, SD 116 694, SD 327
5420,
SD 2555

926, SD 102

Hypothesis H5, series A 752, SD 119 628, SD 328
6310,
SD 3296

924, SD 105

Hypothesis H4, series B 811, SD 116 736, SD 327
5749,
SD 2555

1042, SD 99

Hypothesis H5, series B 774, SD 119 769, SD 328
5622,
SD 2401

1022, SD 103

Table 5: Summary of our results for hypotheses H4 and H5 about the viscoelastic behavior of the
shear modulus in longitudinal / tangential plane GLT in cane. G′

LT at 4 kHz: storage modulus
at 4 kHz. Same structure as Table 4. The model is valid only between 2 and 18 kHz.
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Model Mode AF1 AF2 AF3 Mode BF1 BF2 BF3
AF2 0.73 BF2 0.63

observations AF3 0.34 0.75 BF3 0.43 0.84
AF4 0.28 0.65 0.74 BF4 0.00 0.43 0.45
AF2 0.93 BF2 0.79

H4 AF3 0.69 0.90 BF3 0.62 0.97
AF4 0.56 0.81 0.98 BF4 0.36 0.82 0.91
AF2 0.90 BF2 0.69

H5 AF3 0.57 0.87 BF3 0.52 0.98
AF4 0.43 0.77 0.98 BF4 0.26 0.84 0.92

Table 6: Correlations of resonance frequencies between flexural modes within the same series,
after observations and viscoelastic models H4 and H5. AF1, AF2, AF3, BF1, BF2 and BF3:
correlations with modal frequencies F1, F2 and F3 within series A or series B. Lines: corre-
sponding flexural mode between which the correlations are computed.

Our viscoelastic model is able to partially explain the bad correlations observed between
flexural modes. In Table 6, the correlations are compared among observed resonance frequencies
and computed modal frequencies, according to the viscoelastic model (hypothesis H4 and H5). It
seems that additional hypotheses (such as an irregular thickness) should perhaps be considered
for improving the model. However, we should remember that the determination of resonance
frequencies are attached with some uncertainties, especially for the modes F3 and T 3.

In order to clarify this issue, let us examine if the residuals (observed resonance frequencies
minus computed modal frequencies with hypothesis H59) contain some pertinent information. A
PCA shows that perhaps 2 residual factors contain some interesting information (explaining 30%
and 18% of the residual variance). The first residual factor is correlated with AT3 (0.86), BT2
(0.74), AT2 (0.73) and AX2 (0.66). All these modes depend strongly on GLT . An adjustment
of the coefficient am,2 from the metamodel for the transverse modes could probably cancel this
systematic bias (remember that the coefficients am,q are computed from a theoretical model,
which is probably also biased). Indeed, an increase by 14, 21, 16 and 11% of this coefficient
affecting the modes T 1, T 2, T 3 and T 4 makes the RMSD drop from 29.8 to 28.5 cents. The
second residual factor is correlated with AF1 (0.36), AF2 (0.29), AT2 (−0.29), BF1 (0.28) and
BT1 (−0.23). This probably reveals a competition between flexural and transversal modes when
fitting the model. The bias probably comes from the coefficient am,1, regulating the linear
dependance to EL in the metamodel. Adjusting the coefficients am,1 for all modes and the
coefficients am,2 for all transverse and generic modes makes the RMSD drop down to 26.2 cents,
reaching the size of the measurement steps (25 cents). The adjustments of am,1 are very small
for the flexural modes F1 to F4: -6, 1, 6 and 1%.

This shows that the most important bias depends linearly on the 2 most important parameters
(EL and GLT ) of our FEM computations. No supplementary parameter is required until this
bias is removed (theoretically down to a RMSD of 21.8 cents, according to H10). For hypothesis
H4, the same linear adjustment of the metamodel lets the RMSD drop from 30.4 down to 27.0
cents.

9Because H5 is probably less biased than H4 with its minimal structure
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6 Conclusion

The numerical model is satisfactory. From the statistical analysis are discussed in Section 3.3, it
allows selecting the most important parameters describing the mechanical behavior of a reed.

The efficient elastic metamodel can be extended to a viscoelastic behavior of the reeds, approx-
imating the resonance frequencies from the longitudinal Young modulus EL and the longitudinal
/ transverse shear modulus GLT and considering the hypothesis of their frequency dependence.
A reconstruction of the observed resonance frequencies can be achieved with a good accuracy, es-
timating for each reed only 4 components, from which the parameters of a viscoelastic model are
computed as a linear combination. The selected model (according to hypothesis H4) is probably
slightly biased, but it is more robust against measurement errors than more refined models.

Table 1 shows that these components are highly correlated to the factors computed by PCA
(0.96 to 0.98).

The proposed method allows the determination of 3 mechanical parameters characterizing the
material composing each reed, with a single series of measurements, using Equations (1, 4 and
7). The reed should be conditioned with a relative humidity corresponding to the one ensured
by the hermetically sealed package by Vandoren (about 55%). The fourth parameter cannot
be determined in a reproducible way, since the exposure of the reeds to the ultra-dry air of the
optical laboratory was not controlled. The same protocol and the same viscoelastic model can
be used for other kinds of single reeds (bass clarinet, saxophone). Only the coefficients of Table
9 have to be recomputed after a FEM simulation of the corresponding reed shape.

Despite the fact that the eigenmodes of higher order probably play no important role in the
acoustics of the clarinet, the present study shows that they reveal the inner structure of the
material building the tip of the reed, so a new step could be done for an objective mechanical
characterization of the clarinet reed. A subsequent study should examine if the obtained com-
ponents are correlated with some musical qualities of the reeds. This could help the reed makers
to gain a better control on their products.
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APPENDICES

A Statistics and correlations

The table 7 gives the detailed statistics.
Linear correlations have been computed between all possible couples of variables in a usual

way (all the variables from Table 7, except X5 and T 5 of series A, i.e. 13 variables for series A and
15 for series B, plus the nominal reed strength). Results of series A for the mode F1 are denoted
AF1, and similarly for the other results. The following 12 pairs have a correlation greater than
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Series A Series B
Mode NA µ σ min max NB µ σ min max

F1 55 1996 77 1838 2154 55 1960 66 1812 2093
T1 55 3377 132 3091 3676 55 3436 129 3136 3729
F2 55 5130 161 4767 5669 55 4856 189 4435 5351
T2 55 6108 261 5587 6939 55 6193 247 5669 7040
X1 55 6869 198 6455 7458 45 6801 217 6363 7458
T3 55 9571 500 8617 11014 54 9590 458 8742 11014
F3 55 10146 419 9262 10857 55 9213 414 8372 10396
X2 55 11521 387 10701 12187 54 11688 379 10857 13098
X3 55 12294 368 11502 13482 11 12290 471 11839 13482
T4 53 14011 756 12186 16503 54 14111 763 12186 16503
F4 45 16784 552 15803 18524 54 15363 663 14079 17484
X6 41 16984 972 15133 18793 30 16888 734 15577 18258
X4 24 18497 518 17234 19067 23 17544 772 16033 19911
X5 0 54 18896 501 17484 19911
T5 0 14 19668 329 19067 19911

Total 658 668

Table 7: Observed resonance frequencies, sorted by frequency (in Hz). NA (resp. NB): Number
of identified pattern for each mode of series A (resp. B). µ: Mean value of the resonance
frequency, σ: Standard deviation, min: Minimum, max: Maximum. Total: total number of
identified patterns for each series.

0.9: AF1/BF110, AT1/BT1, AT2/BT2, AT3/AT4, AT3/BT3, AT3/BT4, BT3/BT4, AT4/BT3,
BX1/BX3, AT4/BT4, BT4/BX6 and BX3/BX4. 54 pairs of variables have a correlation between
0.8 and 0.9, 50 other pairs between 0.7 and 0.8 and 262 other pairs, below 0.7.

Between the two series, the correlation is excellent for corresponding transversal modes (T 1
(i.e. AT1/BT1): 0.97, T 2: 0.97, T 3: 0.96 and T 4: 0.98), and generally good for corresponding
generic modes (X1: 0.87, X2: 0.84, X3: 0.87 and X4: 0.55). For flexural modes, the correlation
is good for F1 and progressively lower for increasing mode order (F1: 0.92, F2: 0.66, F3: 0.57
and F4: 0.47).

Within the same series, on the contrary, there is a poor correlation between AF1 and all
measurements of series A, and similarly for BF1 and series B. This is striking: the two best
correlated variables are AF2 and AX1 (0.73 and 0.49, respectively) for AF1 and BF2 and BT1
(0.63 and 0.49, respectively) for BF1. Moreover, these correlations are quite low among all
flexural modes: see Table 6. This fact is discussed in section 5.3.

The nominal reed strength correlates at 0.7 with AT1 and AX4. We expected a better
correlation with F1 (only 0.6). This is surprising, since the reeds were probably sorted by a
quasi-static bending method by the manufacturer. This would mean that the storage modulus of
EL at very low frequency is not well correlated with its value at the frequencies of the measured
resonances. The influence of density has also to be considered. However, Obataya et al. [9]
observed a good correlation between density and EL. This point has to be investigated (see also
section D.4 in Appendix D).

10AF1/BF1 means AF1 versus BF1. The correlations are computed between AF 1[n] and BF 1[n], for n = 1 to
N , where N = 55; missing observations are deleted.
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B Defining the shape of the reed

x [mm]
s0 [mm]

y=0 mm
s1 [mm]
y=4mm

s2 [mm]
y=6mm

0 0.074 0.080 0.042
5 0.343 0.293 0.197

10 0.648 0.542 0.377
15 1.047 0.847 0.571
20 1.451 1.135 0.745
25 1.926 1.527 1.078
30 2.540 2.084 1.589
35 3.351 2.817 2.256

Table 8: Network of points for interpolating the thickness of the vamp. See explanations in the
text.

The thickness of the vamp at point (x, y) is interpolated as follows: first, we interpolate 3
points at y=0, 4 and 6mm, with 3 cubic splines, according to Table 8. These three points (s0(x),
s1(x) and s2(x)) define a biquadratic polynomial:

vamp(x, y) = p0(x) + p1(x) y2 + p2(x) y4

with p0(x) = s0(x), p1(x) = (−65 s0(x)+81 s1(x)−16 s2(x))/720 and p2(x) = (5 s0(x)−9 s1(x)+
4 s2(x))/2880, allowing an interpolation on the y axis. The network of points above was estimated
using a least squares fit, based on a network of 12 × 24 thickness measurements, achieved with a
dial indicator and a coordinates-measuring table (estimated accuracy: ±5µm in z, ±50µm in x
and y). We measured twenty reeds and select a particularly symmetrical one as reference. This
method allows the reconstruction of the measurement network with an accuracy of ±10µm.

The thickness of the heel is defined to be :

heel(y) = −14.1 +
√

17.42 − y2

The contour of the reed in the xy-plane is defined by:

contour(x) =



















0 x < 0 or x ≥ 67.5
√

(24.4 − x)x x < 1.13196

4.08044 +
√

−5.31 + 6.8x − x2 x < 2.94661
263
40 − 11

900 x x < 67.5

The thickness of the reed at point (x, y) is defined by:

thickness(x, y) =

{

min[heel(y), vamp(x, y)] Abs(y) < contour(x)

0 otherwise

C Coefficients of the metamodel
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mode m am,0 am,1 am,2 am,3 am,4 am,5 δ− δ+
F1 1 2334.56 -1165877 0.2763 -21.99 145883795 -0.000324 -2 4
T 1 2 1481.70 -642027 5.0725 569.69 83451520 -0.005886 -3 3
F2 3 3651.79 -1060625 0.7082 -123.77 130061359 -0.000786 -2 5
T 2 4 2403.82 -493591 3.8130 501.70 64716271 -0.003741 -9 5
X1 5 3153.73 -822597 3.1425 604.29 105032670 -0.003785 -3 4
F3 6 4669.87 -1009348 0.7623 -101.18 122741172 -0.000877 -3 6
T 3 7 3015.77 -275531 3.5285 250.00 29933670 -0.003016 -2 1
X2 8 3874.44 -633268 2.0921 589.25 83462866 -0.001958 -9 6
X3 9 4381.85 -926543 1.9907 730.31 122925338 -0.002593 -3 3
T 4 10 2659.08 588457 6.6088 -1269.38 -120493740 -0.005269 -19 26
F4 11 6450.01 -1689363 -2.5544 1282.75 247738162 0.001631 -32 42

Table 9: Coefficients of the metamodel, Equation (1). The maximum negative and positive
deviations of the model (compared to the values calculated by FEM) are given by δ− and δ+
[in cents]. The mode L1 (6th mode) has been deleted from the Table, since we didn’t observe it.
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Indice from to numbering
n 1 N=55 reeds
s 1 S=2 series of measurements A (s=1) and B (s=2)
m 1 M=11 modes
q 0 Q=5 coefficients for Equation (1)
i 1 I=2 moduli EL (i=1) or GLT (i=2)
j 1 J=3 viscoelastic parameters
k 0 K=2,3 or 4 or 12 components (factors)

Table 10: List of indices

D Development and selection of a simplified viscoelastic

model

In this section we describe how the proposed model was developed and selected. Alternate
options are presented.

D.1 Data structure

We need a specific notation for denoting our complicated multivariate data structure as arrays,
after a list of indices (see Table 10). The 11 modes are defined after Table 9 (from 1 to 11: F1,
T 1, F2, T 2, X1, T 3, F3, X2, X3, T 4, F4). We define a variable vn,s,i,j holding all parameters
of our viscoelastic model:

vn,s,1,j = Ej and vn,s,2,j = Gj for reed n and series s. (9)

The array rn,s,m holds the reconstructed resonance frequencies computed for all reed, series
and modes, with the parameters vn,s,i,j of our viscoelastic model (see Section 4.4).

D.2 Mean Squared Deviation

As a cost function to minimize, we define the Mean Squared Deviation MSD (also called Mean
Squared Error) between reconstructed and measured resonance frequencies on,s,m:

MSD =
1

NSM

N
∑

n=1

S
∑

s=1

M
∑

m=1

(onsm − rnsm)2 (10)

With Eq. (10), the components of array v can be fitted by any appropriate algorithm for
minimizing a multivariate function. All available measurements can be utilized for fitting the
models11. Missing observations om,s,n are then eliminated while computing MSD.

Our model allows a quite good reconstruction of the resonance frequencies, with a
√

MSD ≡
RMSD (Root Mean Square Deviation) smaller than 20 cents (it is very small for lower modes,
and always smaller than 25 cents). This corresponds to the hypothesis named H9 (all hypotheses
H1 to H11 are presented and commented in Section D.6), but, as explained in section 5, the
values of the coefficients are not always plausible physically. In Section D.3, we examine how to
regulate this drawback by multiple regression.

11This was not the case with PCA.
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D.3 Estimating the parameters of the viscoelastic model by multiple
regression

Multivariate linear regression consists in projecting linearly a n dimensional space on a onedi-
mensional space. The generic equation is

y = a0 +
N

∑

n=1

anxn =
N

∑

n=0

anxn, if x0 = 1 (11)

Equation (11) can be generalized for multiple regression as:

y = Ax (12)

where x and y are column vectors and A a matrix. In what follows, in order to use conventional
vectors and matrices (with respectively one and two dimensions), we use the following notation:
vj [n, s, i] = vn,s,i,j is the jth element of the column vector v[n, s, i].

In our case, we have no prior knowledge about the relationships among the parameters of our
model. We assume that each parameter in the model can be computed as a linear combination of
some unknown independent components by multiple regression. The multiple regression formula
can be written as:

vj [n, s, i] =

K
∑

k=0

Mjk[s, i] · ek[n] (13)

In conventional vectors and matrices notation, Eq. (13) reads:

v[n, s, i] = M [s, i] · e[n]

where e[n] is the vector of the orthogonal components for each observed reed n, M [s, i] is
the regression matrix, independent of the reed number, depending on the series and the kind of
modulus (EL or GLT ). v[n, s, i] is the vector of the parameters of the viscoelastic model.

We have only to choose an arbitrary number of components, for instance K = 4, referring to
our PCA. We introduce arbitrary constraints in order to obtain more comparable results: over
the different reeds, we state that the components must be orthogonally normalized (mean 0,
standard deviation 1 and intercorrelation 0). The matrix of components e has consequently to
satisfy:

e · eT =













N 0 0 0 0
0 N − 1 0 0 0
0 0 N − 1 0 0
0 0 0 N − 1 0
0 0 0 0 N − 1













(14)

Each individual column vector e[n] from this matrix is written as follows (for the component
e0[n] = 1 : see Equation (11)):

e[n] =
(

1 e1[n] e2[n] e3[n] e4[n]
)T

. (15)

The components of M are fitted by minimizing MSD in Eq. (10). As starting value for the
orthogonal components we set : ek[n] = factork[n], where factork[n] are the factors computed
by PCA (see Section3.2). After a first estimation of M , it is possible to release the approxi-
mation about e: all components and all coefficients in the matrices can be fitted by the fitting
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procedure. However the number of variables to fit is probably much higher than allowed by the
most algorithms of function minimizing. The fitting procedure has to be carried "by hand" with
subsets of variables. The procedure we used is described below.

For K = 4 (the dimension of vector e[n] being 5), and some supplementary choices, the model
works very well.

D.4 Empirical simplification of a 4-parameter model

We observed that the effect of hygrometric changes between both measurements series can be
taken into account with one parameter only, practically without drop in quality of fit. This effect
can be isolated on component e4[n] and the remaining components can be transformed linearly,
so the further computations can be achieved from a common basis. Eq. (13) is then structured
as:

M [s, i] = M̂ [i] · M̌ [s] , (16)

The reasoning considers the situation where the two series of observations are independent,
with a number of components in vector ě[s, n] = M̌ [s] · e[n] reduced to Ǩ = K − 1 = 3. As

a consequence the number of rows of matrix M̌ [s] is 4, as well as the number of columns of

M̂ [i]. This approach, which allows separating hygrometry effects, offers a comfortable way to
test different hypotheses, without changing the structure of the computation, by setting some
coefficients in the matrices at some arbitrary values or by introducing some linear relationship
between coefficients. We get fewer "active" coefficients to fit in the model: the fitting procedure
is much faster and this raises the probability to find the best possible fit.

We tried to minimize the number of coefficients different from zero in the matrices, without
substantial drop in quality of fit. The model was fitted "by hand", using the solver of Excel
(Microsoft Office). We found empirically that a quite sparse setup still gives a good fit12:

M̂ [EL] =





d10 0 d12 d13

d20 0 d22 d23

d30 0 0 0



 ; M̂ [GLT ] =





d40 d41 0 0
d50 d51 0 d53

d60 0 0 0



 (17)

M̌ [SeriesA] =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0









; M̌ [SeriesB] =









1 0 0 0 0
c10 1 0 0 0
c20 0 c22 0 c24

c30 0 0 1 0









(18)

This corresponds to the hypothesis named H5. Furthermore some coefficients may be propor-
tional to others, without noticeable drop in quality of fit. This diminishes the number of active
coefficients in the different matrices from 18 to 9 (hypothesis H4):

12The fitting process was realized by repeatedly performing four kinds of procedures, in an arbitrary order :

1. Fit the active coefficients in model, without adjusting the coefficients am,0

2. Fit the active coefficients in model and adjust the coefficients am,0 (or fit all coefficients: am,q).

3. Fit the en,k components (individually for each reed, irrespective of Equation (14)), then then normalize
and orthogonalize components (in order to satisfy Eq. (14)), finally rotate components (for improving the
fit).

4. Eliminate some active coefficients (set them as 0, 1 or some other constant value; set some arbitrary linear
dependence from other coefficients)
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d22 = 2d12 ; d13 = d12 = − d23;

d40 = d50 = 6d41 ; d51 = 2d41 = −d53 ; (19)

c22 = c24 = 1/2.

D.5 Adjusting coefficients for removing systematic errors

After fitting the different models, we observed some systematic deviations in the resonance
frequencies between model and observations. This error has probably two different origins:
an inevitable inaccuracy in the FEM computation (and in our metamodel) and an error for
parameters not included in the model. A straightforward way to minimize the residuals is to
fit the coefficients am,0 in Eq. (1)13. Fitting all coefficients in Eq. (1) is doubtless a more
questionable way to reduce this error (hypotheses H8 and H9). This can reduce the mean
deviation between model and observations, but greatly increase the number of coefficients in the
model (see however the discussion in Section5.3).

D.6 Testing different hypotheses

We tested different hypotheses with our model, in order to select a particularly efficient model.
Some of them are summarized in the Table 11.

Hypotheses H1 to H3 (elastic model) present a poor fit; the adjustments for coefficients am,0

are large, compensating partially for the missing viscoelastic components. All viscoelastic models
are notably better and exhibit smaller adjustments for am,0. Frequency dependence for EL and
GLT seems evident. Hypothesis H4 shows a good accuracy, with only 9 fitted coefficients (and 11
adjustments). Increasing the number of coefficients up to 60 brings only a marginal contribution
(H5 to H7). Adjusting the other coefficients of Equation (1) in H8 and H9 improve the model,
especially for the higher modes (Notice that no multiple regression is used for H9). Our FEM
computations (and consequently our metamodel) are probably attached with systematic errors
in this frequency range. The influence of ET should possibly be considered. Between H8 and
H9, the total number of components (N × K) increases from 220 to 660. The adjustments
within morphological classes are related: “flexural” modes shows systematically lower values
than neighboring “transversal” modes.

D.7 Backward random validation

Following a suggestion by a referee, we applied a principal component analysis to simulated data
computed after hypothesis H5: we assigned randomly a value for the 4 components and 55 reeds,
following a normal distribution. We repeated this operation ten times. As expected, the PCA
detected 4 factors capturing 91.2% (Standard Deviation 1.3%) of the variance of the simulated
data (mean: 42.6, 20.9, 16.2 and 11.5% for each factor). This seems compatible with the analysis
performed on the observed frequencies (Section 3.2): 4 factors: 91.2% of the variance (53.6, 21.4,
10.8 and 5.4% for each factor).

13These coefficients can be fitted through the fitting procedure (some constraints have however to be introduced,
to avoid an important deviation from their theoretical values) or merely adjusted a posteriori, so that the total
averaged deviation for each mode and both series is 0.
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Hypothesis K model #ActiveCoef #OtherCoef RMSD

H1 0 elastic 2 am,0 → 11 76.2
H2 2 elastic 4 am,0 → 11 54.8
H3 3 elastic 7 am,0 → 11 43.9
H4 4 viscoelastic 9 am,0 → 11 30.4
H5 4 viscoelastic 18 am,0 → 11 29.8
H6 4 viscoelastic 44 am,0 → 11 29.1
H7 4 viscoelastic 60 am,0 → 11 28.6
H8 4 viscoelastic 60 am,q → 66 23.2
H9 12 viscoelastic - am,q → 66 19.8
H10 4 regression - Ws,m,k → 110 21.8

H11 4 regression 4 Ŵm,ǩ → 44 24.7

Table 11: Synthesis of some hypotheses tested with our model. K: Number of components
for each reed n; model: elastic, viscoelastic or multiple regression (with the elastic model, EL

and GLT are independent from frequency; the elastic model is computed after the viscoelastic
one by setting very small values for the coefficients affecting E2, E3, G2 and G3, in order to
avoid division by 0; multiple regression: see Equations (20 and 21)); #ActiveCoef : number

of active coefficients in the matrices M or M̂ and M̌ (fitted through the fitting procedure);
#OtherCoef : number of other coefficients estimated in model (am,0: adjusted so that the
mean error for each mode m and both series is zero, Ws,m,k: computed analytically, otherwise:
fitted through the fitting procedure); RMSD [in cents] after Equation (10): this is a measure of
goodness of fit (remember that the vibration patterns of the reeds were observed in steps by 25
cents).

E Reconstructing observed resonance frequencies by mul-
tiple regression

The scheme of our viscoelastic model is:
〈vector e〉 → {multiple regression Equation (13)} → 〈viscoelastic coefficients v〉 → {viscoelastic
model Equation (4)} → 〈moduli E′

L and G′

LT 〉 → {metamodel Equation (1)} → 〈reconstructed
resonance frequencies r〉.

It has a very interesting property: the same model of cane can be used for any kind of reeds
(for instance bass clarinet or saxophone) or for any other boundary conditions. Only Equation
(1) has to be changed (or at least, the coefficients am,q have to be recomputed).

Within our particular setup, the viscoelastic model is however not required for reconstructing
the observed resonance frequencies: PCA is theoretically the optimal linear scheme, in terms of
least mean square error, for compressing a set of high dimensional vectors into a set of lower di-
mensional vectors and then reconstructing the original set by multiple regression. The shortened
scheme is merely:
〈vector factor〉 → {multiple regression} → 〈reconstructed resonance frequencies r〉.

Let us examine this option. For this purpose we use the array factorn,k computed in Section
3.2, holding our 4 principal components (factors). As before (Section D.3), we set factorn,0 = 1.
The array of reconstructed resonance frequencies rn,s,m can be computed by multiple regression
using an array of matrices Ws,m,k:

r[n, s] = W [s] · factor[n] (20)

As before (Section D.4), we have also the option to reduce the dimensionality from K to Ǩ, using

32



the previously defined array of matrices M̌ [s] and then use a unique matrix Ŵm,ǩ to operate the
multiple regression:

r[n, s] = Ŵ · M̌ [s] · factor[n] (21)

We call these 2 options: hypotheses H10 and H11. For H11, we performed a small orthogonal
rotation of the factors to concentrate the information about the hygrometric material properties
in factorn,4, for a better fit. The results are summarized in Table 11.

Multiple regression is an accurate way to retrieve our measurements, comparable to H8 and
H9. With only 48 coefficients, H11 is very efficient, even better for “transversal modes” as H10.
The results of the regressive model are more difficult to interpret than those of the viscoelastic
model. As en,4 before, factorn,4 serves uniquely to adjust factorn,2 relatively to series B. As
expected, factorn,1 influences mainly the “transversal modes” and factorn,2 the “flexural modes”.

Their respective coefficients in the matrix Ŵ reflect this antinomy. “Transversal” and “flexural
modes” are concerned by factorn,3 in a quite similar way, but the slope is not same.
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