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Abstract

In this paper, we present a new approach for time-resolved measurements of wall deformation in human arteries
using MRI and we prove its feasibility on an example. The purpose of the approach is to derive the local elastic
properties of the carotid artery. Repeatable results obtained on two volunteers point out the promising potential
of this approach for investigating the mechanics of arterial tissues in vivo.

1 Introduction

It is well assessed that, despite biochemical and hemodynamical factors play a primary role in the development of

most vascular disorders, solid mechanics models may contribute to understand their genesis and progression. The

realism of models in solid mechanics depends significantly on the mechanical properties used as input parameters.

Therefore, characterizing the biomechanical properties of arteries remains an essential issue. Recent advances

demonstrate that geometric and material parameters can be identified from in vivo human data [1,2], which enables

computations of in vivo wall stresses using methods of nonlinear mechanics. However, the main requirement to

this is measuring the deformation of the vessel wall in vivo.

In vivo quantification of vessel wall cyclic strain has also important applications in physiology and disease

research and the design of intravascular devices. Better understanding of both normal and abnormal wall motion

and strain distributions will contribute to a better understanding of disease processes as well as potentially aid in

the characterization of vulnerable plaques and aneurysms; for example, changes in wall motion and strain patterns

may help predicting which plaque are more likely to enlarge rapidly and/or rupture.

Various ultrasound techniques have been used to detect and track the vessel wall motion. Computational
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techniques have mainly been based on analysis of the B-mode greyscale images [3,4], M-mode [5], analyses of the

raw RF ultrasound data [6], echotracking technique [7] and Doppler techniques [8]. However, ultrasounds were

only used for imaging longitudinal cross sections of arteries. Imaging cross sections perpendicular to the vessel

was achieved with Intravascular Ultrasound (IVUS) [9], but IVUS is a rather intrusive method.

Magnetic Resonance Imaging (MRI) may be a non-intrusive technique well suited to the measurement of

artery deformation in the cross section plane perpendicular to the vessel. MRI was often employed to imaging

of artery shape and composition [10], but much less often to measure artery deformation [11]. Time-dependent

magnetic resonance (MR) magnitude images acquired perpendicular to a given vessel can be used to track the

luminal boundary of the vessel over time, and the displacement of this boundary can be used to approximate

cyclic strain based on the change in radius of the vessel [12]. This method has several artifacts that can produce

errors in determining the boundary of the lumen, which in turn lead to errors in computed strain. An alternate

method, MR tagging [13] directly acquires displacement data. However, this method requires the pixel size to

be small compared to the organ spatial dimensions, displacements, and heterogeneity of the strain field being

studied. Current MR spatial resolution is not adequate to measure displacement and strain accurately in vessel

walls using this method. A third MR-based method for quantifying motion and strain utilizes MR phase contrast

(PC) velocity data. This method was presented as the basis of the approach to non-invasively measure vessel wall

strain in vivo [14]. However, difficulties arise in setting the appropriate sensitivity (trade-off between unwrapping

difficulties and low signal to noise ratio). Moreover, slight angles between the artery axis and the imaging plane

induce a sensitivity to the out-of-plane velocity, which is the blood velocity, ten times larger, hence overwhelming

the signal coming from wall deformation. Eventually, this technique requires that the voxel size is at least twice

smaller than the thickness of the artery wall, which is still not reachable for thin arteries such as the healthy carotid

artery.

In summary, the state of the art for measuring the cross-sectional deformation of arteries using MRI is:

1. either measuring deformation or strains in the thickness of arteries (PC-MRI, tagging) but this is only feasible

for thick arteries given that the smallest reachable pixel size in clinical conditions is around 0.4 mm;

2. or tracking the luminal boundary of the vessel over time but this can only be accurate using subpixel tech-

niques for tracking the wall.

This study is aimed at addressing the deformation of the common carotid artery (CCA) because the carotid

artery is a useful window for cardiovascular risk. As it is not possible to increase easily the spatial resolution

of MRI, it was decided to work on the second point: subpixel tracking. More specifically, it will be shown
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that subpixel tracking can be achieved using optical flow on PC-MRI magnitude image. Eventually, the obtained

deformation is used to derive the elastic properties of the carotid artery. Applications on real human data are shown

for the sake of feasibility proof.

2 Materials and Methods

2.1 Origin of clinical data

All subjects signed an informed consent. MRI data and blood pressure were recorded successively following 15

min of recumbent rest in a room dedicated to echography. Data used herein are from two healthy subjects: a 23-

year-old man (patient A) and a 26-year-old man (patient B).

2.2 Obtaining magnitude images throughout the cardiac cycle

Phase contrast MR angiography has sometimes been used to quantify flow velocity [15]. Let us recall the prin-

ciples of this sequence. The flow is encoded in the phase rather than the magnitude of the MRI signal. Between

Radio-Frequency (RF) excitation and imaging, velocity encoding is performed by applying two equal and opposite

gradients with a short delay between them. If the material within a voxel is stationary, then the phase shift caused

by one gradient will be canceled by the equal and opposite phase shift due to the other, and the net phase change

measured will be zero. However, if material moves along the direction of the gradient, then it will gain a net phase

shift proportional to this component of velocity.

Blood and the surrounding tissues also have distinct T1 and T2 relaxation parameters, giving clear contrast in

the magnitude images in the sequence [16]. We used this to estimate the location of the artery contour and its

deformations.

Although it is also possible to estimate the location of the artery contour from the phase images, we found that

in the magnitude images the gradient at the vessel wall was higher and independent of blood flow. Moreover, the

signal outside the artery was less noisy for the magnitude images, enhancing contour estimation.

The scanner used in our study was a 3T Siemens Tim Trio system (IRMAS, Saint-Etienne, France). A 2D spin-

echo FLASH sequence was used to acquire a single 3 mm thick slice of a lying volunteer’s neck with a matrix size

of 256×256 giving in-plane dimensions 0.39×0.39 mm2. A cine sequence, with one segment per cycle was used

to acquire the temporal evolution of the flow throughout the pulse. Heart beats were detected by the measurement

of blood flow in a patient’s finger with near infrared spectrometry. The cine data were reconstructed to give 42

snapshots evenly distributed throughout the cardiac cycle, corresponding to a mean sampling frequency of 61.5

s−1 (T =0.81s). The repetition time was TR=64 ms and the echo time was TE=5.4 ms.
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The magnitude of the signal was digitized with a 16 bits resolution (integer numbers between 0 and 65535).

Eventually, the magnitude image is a 3D array of size 256×256×42, denoted Ĩ(xp,yq, tn), for p varying from 1

to 256, q varying from 1 to 256 and n varying from 1 to 42. Actually, the same magnitude images were achieved

at 3 different cross sections of the neck separated by 24 mm. One cross section was before the carotid bifurcation

in the CCA, one at the bifurcation and the third one after the bifurcation. Only the cross section of the CCA will

be considered further.

2.3 Determining the curve of the vessel wall average location

The magnitude of the signal is well suited for determining the edges of the artery because, due to the large quantity

of blood flowing in the artery and also due to the distinct T1 and T2 relaxation parameters between blood and the

surrounding tissues, the magnitude of the signal is larger inside the artery than outside.

Let (x0,y0) be the average location of the center of gravity of the artery in the imaging plane over a cardiac

cycle. Let us define the closed curve around (x0,y0) figuring all the points belonging to the vessel wall. The

thickness of the vessel wall is neglected as it is approximately similar to the pixel size in the images. This justifies

to represent the cross section of the vessel wall by a closed curve. This curve is denoted C(t), where t denotes

time. The curve changes its shape and size over time due to the varying blood pressure. The curve is defined in a

polar way, such as (x(t),y(t)) belongs to this curve if:




x(t) = x0 + r(θ, t)cos(θ)
y(t) = y0 + r(θ, t)sin(θ)
0≤ θ≤ 2π

(1)

with a Fourier decomposition of r(θ, t) up to order N:

r(θ, t) =
N

∑
k=0

[ak(t)cos(kθ)+bk(t)sin(kθ)] (2)

Let āk and b̄k denote respectively the average value of ak(t) and bk(t) over a period T (cardiac cycle = time

between two heart beats).

The values of āk and b̄k are determined like this:

1. Ĩ(xp,yq, tn) is averaged over time in order to deduce the average intensity Ī(xp,yq) at each voxel:

Ī(xp,yq) =
1
42

42

∑
n=1

Ĩ(xp,yq, tn) (3)

2. the gradient of the average intensity ∇Ī(xp,yq) is deduced like this:

∇Ī(xp,yq) =
1
2

√
[Ī(xp+1,yq)− Ī(xp−1,yq)]

2 +[Ī(xp,yq+1)− Ī(xp,yq−1)]
2 (4)
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The formula in Eq. 4 is not valid for the edges of the image but this does not concern the carotids which are

sufficiently far from the edges so gradients on the edges are disregarded.

The obtained images of ∇Ī show the largest gradients at the location of the artery wall (Fig. 4).

3. Pixels belonging to the vessel wall are tracked as the pixels having the largest values in ∇Ī. An algorithm

based on the watershed theory [17] was developed for this. However it can fail sometimes so a possibility of

selecting manually some points belonging to the arterial wall on the ∇Ī was implemented. Let (x̃i, ỹi) be the

coordinates of the selected points (manually or using the watershed algorithm).

4. Least squares regression is achieved. It consists in finding the coefficients āk and b̄k that minimize the

following cost function:

J = ∑
i

[
N

∑
k=0

[
āk cos(kθ̃i)+ b̄k sin(kθ̃i)

]− r̃i

]2

(5)

where:
r̃i =

√
(x̃i− x0)

2 +(ỹi− x0)
2

θ̃i = arg((x̃i− x0)+ j (ỹi− y0))
j2 =−1

(6)

Let C be the curve of polar expression:

r(θ) =
N

∑
k=0

[
āk cos(kθ)+ b̄k sin(kθ)

]
(7)

C defines the average shape of the artery over the cardiac cycle.

Eventually, the curve defining the artery wall is supposed to satisfy the following polar equation:

r(θ, t) =
N

∑
k=0

[
āk cos(kθ)+ b̄k sin(kθ)

]
+

N

∑
k=0

p(t)− p0

αk
cos(kθ)+

p(t)− p0

βk
sin(kθ) (8)

where p(t) is the intraluminal pressure at time t, p0 is its average over a period T . The coefficients αk and βk are

related to the geometric and stiffness properties of the artery and its surrounding medium. Complex numbers may

be used instead of real numbers for taking into account the viscoelastic properties of the artery and its surrounding

medium. In this case, αk and βk, and consequently r(θ, t), would be complex numbers instead of real numbers.

However, the viscoelastic properties will be discussed in a future study.

2.4 Pressure measurements by applanation tonometry

The intraluminal pressure applied by the blood is assumed constant across any slice of the artery, only depending

on t.
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Right intraluminal CCA pressure waveforms were recorded non-invasively for 9s at 128Hz with a pressure

tonometer (Sphygmocor, AtCor Medical).

A system for noninvasively and continuously monitoring arterial blood pressure includes a tissue stress sensor.

The sensor has a continuous diaphragm for sensing stress within tissue near a preselected artery, the stress being

caused by arterial pulsations within that artery. The stress sensitive diaphragm is coupled with electromechanical

means for producing electrical signals that represent the stress within the tissue that is communicated to the sensor.

These signals are then processed electronically in order to yield an output that is indicative of the arterial blood

pressure of the preselected artery. The disclosed system includes methods of operation for determining blood

pressure while maintaining a preselected artery in an optimum applanation state and an off-optimum applanation

state.

2.5 Processing the magnitude images for determining the curve of the vessel wall over
time

The objective now is to obtain αk and βk defined in Eq. 13, for k = 0 to N. For this, a set of 30 points evenly

distributed along the C curve are defined. Their cartesian coordinates are denoted (x̄m, ȳm) and their polar coor-

dinates (r̄m, θ̄m), with 1 ≤ m ≤ 30. For any of these points, their position will change over time due to pressure

variations. Let (xm(t),ym(t)) denote their location in cartesian coordinates at any time t and (rm(t),θm(t)) in polar

coordinates. It is assumed that the motion due to the pressure variations satisfies the following rule:

{
ẋm = dxm

dt = drm
dt cos(θ̄m)

ẏm = dym
dt = drm

dt sin(θ̄m)
(9)

which means that we neglect the velocity component perpendicular to the radial direction, hence θm(t) = θ̄m.

If I(x,y, t) denotes a continuous representation of the magnitude of the MRI signal over time and space, the

conservation of the magnitude (theory of optical flow [18]) yields:

ẋm
∂I
∂x

(xm,ym)+ ẏm
∂I
∂y

(xm,ym)+
∂I
∂t

(xm,ym) = 0 (10)

Using Eq. 9, we get:
drm

dt
=

− ∂I
∂t (xm,ym)

cos(θ̄m) ∂I
∂x (xm,ym)+ sin(θ̄m) ∂I

∂y (xm,ym)
(11)

From Eq. 13, it may be written:

drm

dt
=

d p
dt

N

∑
k=0

[
cos(kθ̄m)

αk
+

sin(kθ̄m)
βk

]
(12)

Eventually, it means that αk and βk must satisfy the following equations, for 1≤ m≤ 30:
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d p
dt

N

∑
k=0

[
cos(kθ̄m)

αk
+

sin(kθ̄m)
βk

]
=

− ∂I
∂t (xm,ym, t)

cos(θ̄m) ∂I
∂x (xm,ym, t)+ sin(θ̄m) ∂I

∂y (xm,ym), t
(13)

To derive the previous equation, we have to deduce a continuous field I(x,y, t) from a discrete number of data

points Ĩ(xp,yq, tn). Diffuse Approximation (DA) has proved to be a very efficient method [19]. DA is based on the

Shepard’s interpolation method [20] which defines I(x,y, t) such as:

I(x,y, t) = ∑
p

∑
q

∑
n

Wx(x− xp)Wy(y− yp)Wt(t− tn)Ĩ(xp,yq, tn) (14)

where:

Wx(x− xp) =
exp(−(x− xp)2/R2

x)

256×42×
256

∑
p=1

exp(−(x− xp)2/R2
x)

Wy(y− yq) =
exp(−(y− yq)2/R2

y)

256×42×
256

∑
q=1

exp(−(y− yq)2/R2
y)

Wt(t− tn) =
exp(−(t− tn)2/R2

t )+ exp(−[T − (t− tn)]2/R2
t )

256×256×
42

∑
n=1

[
exp(−(t− tn)2/R2

t )+ exp(−[T − (t− tn)]2/R2
t )

]

(15)

Rx, Ry and Rt are chosen in order to control the filtering effect in each direction (trade-off between the search

of a relevant filtering effect and the risk of spoiling local information). Rx, Ry and Rt are called the sizes of the

filtering kernels, as Wx, Wy and Wt may be named “filtering kernels”. The choice for Rx and Ry is about the pixel

size (the precise value of Rx and Ry may vary from one set of data to another and it will be provided along with the

results) which means that the weighting functions act on the few pixels in the neighborhood of (x,y). The choice

for Rt is about T/10 (the precise value of Rt may vary from one set of data to another and it will be provided along

with the results) which means that one of the two exponentials in Wt is always negligible with regard to the others

(the presence of both exponentials is for taking into account the periodicity of the signal: signal from the preceding

or following period is taken into account in the interpolation/filtering process).

Eq. 14 gives a continuous form of the intensity I(x,y, t). From it, the partial derivatives ∂I
∂x (xm,ym, tn), ∂I

∂y (xm,ym, tn)

and ∂I
∂t (xm,ym, tn) can be deduced.

Then it is possible from Eq. 13 to derive the following equation for all n and m:

N

∑
k=0

[
cos(kθ̄m)

αk
+

sin(kθ̄m)
βk

]
=

− ∂I
∂t (xm,ym, tn)

d p
dt (tn)

[
cos(θ̄m) ∂I

∂x (xm,ym, tn)+ sin(θ̄m) ∂I
∂y (xm,ym, tn)

] (16)

A over-determined linear system of equations is obtained in 1
αk

and 1
βk

. The resolution is achieved by the linear

least-squares method implemented in Matlab [17].
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Actually, the problem is not really linear because xm and ym, which correspond to the location of the arterial

wall at time tn, must be updated with the values of 1
αk

and 1
βk

. In order to address this nonlinearity issue, an

iterative algorithm has been implemented. A first resolution using linear least-squares is achieved, taking xm = x̄m

and ym = ȳm in Eq. 16 for starting. Afterwards, the values of xm and ym are repeatedly updated by solving again

Eq. 16 with the linear least squares method and computing rm by integrating Eq. 12. The iterations are stopped

when solution converges.

2.6 Elastic modulus of the arterial wall

An approximate value of the elastic modulus of the artery can be deduced if the following assumptions are done:

• the pressure outside the artery is zero

• the stress in the arterial wall is uniform and equal to σ(t) = p(t)R0/h0 where p(t) is the intraluminal pressure,

R0 is the average radius and h0 is average thickness

• the strain in the arterial wall is uniform and equal to ε(t) = R(t)/R0−1, where R(t) is the average radius at

t. The average radius is computed as the radius of the disc having the same area as the cross section of the

artery.

Then, E(t) = σ(t)/ε(t) .

Actually, E is not supposed to depend on time, except if viscoelasticity is considered. Considering only elas-

ticity for this study, the elastic modulus will be deduced as the average of E(t) over time.

2.7 Finite Element modeling

In the previous section, we showed how to derive the location of the vessel wall over time. The obtained curves

represent the response of the artery to the systolic and diastolic variations of blood pressure over a heart beat.

It is interesting to verify if a similar response could be retrieved by using a Finite Element (FE) model of the

artery and its surrounding tissues.

The model is plane strain. The MRI scan of the neck cross section was segmented and meshed (Fig. 3).

Assumptions of infinitesimal strain and linear elasticity are made. Indeed, cyclic strains over a cardiac cycle

remain less than 10%, which justifies these assumptions. The CCA is modelled as a membrane with uniform

thickness and stiffness.

Viscoelasticity may be discussed but this is beyond the scope of this paper.
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In the FE model, the boundary conditions are the inner pressure in the artery. This is a dynamic computation

because pressures vary over time. An implicit resolution scheme is adopted. The model takes into account the

close jugular vein and all the surrounding soft tissues as a homogeneous soft material. All the neck cross section is

modelled, with free edges conditions for the skin. The vertebra lying in the current cross section (C6) is modelled

as a clamped rigid solid.

2.8 Measurement of blood flow (optional)

After determining the artery contour throughout the whole heart beat, it is possible to generate a mask to remove

all voxels outside it. The mask was applied to the phase maps for investigating the velocity profiles. The velocity

encoding gradient was 70 cm/s per π rad in the direction perpendicular to the plane (e.g., head-foot). The phase

of the signal was digitized with a 12 bits resolution (integer numbers between 0 and 4295). After unwrapping, the

phase was scaled to velocity for all the frames.

3 Results

An example of magnitude image is shown in Fig. 1. It was obtained at a cross section located 24 mm below the

carotid bifurcation. A region of interest of 31×31 pixel was selected around the left hand side CCA. The region of

interest contains two zones of high intensity (bright zones) which correspond to zones containing blood. They are

the internal jugular vein (largest zone) and the left CCA (with a nearly round shape).

The pressure measured by applanation tonometry for the left CCA of this volunteer is shown in Fig. 2. This

result is actually the average of the pressure measured over 10 cardiac cycles.

For applying the algorithm based on optical flow to the magnitude images, Rx and Ry were set to value 1.2 and

Rt was set to value 2. These values were determined after comparing the results obtained with different filtering

parameters (see Fig. 8).

Then, from the magnitude images and the pressure measurements, the average contour of the left CCA was

defined and its deformations over time were computed. The maximum and minimum deformations are reported in

Fig. 5. It is interesting to notice that the deformation is not a uniform swelling or shrinking all around the artery.

The part of the artery which is the farthest from the jugular vein has almost no displacement whereas the part close

to the jugular vein moves significantly towards the left. It was noticed that the same effect occurs symmetrically

for the right CCA. This means that globally, the displacements are a combination of a translation of the artery

towards the jugular vein and of an elastic cyclic shrinking/swelling.

Using the obtained displacements all around the contour of the artery, it was possible to update the contour
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all over a cardiac cycle, as shown in Fig. 6. For the 42 frames of this sequence (each frame is represented by a

sub-image in Fig. 6), it can be observed that the updated contour is in good agreement with the magnitude image

measured at each time step. Actually, the magnitude images may be processed using a segmentation algorithm

based on the watershed method [17]. This was achieved and results are shown in Fig. 7. The updated contour

obtained with the computed wall displacements is plotted in solid white line whereas the contour deduced directly

from the segmentation algorithm is plotted in blue. It can be observed that both contours are globally in agreement.

However, the precision of the segmentation algorithm is critical here because of the relatively large pixel size

compared to the size of the vessel. Because of that, contours obtained by the segmentation algorithm appear

with polygonal shapes, whereas the updated contours have a much more regular shape. Moreover, it must be

remembered that the segmentation algorithm failed several times in finding the contours in the magnitude images,

because of the poor spatial resolution and because of the proximity with the jugular vein (which has magnitude

values similar to the CCA ones). Results shown in Fig. 7 were selected for an example where the segmentation

algorithm succeeded to find the contours for all the time frames. However, in practise, a failure rate of about 5 to

10% was observed, as for example in Fig. 9 for the time frames F19 and F20.

The elastic moduli were deduced from the pressure and deformation results. The average thickness was set to

h0 = 0.5mm. This value was not measured here but the average value of another study was taken [7]. Measurement

of this value by an ultrasound technique is envisaged.

Results were obtained using the two approaches for defining the average contour C . The first approach is to use

the watershed segmentation method. This approach gives always the same result from a given MRI scan, which is

an advantage. However, the downside is that it can fail to find the contour when the gradient is poor especially in

the neighborhood of the jugular vein. This explains why there is no result for the left CCA of V2 in Tab. 1. Results

may be obtained systematically by defining the average contour manually. However, the results are user dependent

and this may result in large variations of the results, as shown in Tab. 2.

The velocity maps obtained from the MRI data are shown in Fig. 10. The variations of the average velocity

over the cardiac cycle is shown in Fig. 11. It can be observed that the velocity and the area have similar forms of

variations over the cardiac cycle. Moreover, the time of the largest velocity and the time of the largest cross section

area are similar, around 0.65 s.
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4 Discussion

4.1 Validation of wall tracking

The optimal choice for Rx and Ry was determined by comparing the radius of the deformed artery computed by the

optical flow method to the radius of the artery deduced from the images directly with the watershed segmentation

algorithm. The comparison was not possible at all the time frames because the watershed algorithm sometimes

failed in tracking the contour. However, for all the time frames for which the contour could be tracked, a value of

the radius was derived and compared to the one provided by the optical flow method. The deviation between both

radii is shown in Fig. 8 for different values of Rx and Ry. It can be noticed that the deviation is minimized for Rx =

Ry = 1.2 pixels. This explains why such a value was used for deriving the results reported in Tab. 2.

The optimal choice of Rx and Ry may vary from one scan to another and from one patient to another. An

optimal value of 0.6 was found for the other volunteer.

The choice of Rx and Ry was also investigated through the results reported in Tab. 3. It can be noticed that the

size of the filtering kernel has a significant impact on the average value. The larger the filtering kernel, the larger

the identified modulus. This can be interpreted like this: when the filtering is too large, the sharpness of the local

intensity gradient is spread and this tends to underestimate the actual gradient. Consequently, the deformation of

the artery is underestimated and this yields an overestimation of the elastic modulus. The correct modulus value

can only be deduced thanks to the information provided by Fig. 8.

In Fig. 7 and Fig. 9, the white contour is the contour that has been updated from the average contour with

the computed deformation. It is compared to the contour obtained by segmentation. As both contours compare

well over the whole cardiac cycle, this means that the deformation obtained from the optical flow approach is in

agreement with the raw MRI images.

4.2 Assumption of radial displacements

In Eq. 9, only the radial component of the wall displacements was considered. The component perpendicular to

the radial direction was neglected. Actually, results show that this second component is not zero because the there

is a rigid body motion of the artery superimposed to the radial displacement induced by the swelling/deflation. As

the artery is round, there are locations where the rigid body displacement has only a radial component (in Fig. 5,

locations where the magnitudes are minimum and maximum) and locations where the rigid body displacement is

perpendicular to the radial direction (at 90◦ of the previous locations).

Our approach only provides the component of the displacement in the direction of maximum gradient of the
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magnitude images. This direction for the artery is the direction perpendicular to the wall, i.e. approximately the

radial direction, because the magnitude varies maximally when crossing the wall perpendicularly.

However, results shown in Fig. 7 prove that, even if the second component of the displacement is not zero, it

remains negligible compared to the radial component. Indeed, by deforming the average contour with only the

radial displacement, the contours found by segmentation are recovered. The remaining disagreement between both

contours in Fig. 7 may be attributed to the second component of the displacement. Note that this does not affect

the estimation of the Young’s modulus because its derivation is only based on the changes of radius.

4.3 Sensitivity to the initial contour

It was shown that the definition of the average contour, which is an essential step of the approach, may require that

the user selects manually the points on the average magnitude image. This induces variations from one computation

to another. These variations are reported in Tab. 2 and Tab. 3. The coefficient of variation (ratio between standard

deviation and average) can vary from 4% up to 15%. A correlation was noticed between the sharpness of the

gradients at the contours in the gradient images and the coefficient of correlation. When the gradients are sharp,

the coefficient of correlation is smaller. This means that the image is less noisy around the artery and that the

contour can be tracked with a better repeatability. The sharpness of the gradient is assessed by the failure ratio of

the watershed segmentation algorithm. For instance, it was noted that the watershed segmentation algorithm failed

with a 90% ratio for the left CCA of V2. This corresponds to the largest coefficient of variation reported in Tab. 2.

4.4 Repeatability

The MRI sequence was repeated a second time on volunteer 1 (V1), providing two independent sets of data for V1.

The results in terms of elastic modulus obtained with those two sets are reported in Tab. 4. They show that there is

no significant difference between the results obtained with both sets. The difference is within the scatter induced

by the variations due to the contour uncertainty. Rigorously, the results should be compared for larger numbers

of independent data, but each sequence requires that the volunteer remains 15 min longer in the scanner, which is

prohibitive. At least the comparison for two independent sets is promising. Two independent sets of data will also

be acquired on the next volunteers in order to verify this tendency

4.5 Uncertainty

From the previous results, it seems that the main source of uncertainty is the error in defining the average contour

of the artery. This error can be attributed to the poor spatial resolution of the MRI relatively to the size of the CCA.

Indeed, the voxel size is at least of 0.4 mm. As the gradients are computed according to Eq. 5, it means that the
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value of the gradient at one pixel is affected by the magnitude value of the preceding and following pixels. Thus

the spatial resolution for tracking the contour is worse than 1 mm, which is very coarse knowing that the radius of

the CCA is less than 5 mm. Moreover, averaging the magnitude over time for deducing the average contour is a

supplementary effect that decreases the precision of contour detection. Therefore, the main source of uncertainty

is the uncertainty about the location of the average contour curve C.

Nevertheless, once the average contour curve is defined (manually or with the watershed algorithm), it has

been shown that the deformations deduced by the optical flow method seems repeatable with negligible deviations,

compared to the uncertainty induced by the definition of C. This is rather promising.

Another source of uncertainty comes from the pressure measurements. Applanation tonometry has an accuracy

of about less than 3% according to other studies [7]. Therefore, this remains small compared to the main source of

uncertainty, that is the location of the average contour curve C..

4.6 Consistency of the obtained material parameters

The modulus values reported in Tab. 2 are of correct range orders, as the elastic modulus of human arteries usually

vary between 100 and 2000 kPa [21]. Our values are somewhat larger than the values from other studies about the

CCA. Using a B-scan method, [22] found moduli of about 600 kPa on various patients. In [7], an echotracking

method was used and a 3D, nonlinear, fiber-reinforced, hyperelastic, incompressible model of the wall was identi-

fied. The model includes residual stresses, smooth muscle tone, and perivascular tethering. The results shown in [7]

prove that the stress/strain curve in the cyclic stress/strain range of the physiological conditions (corresponding to

pressure variations of about ±25 mmHg about the average blood pressure) is almost linear. Then, if one computes

the equivalent Young modulus of the model presented in [7] , it is about 500 kPa on various patients. However, a

significant role of the perivascular tissues was reported. This perivascular effect was considered separately, which

tends to lower the identified elastic properties (see section 4.8).

In [22], it was shown that the obtained modulus values could have a standard deviation of about 250 kPa. This

is almost twice larger than the standard deviations obtained by our method. This shows also that large variations

can be expected from one individual to another.

V1 has a large blood pressure amplitude (75 mmHg) indicating arterial walls stiffer than common ones, which

may explain the modulus larger than 1000 kPa.

All the pressure and deformation data are consistent. Especially, a good agreement with the segmentation

(Fig. 7 and Fig. 9) is found, indicating that the stiffness values may be correct. The only uncertainty regards the

thickness, which was not measured and chosen as 0.5 mm (a lot of measurements reported in the literature for the
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CCA are around this value).

A lot of in vitro data are available in the literature. However, in vitro data provide the response of the tissue

from zero stress up to failure, with generally an exponential shape. The elastic modulus corresponding to the

physiological behaviour can be deduced from the slope of such in vitro curves by delimiting the maximum and

minimum stress and strain between which the tissue remains in vivo. Such an approach for delimiting the phys-

iological range was recently proposed and applied to the aorta by Duprey and coauthors [23]. We applied this

approach to different in vitro stress/strain curves available for the CCA in the literature, like in [21, 24]. Results

tend to show that the elastic modulus in the physiological range of stresses lies between 500 and 1000 kPa for the

human CCA, which is well in agreement with the results reported here.

4.7 Comparison with other approaches

The advantage of the approach is that the deformation of the artery is measured across its whole cross section.

This is a real advantage compared to ultrasound techniques [7] that only provide measurements of the radius. As

the shape of the artery may not be round this is a significant advantage. This will be interesting when considering

heterogeneous arteries such as the carotid artery with an atheromatous plaque. Here we focused on healthy arteries

with thin walls for the first validation of the approach. But the potential of the approach is for thick walls with het-

erogeneities, where noninvasive elastographic techniques have to be developed for characterizing the mechanical

properties of atherosclerotic plaques [9, 25].

Compared to classical segmentation, our approach has the advantage of having a subpixel accuracy.

4.8 Comparison with the Finite Element model

It was noted that the motion of the carotid artery is the combination of a translation towards the jugular vein and a

uniform inflation (Fig. 5). The FE model was used to explain this effect. The values of the identified moduli were

input in the FE code. A Poisson ratio of 0.49 was used for the artery and the surrounding medium. A value of

E=20 kPa was used for the surrounding medium.

The FE model shows a similar distribution of the deformation all around the CCA, especially with largest

deformations on the external part close to the jugular vein (Fig. 12).

Different models were set up in order to investigate the effect of the perivascular tissues on the behaviour of the

carotid wall. It was noted that the response of the carotid to the intraluminal pressure is only affected marginally by

the perivascular tissues: if the perivascular tissues are not considered, the response is modified by less than 10%.

The effect of the mechanical properties of the jugular vein and of the fascia surrounding the carotid artery and the
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jugular vein was also investigated. The wall of the jugular vein does not affect the response. The fascia does not

change the motion of the carotid wall but it affects the deformation of the surrounding tissues. Outside the sheath

made by the facia, the strain are very attenuated.

The objective of the model here was just to compare with the experimental data. More sophisticated model for

the carotid artery, taking into account the bifurcation and fluid structure interactions with the blood, may be found

in the literature

5 Conclusion

In conclusion, a new approach has been presented for time-resolved measurements of wall deformation in human

arteries using MRI. The feasibility has been proved on an example. The purpose of the approach is to derive the

local elastic properties of the carotid artery. Repeatable results obtained on two volunteers have pointed out the

promising potential of this approach for investigating the mechanics of arterial tissues.

Applications are now envisaged on other arteries, like the aorta, for example in aneurisms or after stenting.

Regarding the carotid artery, the approach will be applied to patients having atherosclerotic plaques in order to

assess the stability of the plaques thanks to the measurement of deformations over a cardiac cycle.

Improvements of the approach are also under progress: accurate measurement of the average contour and of

the thickness of the arterial wall, coupling possibly with an ultrasound technique [7]. Moreover, improvements of

the MRI devices may also help to increase the spatial resolution of the technique for investigating small arteries

like the internal carotid artery.
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parameter V1 left V1 right V2 left V2 right
identified value 837 kPa 1052 kPa No result 896 kPa

Table 1: Obtained elastic moduli with the watershed segmented average contour.
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parameter V1 left V1 right V2 left V2 right
identified value (average) 900 kPa 1008 kPa 755 kPa 819 kPa

standard deviation 47 kPa 98 kPa 78 kPa 52 kPa
coefficients of variation 5.3 % 9.8 % 100 % 6.3 %

Table 2: Obtained elastic moduli and variations when the contour is defined manually.
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size of filtering kernel Rx=Ry=0.3 Rx=Ry=0.6 Rx=Ry=0.9 Rx=Ry=1.2 Rx=Ry=1.5
identified value (average) 534 kPa 557 kPa 664 kPa 819 kPa 1000 kPa

standard deviation 50 kPa 55 kPa 60 kPa 52 kPa 70 kPa
coefficients of variation 9.4 % 10 % 9 % 6.3 % 7 %

Table 3: Obtained elastic moduli for the right carotid artery of V2 with different sizes of the filtering kernel Rx and
Ry.
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parameter V1 left IRM1 V1 right IRM1 V1 left IRM2 V2 right IRM2
identified value (average) 1180 kPa 1340 kPa 1260 kPa 1330 kPa

standard deviation 63 kPa 131 kPa 60 kPa 180 kPa
coefficients of variation 5.3 % 9.8 % 100 % 14 %

Table 4: Comparison of the obtained elastic moduli obtained from two independent scans for the same volunteer.
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Figure 2: Example of pressure measurements
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Figure 3: 2D mesh of the neck cross section.
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Figure 5: Maximum and minimum deformations measured for the CCA.
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Figure 6: Contours of the CCA deformed using the deduced displacement values.
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Figure 7: Comparison of contours obtained by segmentation of the magnitude or by updating an initial contour
with the computed displacements.
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Figure 8: Effect of Rx and Ry on the contour detection.
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Figure 9: Comparison of contours obtained by segmentation of the magnitude or by updating an initial contour
with the computed displacements. The segmentation failed for determining the contours at frame F19 and F20
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Figure 10: Velocity maps
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Figure 11: Variations of the average velocity over a cardiac cycle. The average velocity is assessed from the MRI
data.
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Figure 12: FE results zoomed around the carotid artery
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