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Abstract

Elementary fractional transfer functions are studied in this paper. Some basic properties of elementary transfer functions of
the first kind are recalled. Then, two main results are presented regarding elementary fractional transfer functions of the
second kind, written in a canonical form and characterized by a commensurate order, a pseudo-damping factor, and a natural
frequency. First, stability conditions are established in terms of the pseudo-damping factor and the commensurate order, as
a corollary to Matignon’s stability theorem. They extend the previous result into conditions that are simpler to check. Then,
resonance conditions are established numerically in terms of the commensurate order and the pseudo-damping factor and give
interesting information on the frequency behavior of fractional systems. It is shown that elementary transfer functions of the
second kind might have up to two resonant frequencies. Moreover, three abaci are given allowing to determine the pseudo-
damping factor and the commensurate order for respectively a desired normalized gain at each resonance, a desired phase at
each resonance, and a desired normalized first or second resonant frequency.

Key words: Fractional calculus, elementary transfer function, second order, stability condition, resonance condition.

1 Introduction

Although the fractional calculus remained for a long time
purely a mathematical concept, the last two decades wit-
nessed considerable development in the use of fractional
operators in various fields. In electrochemistry for in-
stance, diffusion of charges in acid batteries is governed
by Randles models (Sabatier et al., 2006) that involve
Warburg impedance with an integrator of order 0.5.
Electrochemical diffusion, investigated in semi-infinite
planar, spherical and cylindrical media by (Oldham and
Spanier, 1974), showed to have a tight relation with
derivatives of order 0.5. In thermal diffusion in a semi-
infinite homogeneous medium, (Battaglia et al., 2001)
have shown that the exact solution for the heat equa-
tion links thermal flux to a half order derivative of the
surface temperature on which the flux is applied. Frac-
tional system modeling and identification is treated in

⋆ A preliminary version of this paper was presented at the
3rd IFACWorkshop on Fractional Differentiation and its Ap-
plications, 2008, Ankara, Turkey. Corresp. author R. Malti.
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Khemane), alain.oustaloup@ims-bordeaux.fr (Alain
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detail in (Malti et al., 2008a).

Stability of fractional systems was treated in different
contexts (linear, non linear, commensurate, non com-
mensurate, time-variant, time invariant, delayed, non
delayed, analytical, numerical) by different authors as
presented in the state of the art by (Sabatier et al., 2010b)
with more than 20 references on the subject. Fractional
orthogonal bases functions were synthesized in (Aoun et
al., 2007; Malti et al., 2004; Malti et al., 2005; Aoun,
2005; Akçay, 2008). Initial conditions problem, more dif-
ficult to tackle in the fractional case, was treated in
(Lorenzo and Hartley, 2008; Sabatier et al., 2010a) and
their own references. Time-domain simulation of frac-
tional systems was discussed in (Oustaloup, 1995; Chen
and Moore, 2002; Aoun et al., 2004; Tavazoei and Haeri,
2010) and all references therein. As shown by this quick
and non exhaustive bibliography, fractional systems are
gaining more and more interest in the scientific and in-
dustrial communities.

The main objectives of this paper are to study stabil-
ity and resonance of elementary fractional transfer func-
tions. First, some basic properties of elementary trans-
fer functions of the first kind are recalled in section 2.
Then, the main contributions of this paper are presented
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in section 3. Stability conditions of elementary trans-
fer functions of the second kind are first established in
terms of the pseudo-damping factor, as a corollary to
Matignon’s stability theorem. Then, resonance condi-
tions are determined numerically. All combinations of
the pseudo-damping factor and the commensurate or-
der, allowing to obtain a resonant transfer function, are
given. Moreover, three abaci are provided for each reso-
nant frequency allowing to obtain the pseudo-damping
factor and the commensurate order for respectively a de-
sired normalized gain at resonance, a desired phase at
resonance, and a desired normalized resonant frequency.

Fractional transfer functions

Commensurate fractional systems can be represented as
rational transfer function in sν :

H (s) =
T (sν)

R(sν)
=

M
∑

j=0

bjs
νj

1 +
N
∑

i=1

aisνi
, (1)

where the commensurate order ν > 0, is a strictly pos-
itive real number, (ai, bj) ∈ R2, M , and N are respec-
tively numerator and denominator degrees, withN > M
for strictly proper systems.

Bounded input bounded output stability of fractional
systems is considered in this paper in the sense defined by
(Matignon, 1998). The most well known stability crite-
rion for commensurate fractional systems is Matignon’s
(1998) theorem [1], who proved the stability of com-
mensurate fractional systems with commensurate orders
between 0 and 1. It allows to check system stability
straightforwardly through the location of its sν -poles in-
stead of computing the s-poles. Matignon’s theorem is
extended to commensurate orders, ν, between 1 and 2
in (Moze et al., 2005) and to any commensurate order
in the PhD thesis (Aoun, 2005). In the former reference,
the authors define a new commensurate order ν′ = ν

2

and apply the initial Matignon’s theorem on system sν
′

-
poles. The latter reference presents a more general re-
sult as the instability of fractional systems having com-
mensurate orders greater than 2 is also proven. Hence,
the extension by (Aoun, 2005) is presented below in the-
orem 1.1 together with its proof. Theorem 1.1 is used
later for determining the stability of elementary transfer
functions.

Theorem 1.1 ((Matignon, 1998) extended) A
commensurate transfer function with a commensurate
order ν, as in (1), with T and R two coprime polynomi-
als, is stable iff

0 < ν < 2 (2)

and

∀p ∈ C such that R(p) = 0, | arg(p)| > ν
π

2
. (3)

Proof: The extended stability theorem, for ν > 0, is
proven by contradiction. It will be proven below that
H(s) is unstable iff

ν ≥ 2 (4)

or

∃p ∈ C such that R(p) = 0, | arg(p)| ≤ ν
π

2
. (5)

Let {pk}k=1,2,...N denote the set of all sν-poles of H(s)
such that R(p) = 0.

The multivalued function s 7→ sν becomes an analytic
function in the complement of its branch cut line of the
complex plane. The branch cut line is chosen to be along
the negative real axis including the branching points
0 and ∞. Hence, all arguments of s are restrained to
(−π, π) and all the s-poles of H(s) are given by:

sk,ℓ = |pk|
1
ν e

j
(

arg(pk)+2ℓπ

ν

)

, for k = 1, . . . , N (6)

and ∀ℓ ∈ Z such that −π <
arg(pk)+2ℓπ

ν
< π. Addition-

ally, according to (Bonnet and Partington, 2000), H(s)
is unstable iff it has at least one s-pole in the right-half
complex plane, hence with arguments satisfying:

−
π

2
≤

arg(pk) + 2ℓπ

ν
≤

π

2
. (7)

Consequently, H(s) is unstable iff there exists an ℓ ∈ Z

satisfying (7) or:

−ν
π

2
− arg(pk) ≤ 2ℓπ ≤ ν

π

2
− arg(pk). (8)

For simplicity and without loss of generality, all argu-
ments of pk are restrained to their principal determi-
nation in [−π, π). According to ν, two cases are distin-
guished: (i) if ν ≥ 2, then ℓ = 0 always satisfies the in-
equalities in (8). Hence, H(s) has at least N unstable s-
poles, sk,0 with k = 1, 2, . . .N , obtained for ℓ = 0. (ii) if
1 < ν < 2, then the only possible value of ℓ which might
satisfy (8) is ℓ = 0 iff 0 is in the interval defined by (8),
i.e. provided | arg(pk)| ≤ ν π

2 . This completes the proof
of instability of H(s) iff conditions (4) or (5) are satis-
fied and by contradiction the proof of stability of H(s)
iff conditions (2) and (3) are satisfied. �

When plotting the frequency response of H(s), the fac-
torized form is generally preferred as it shows the contri-
bution of every elementary transfer function of the first
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kind (equivalent to first order transfer function when
ν = 1)

F1(s) =

((

s

ωn

)ν

+ 1

)±1

(9)

and every elementary transfer function of the second
kind (equivalent to second order transfer function when
ν = 1)

F2(s) =

(

(

s

ωn

)2ν

+ 2ζ

(

s

ωn

)ν

+ 1

)±1

(10)

as they appear in terms of every natural frequency ωn

and the ζ parameter, referred to as a pseudo-damping
factor (ζ is a damping factor only if ν = 1). When two
complex conjugate sν-poles are present in the commen-
surate fractional transfer function (1), the representa-
tion using elementary transfer functions of the second
kind (10) must be used as the transfer functions of the
first kind contain only real-valued parameters.

(Hartley and Lorenzo, 1998) studied the time response
of elementary transfer functions of the first kind. More-
over, (Sabatier et al., 2003) examined the time-domain
performances (maximum overshoot and settling time)
of elementary transfer functions of the first and of the
second kind in terms of the differentiation order ν and,
for the transfer function of the second kind, the pseudo-
damping factor ζ (denoted cos(θ) in (Sabatier et al.,
2003)).

2 Stability and resonance of elementary trans-
fer functions of the first kind

Some basic properties of elementary transfer functions
of the first kind

F1(s) =
1

(

s
ωn

)ν

+ 1
, (11)

with ωn > 0, are recalled in this section. Since ωn > 0,
F1(s) is stable iff (2) is satisfied.

Regarding resonance conditions, define Ω = ω
ωn

as
the normalized frequency. Hence, the gain in dB of
F1(jΩωn) = |F1(jΩ)|dB is given by:

|F1(jΩ)|dB = −10 log
(

1 + 2 cos
(

ν
π

2

)

Ων +Ω2ν
)

.

(12)

In case F1(s) is resonant, |F1(jΩ)|dB has at least a
maximum at a positive normalized frequency. Hence,

d|F1(jΩ)|dB
dΩ = 0 has a real and strictly positive solution

corresponding to that maximum at:

Ων
r = − cos

(

ν
π

2

)

, (13)

provided the following resonance condition is satisfied:

1 < ν < 2. (14)

The gain and the phase at resonance are respectively
obtained by substituting (13) in (12) and in (11):

|F1(jΩr)|dB = −20 log
(

sin
(

ν
π

2

))

, (15)

arg (F1(jΩr)) = (1− ν)
π

2
. (16)

3 Stability and resonance of fractional transfer
functions of the second kind

Two important results are presented in this section.
First, stability conditions of elementary transfer func-
tions of the second kind are established in terms of the
pseudo-damping factor and the commensurate order,
as a corollary to Matignon stability theorem. Then,
resonance conditions are established numerically.

The canonical form of an elementary transfer function
of the second kind is given by:

F2(s) =
1

1 + 2ζ
(

s
ωn

)ν

+
(

s
ωn

)2ν , (17)

with ζ ∈ R, ωn > 0, and ν > 0.

The properties of rational second order transfer function,
(17) with ν = 1, are well known: (i) it is stable if the

damping factor ζ > 0, (ii) it is resonant if 0 < ζ <
√
2
2 ,

(iii) it has two complex conjugate poles if 0 < ζ < 1, (iv)
it has a real double pole if ζ = 1, (v) it is overdamped if
ζ > 1. How do these properties generalize to elementary
transfer functions of the second kind, with ν 6= 1? This
is the main concern of the paper.

3.1 Stability of fractional transfer functions of the sec-
ond kind

Stability of fractional transfer functions of the second
kind is presented here as a corollary to theorem 1.1.

Corollary 3.1 The transfer function (17) is stable iff:

0 < ν < 2 and ζ > − cos
(

ν
π

2

)

. (18)
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Proof: the key idea to prove corollary 3.1 is to compute
both sν -poles of (17), and then to evaluate their argu-
ments depending on ζ and ν, and finally to find condi-
tions for which these arguments satisfy the inequality (3)
of theorem 1.1. A complete proof is presented in (Malti
et al., 2008b). �

This corollary is in accordance with the rational case, as
it is well known that a second order transfer function, as
in (17) with ν = 1, is stable iff ζ > 0.

3.2 Resonance of fractional transfer functions of the
second kind

Define, as previously, Ω = ω
ωn

as the normalized fre-

quency. Hence, the gain in dB of F2(jΩωn) = |F2(jΩ)|dB
is given by:

|F2(jΩ)|dB = −10 log
[

Ω4ν + 4ζ cos
(

ν
π

2

)

Ω3ν+

2
(

2ζ2 + cos (νπ)
)

Ω2ν + 4ζ cos
(

ν
π

2

)

Ων + 1
]

. (19)

In case F2(s) is resonant, |F2(jΩ)|dB has at least a max-
imum at a positive normalized frequency. Hence,

d|F2(jΩ)|dB
dΩ

= 0 ⇒ Ω3ν + 3ζ cos
(

ν
π

2

)

Ω2ν+

(

2ζ2 + cos (νπ)
)

Ων + ζ cos
(

ν
π

2

)

= 0 (20)

has at least one real and strictly positive solution corre-
sponding to that maximum. One can check easily that
for rational systems, with ν = 1, (20) reduces to Ω3 +
(

2ζ2 − 1
)

Ω = 0, which strictly positive solution is given,

as expected, by Ωr =
√

1− 2ζ2, provided that the fol-

lowing known condition is satisfied ζ <
√
2
2 .

The third order equation in Ων (20), can have positive
real-valued, negative real-valued or complex-valued so-
lutions. The number of resonant frequencies of the stud-
ied system, zero one or two, depends on the number of
strictly positive real-valued solutions corresponding to
maxima of |F2(jΩ)|. Care must be taken, because some
of the strictly positive solutions correspond to minima of
|F2(jΩ)|, especially when a double resonance is present,
then the gain has a minimum between the two maxima
(see example 2).

Solving (20) analytically is not an easy task. A numer-
ical solution is obtained for various combinations of ν
and ζ and plotted in Fig. 1. The gray region numbered
0 represents combinations of ν and ζ which produce non
resonant systems. The yellow and the green regions num-
bered 1 and 2 represent combinations of ν and ζ which
produce resonant systems with respectively one and two
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Fig. 1. Stability and resonance regions of the fractional sys-
tem (17) in the ζ versus ν plane

resonant frequencies. The red region numbered 3 repre-
sents combinations of ν and ζ which produce unstable
systems. As shown in Fig. 1, when the fractional trans-
fer function is resonant, it may have one or two resonant
frequencies depending on the combinations of ν and ζ.
Indeed, when ζ > 1, the fractional transfer function of
the second kind may be decomposed into two fractional
transfer functions of the first kind having two modes.
Either both are resonant or only one depending on ζ
and ν. Hence, the main properties of fractional transfer
functions of the second kind, deduced from Fig. 1, are
summarized below.

• if 0 < ν ≤ 0.5 and − cos ν π
2 < ζ < 0 ⇒ the stable

transfer function F2(s) in (17) is always resonant,
• if 0 < ν ≤ 0.5 and 0 ≤ ζ ⇒ the stable transfer func-
tion F2(s) is never resonant (for ζ = 0 it can straight-
forwardly be proven that (20) has no strictly positive
solution),

• if 0.5 < ν ≤ 1 and − cos ν π
2 < ζ < ζ0 where ζ0 is com-

puted numerically and plotted in Fig. 1 as the upper
contour of the resonance yellow region numbered 1 in
the interval ζ ∈ (0.5, 1]⇒ the stable transfer function
F2(s) is resonant. In the particular case of rational

systems, with ν = 1, ζ0 =
√
2
2 ,

• if 0.5 < ν ≤ 1 and ζ0 ≤ ζ ⇒ the stable transfer
function F2(s) is never resonant,

• if 1 < ν < 2 and − cos ν π
2 < ζ ⇒ the stable transfer

function F2(s) is always resonant,
• if ν1 < ν < 2 and ζ1 < ζ where ν1 and ζ1 are computed
numerically and plotted as the lower-left contours of
the upper-right green region numbered 2 of Fig. 1 ⇒
the stable transfer function F2(s) has two resonant
frequencies.

Three abaci are given for each normalized frequency al-
lowing to determine the pseudo-damping factor and the
commensurate order: (i) for a desired normalized first

4
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Fig. 3. Abacus – Gain at the first normalized resonant fre-
quency versus ζ, for different values of ν

resonant frequency in Fig. 2, (ii) for a desired normalized
gain at the first resonant frequency in Fig. 3, (iii) for a
desired phase at the first resonant frequency in Fig. 4,
(iv) for a desired normalized second resonant frequency,
when it exists, in Fig. 5, (v) for a desired normalized
gain at the second resonant frequency, when it exists, in
Fig. 6, (vi) for a desired phase at the second resonant
frequency, when it exists, in Fig. 7.

3.3 Numerical examples

The first example shows how to use the abaci to set up a
resonant transfer function of the second kind with a pre-
scribed gain at resonance. The second example points
out a behavior particular to fractional systems of the
second kind that is the presence of two resonant frequen-
cies.
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Fig. 4. Abacus – Phase at the first normalized resonant fre-
quency versus ζ, for different values of ν
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Example 1 Assume one wants to get a resonant trans-
fer function with a commensurate order of ν = 0.4, a

normalized gain at resonance of
∣

∣

∣

F (jωr)
F (j0)

∣

∣

∣

dB
= 13.3dB, a

resonant frequency at ωr = 103 rad/Sec, and a steady
state gain of 0dB. Then from the abacus of Fig. 3, one
deduces that the pseudo-damping factor must be set to
ζ = −0.7. Next, from the abacus of Fig. 2, one deduces
that the normalized frequency equals Ωr = ωr

ωn
= 0.93

rad/Sec. Hence, the natural frequency,ωn, must be set to
1075 rad/Sec. The Bode diagram of the obtained trans-
fer function:

F (s) =
1

1− 2× 0.7
(

s
1075

)0.4
+
(

s
10752

)0.8 , (21)

plotted in Fig. 8, confirms that F (s) complies with the
specifications of the example. Moreover, using the aba-
cus of Fig. 4 one can deduce that the phase at resonance
equals −27◦. In this case, one can easily check that the
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tud
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Fig. 9. Step response of F (s) with ζ = −0.7 and ν = 0.4

equation (20) reduces to:

Ω1.2 − 1.70Ω0.8 + 1.30Ω0.4 − 0.57 = 0, (22)

and that the only strictly positive real-valued solution is
at Ωr = 0.93. The step response, plotted in Fig. 9, is un-
derdamped as expected due to the resonant frequency 1 .

Example 2 Consider now the combination ν = 1.9,
and ζ = 2, located in the green region numbered 2 of
Fig. 1. The transfer function (17) presents a double res-
onance. In this case, equation (20) reduces to:

Ω5.7 − 5.93Ω3.8 + 8.95Ω1.9 − 1.98 = 0, (23)

and has three real-valued solutions Ωr1 = 0.50, Ωr2 =
1.47, Ωr3 = 1.96. As shown in Fig. 10, Ωr1 corresponds
to a resonance, Ωr2 to a minimum, and Ωr3 to a sec-
ond resonance. When a system presents two resonant
frequencies, it always has a minimum between these
two maxima. The resonant frequencies Ωr1 and Ωr3 are
pointed out in the abaci of Fig. 2 and Fig. 5. The am-
plitudes at the two resonant frequencies equal 16.7 and
−5.9 dB as shown in the abaci of Fig. 3 and Fig. 6. The
phases at the two resonant frequencies equal −86◦ and
−240◦, in accordance with the abaci of Fig. 4 and Fig.
7. Moreover, the step response, plotted in Fig. 11, is un-
derdamped as expected due to the resonant frequencies.

4 Conclusion

Elementary fractional transfer functions are studied in
this paper. First, stability and resonance conditions of
elementary transfer functions of the first kind are re-
called. Then, the main results of the paper are presented.
A corollary to Matignon’s theorem is established for the
stability of elementary transfer functions of the second

1 For time-domain simulations, the fractional transfer func-
tions are approximated by rational transfer functions in the
frequency band [0.01, 100] with 10 cells using (Oustaloup,
1995) method, then standard continuous-time simulation al-
gorithms are applied on the rational approximation.
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Fig. 11. Step response for ζ = 2 and ν = 1.9

kind in terms of the pseudo-damping factor and the com-
mensurate order. It extends the previous stability re-
sults to a condition simpler to check. Moreover, reso-
nance conditions are established numerically in terms of
the pseudo-damping factor and the commensurate order
and plotted in Fig. 1, which shows that some combina-
tions of ζ and ν yield two resonant frequencies. Further-
more for each resonant frequency, three abaci are given
allowing to determine the pseudo-damping factor and
the commensurate order for respectively a desired nor-
malized gain at resonance, a desired phase at resonance,
and a desired normalized resonant frequency. Further in-
sights related to elementary transfer functions and the
computation of their H2-norm are presented in (Malti
et al., 2011).
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