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ABSTRACT
Currently parallel robots are finding more and more accep-

tance in high-speed pick-and-place operations. As for all high-
speed mechanisms, vibratory phenomena appear and deteriorate
accuracy and dynamic performance at the terminal positions of
the pick-and-place path. This paper aims to evaluate the effec-
tiveness of several pick-and-place trajectories in terms of vibra-
tion reduction. To address this problem, an elastodynamic model
of a five bar mechanism is developed and its behaviour is simu-
lated as it traverses each trajectory. Spectral analysis of the vi-
brations allows the quality of the vibration reduction to be quan-
tified. The results show that the first and second natural frequen-
cies of the system are excited. It is also shown that long cycle
times with smooth motion profiles improve residual error norms,
but are outperformed by their discontinuous counterparts when
short cycle times are imposed.

1 INTRODUCTION
Nowadays parallel robots are used more and more in high-

speed pick-and-place operations. The drive for higher opera-
tional speeds and higher payload-to-weight ratios is shifting their
designs to more lightweight architectures [?, ?]. The fastest
industrial robot, the Quattro by Adept Technologies Inc. [?],
reaches more than 15g’s of acceleration, allowing up to 4 stan-
dard pick-and-place cycles to be performed per second. How-

FIGURE 1. Pick-and-place trajectory.

ever, as for all high-speed mechanisms, vibratory phenomena ap-
pear that deteriorate accuracy and dynamic performance.

The pick-and-place operation is commonly used by indus-
trial robots involved in both primary handling and case pack-
ing [?,?]. The procedure transfers an object from one position to
another in a workspace [?]. This standardized geometric path is
referred to as the Adept cycle and its most used dimensions are
h = 25mm and l = 350mm [?].

The standard adept cycle, shown in Fig. 1, has square
corners that introduce discontinuities in acceleration when tra-
versed. To overcome these discontinuities, extremely high
torques must be generated at the actuators, this, coupled with the
inertial effect of the moving system, give rise to unwanted vi-
brations. To avoid these discontinuities the Adept cycle is made
smooth by introducing blends at the corners [?, ?].
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FIGURE 2. Rigid Geometric Model

The rate at which the geometric path is followed is also a
source of vibration. The motion profile must be well chosen and
designed to minimize excitation of resonances in the structure.
The coupling of the geometric path and the motion profile gives
rise to the trajectory. Thus, one question arises: what should be
the best pick-and-place path for high-speed robots that minimize
their vibrations? To the best of our knowledge, this question has
not been answered yet.

As a result, this paper aims to define an optimal motion gen-
erator based on the Adept typical cycle for the reduction of vi-
brations in high speed parallel robots performing pick-and-place
operations. Vibrations must be reduced by carefully planning the
displacements of the end effector. This study is performed on a
five-bar mechanism (Fig. 2) [?]. This parallel robot may be seen
as the combination of two kinematic chains, each composed of
two revolute joints that are linked at the end-effector by a revo-
lute joint. The rigid case assumes that the end effector position
X is known, and hence the joint variables for each leg may be
found.

The work firstly develops an elastodynamic model using the
method of assumed modes according to the Lagrangian formula-
tion [?, ?, ?, ?]. Secondly input trajectories are designed, defin-
ing the desired end effector motion along the pick and place
path. Lame, clothoid-pair and polar polynomial blends are intro-
duced to smoothen the geometric paths. Seventh degree polyno-
mials, bang-bang and trapezoidal profiles are used for sampling
thereby generating the trajectories. Lastly simulations are done
in Simulink to excite the five-bar mechanism along the trajecto-
ries, vibrational results are obtained and discussed. The simula-
tions are based on industry standards and reveal the vibrational
effect of the deformations arising from inertial forces. Spectral
analysis of the vibrations show that the first and second natural
frequencies of the system are excited. It is shown that long cycle
times with smooth motion profiles improve residual error norms,
but are outperformed by their discontinuous counterparts when
short cycle times are imposed.

FIGURE 3. Generalized coordinates for each beam, qe = [qex qey ]
T

2 ELASTODYNAMIC MODELING OF ROBOTS
Various elastodynamic modeling techniques available to de-

velop the Lagrangian formulation; Finite Element Modeling rep-
resents each link as an assembly of a finite number of elements
[?]. Linear finite elements make use of polynomial interpola-
tion functions to characterize a link’s elastic behaviour [?, ?].
Boundary conditions, changes in geometry and physical prop-
erties can be easily accounted for with this method [?]. Lumped
Parameter Modeling discretizes links into a series of rigid bod-
ies connected by linear springs introducing the flexible features
to the model [?, ?]. Assumed Modes Modeling describes flexi-
ble displacements by a truncated modal series, in terms of spatial
mode eigen functions and time-varying mode amplitudes [?, ?].
The truncated modal series refers to a subgroup of trigonometric
functions each depicting the physical modal behaviour of links or
beams. This formalism is well-fitted for mechanisms with sim-
ple link shapes, such as parallel robots. As a result, this approach
will be used for the elastodynamic modeling of the considered
five-bar mechanism.

Beam Deflection Modeling
Let us first define the shape functions, Φ of the robot links.

They are coupled with time varying elastic coordinates qe in or-
der to characterize the link deflections [?, ?]. In bending, these
deflections are perpendicular to the undeformed axial direction
of the beam, whereas they are collinear with this axis in tension-
compression deformation (Fig. 3). If k modes of deformations
are taken into consideration, the vector Φ is of size 1× k.

It is assumed that actuated proximal links are rigidly con-
nected to actuators, as such, these links are modeled as beams
in bending [?]. For these links, clamped free boundary condi-
tions apply and the k-th mode shape function has the following
expression:

φ jk(ξ ) =sin(αkl jξ )+ak cos(αkl jξ )

− sinh(αkl jξ )−ak cosh(αkl jξ )
(1)

where

ak and αkl j: are modal parameters for mode k
ξ = x

l j
: l j is length of link j and x is the position along the axial

direction of the beam

The first three modal parameters are considered for modeling, the
modal parameters are given in Table 1 [?]. Passive distal links
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TABLE 1. Modal parameters for bending deformation

Mode ak αkl j

1 -1.3622 1.8751

2 -0.98186 4.6941

3 -1.0008 7.8548

are assumed to be pin-connected, and are thus only loaded in the
axial direction. The mode shapes associated with this boundary
condition are:

φ jk(ξ ) = sin
(
(2k−1)

π

2
ξ

)
(2)

where

ξ =
x
l j

: l j is length of link j and x is the position along the axial

direction of the beam

Having introduced the assumed modes method of modeling and
the relevant shape functions, the inertial and stiffness matrices
may now be developed.

Lagrangian Formulation
The Lagrange equations are used to derive the elastody-

namic model as it is readily applied to the analysis of closed
loop structures. The Lagrangian formulation equates the non-
conservative forces acting on the system to the change of energy
in the system [?]. The Lagrangian L is defined as the difference
between the kinetic energy E and the potential energy U :

L = E−U (3)

The formulation of the Lagrangian terms are shown in the follow-
ing equations. In these equations, xA and yA denote the position
of the beam extremity, θ the beam orientation and qe the set of
elastic coordinates representing the deformation of the distal end
of the beam (Fig. 3).

Kinetic Energy
The kinetic energy of a elastic beam, j, is expressed using

the shape functions [?, ?, ?]:

E =
1
2

∫ l j

0
ṙT

MṙMdx (4)

In the above equation, ṙM corresponds to the velocity of a point
M on the beam and is defined according to the type of deforma-
tion modeled on the beam. The position of the point M on the
deflected beam can be expressed in the global reference frame as
follows (see Fig. 3):

rM =

[
xA j

yA j

]
+R(θ j)

[
l jξ

0

]
+R(θ j)

[
ux j(ξ , t)
uy j(ξ , t)

]
(5)

where

xA j and yA j : Locate the base of link j
R(θ j): Rotation matrix orientating the beam at an angle θ j

ux j(ξ , t) and uy j(ξ , t): Beam deflections at position ξ and
time t.

Upon differentiation of Eqn. (5) with respect to time, the
velocity of the point M, for a beam in pure bending (deformation
only being allowed in uy j(ξ , t), i.e. ux j(ξ , t) = 0) may be found:

ṙM =

[
1 0 −Φyqeyj

0
0 1 l jξ Φy

]
˙xA j

˙yA j

θ̇ j
q̇eyj

 (6)

This results in the following mass matrix, dimensioned according
to the number of generalized coordinates:

Mj = m j

∫ 1

0


1 0 −Φyqeyj

0
0 1 l jξ Φy

−qeyj
T Φy

T l jξ (l jξ )
2 l jξ Φy

0 Φy
T l jξ Φy

T
Φy

T
Φy

dξ (7)

Similarly, the inertia matrix of a beam in tension and compres-
sion may be found. Here, deformation is only allowed in ux j(ξ , t)
and so uy j(ξ , t) = 0:

ṙM =

[
1 0 0 Φx
0 1 l jξ +Φxqexj

0

]
ẋA j

ẏA j

θ̇

q̇exj

 (8)

Resulting in the following inertia matrix:

Mj = m j

∫ 1

0


1 0 0 Φx
0 1 l jξ +Φxqexj

0
0 l jξ +qexj

T Φx
T

∆ 0
Φx

T 0 0 Φx
T

Φx

dξ

(9)with,
∆ = (l jξ )

2 +2l jξ Φxqexj
+qexj

T Φx
T

Φxqexj

Elastic Potential Energy
The stiffness matrix, Kj, in Eqn. (4) is necessary for the

evaluation of the elastic potential energy of a elastic beam. For
beams in bending [?]:

Kyj =
EI j

l3
j

∫ 1

0

(
∂ 2uy(ξ , t)

∂ξ 2

)2

dξ (10)

Considering the first three modes of deformation, the stiffness
matrix of a beam in pure bending is expressed as the diagonal
matrix Ky:

Kyj =
EI j

l3
j

∫ 1

0



(
∂ 2φy1 (ξ )

∂ξ 2

)2

0 0

0
(

∂ 2φy2 (ξ )

∂ξ 2

)2

0

0 0
(

∂ 2φy3 (ξ )

∂ξ 2

)2


dξ

(11)
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Similarly for beams in tension and compression:

Kxj =
EA j

l j

∫ 1

0

(
∂uy(ξ , t)

∂ξ

)2

dξ (12)

Thus, for the first three modes:

Kxj =
EA j

l j


∫ 1

0

(
∂φx1 (ξ )

∂ξ

)2
dξ 0 0

0
∫ 1

0

(
∂φx2 (ξ )

∂ξ

)2
dξ 0

0 0
∫ 1

0

(
∂φx3 (ξ )

∂ξ

)2
dξ


(13)

Gravitational Potential Energy Finally the gravita-
tional potential energy may be assessed. The gravitational poten-
tial energy Vg j for beam j is determined at the beam mid-point
using the mass m j of the link:

Vg j =
∫

m
gT−−→OM∗ jdm = m jgT

∫ 1

0

−−→
OM∗ jdξ (14)

with
−−→
OM∗ j:

−−→
OM j =

[
xA j

yA j

]
+R

[ l j
2
0

]
︸ ︷︷ ︸

−−→
OM j

+R
[

ux j(ξ , t)
uy j(ξ , t)

]
︸ ︷︷ ︸

−−−→
MM∗ j

(15)

with ux j = φx j(ξ )qexj
, uy j = φy j(ξ )qeyj

, and g = [0− g]T , the
term for the gravitational effects can be found from:

Vgj = mjg(yA j +
l
2

sin(θ j)+αqej) (16)

where α is a vector depending on θ j.

Equations of Motion
The dynamics of the complete system with n links may be

solved by creating the total inertia and stiffness matrices, Mtot
and Ktot. These matrices are block diagonal matrices formed by
elements M1 to Mn and Ktot1 to Ktotn respectively. Note that:

Ktotj =

[
03×3 0

0 Kj

]
The Lagrangian formulation of the elastodynamic problem for
closed loop robots is developed from the Lagrangian defined in
Eqn. (3).

F =
d
dt

[
∂L
∂ q̇

]T

−
[

∂L
∂q

]
+Ψ

T
q λ (17)

where,

F : is the vector sum of nonconservative external forces. In the
absence of external forces this equals the joint torques, τ

q = [q1,q2, . . . ,qn]
T , refers to the concatenation of the general-

ized coordinate vectors of each beam in the system, and,
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FIGURE 4. Elastic Geometric Model

qj = [xA j ,yA j ,θ j,qej ]
T

Ψq =
∂Ψ

∂q
is c× N matrix with c the number of constraints

and N the total number of generalized coordinates. Ψ =
[CT BT AT ]T , where the expressions of matrices A, B
and C are derived in the next section

λ : is a c×1 vector of Lagrange multipliers

The Ψq matrix is referred to as a Jacobian matrix in robotics
literature and is responsible for the loop closure equations.

Constraint Equations
The constraint equations for the five bar mechanism are

needed to solve for the terms of Ψq: A, B and C. Referring
to Fig. 4, the matrices correspond to the following groups:

1. A - passive coordinates
qp =

[
x12 y12 θ12 x22 y22 θ22 x y

]T
2. B - elastic coordinates

qe =
[

qe11 qe12 qe21 qe22

]T
3. C - actuated coordinates, with q11 = θ11 and q21 = θ21

qa =
[

q11 q21
]T

The coordinates [xi j,yi j] refer to the base coordinates of beam
j in branch i, θi j refers to the orientation of the beam within
the global frame. The vector qeij refers to the set of deflection
coordinates at the distal end of the beam. For the mechanism
under consideration, the following constraint equations should
be taken into account (Fig. 4):[

f1
f2

]
= 0 =

[
x
y

]
−

[
x12
y12

]
− l12

[
cosθ12
sinθ12

]
−R(θ12)

[
ux12
uy12

]
[

f3
f4

]
= 0 =

[
x
y

]
−

[
x22
y22

]
− l22

[
cosθ22
sinθ22

]
−R(θ22)

[
ux22
uy22

]
[

f5
f6

]
= 0 =

[
x12
y12

]
−

[
−a
0

]
− l11

[
cosq11
sinq11

]
−R(q11)

[
ux11
uy11

]
[

f7
f8

]
= 0 =

[
x22
y22

]
−

[
a
0

]
− l21

[
cosq21
sinq21

]
−R(q21)

[
ux21
uy21

]
(18)
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the rotation matrices being defined as follows:

R(θ) =

[
cosθ −sinθ

sinθ cosθ

]

For assumed modes, the deformations ux and uy are expressed in
terms of the shape functions and elastic deformations:

ux = Φx(ξ )qex(t) uy = Φy(ξ )qey(t)

Matrices A, B and C can thus be derived as:

A =
∂ f

∂qp
,B =

∂ f
∂qe

,C =
∂ f

∂qa
(19)

with f = [ f1, f2, ..., f8]
T .

Direct and Inverse Dynamic Models
The preceding equations may be used to develop the direct

and inverse dynamic models of the closed loop robot. In the
direct dynamic model, the generalized efforts τ are known and
the independent coordinate accelerations q̈i = [q̈a, q̈e] are sought.
In the inverse dynamic problem, q̈a is known and the required
efforts τ and emergent q̈e are sought.

3 TRAJECTORY DESIGN
Geometric Path

In this section geometric paths and motion profiles from
which various trajectories may be generated are introduced. The
following paths are used to smoothen the corners of the Adept
cycle (see Fig. 5):

1. Clothoids; These curves are the time optimal solution for
given constraints in jerk [?], [?]

2. Polar polynomials; they are expressed with closed form
equations and represent the simplest blending approach [?]

3. Lamé Curves; contrary to the other types of curves, they
allow a parametrization in Cartesian coordinates and are an-
alytic along the required path being limited to the first quad-
rant [?] (in the remainder of the paper, Lamé Curves or order
3 are used)

An overlay of the three geometric paths is shown in Fig. 6,
table 2 shows the lengths of the generated curves for d = e =
0.25m. It can be seen that the Lamé curve generates the longest
blending length while the polar polynomial generates the shortest
one.

A motion profile is a monotonic function in s describing the
movement of the end effector along the geometric path:

X(t) = s(t)
(
X f −Xi

)
+Xi (20)

where

X represents the position at time t

FIGURE 5. Adept half cycle using a Lamé curve [?]
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FIGURE 6. Blending sections for the adept cycle

X f is the final position, and,
Xi is the initial position

A trajectory should be defined such that its acceleration pro-
file is continuous. Pragmatism in industry however adopts pro-
files with discontinuities as they provide faster cycle times.

The motion profiles are designed to vary between s = 0 and

s = 1, as a function of the normalized time η =
t
t f

(t f represents

the cycle time). The motion profiles are designed with respect
to this cycle time t f , the basis from which the necessary veloci-
ties and accelerations of the particular motion profile are found.
These profile dictate the rate at which the end-effector follows
the geometric path. In the remainder of this paper, the following
profiles are investigated [?] (see Fig. 7):

1. Seventh degree polynomial profiles
2. Trapezoidal velocity profiles
3. Bang-bang acceleration profiles

4 CASE STUDIES
Five Bar Mechanism Model

The parameters of the five bar mechanism under study are
given in Table 3. The assumed modes model was compared to
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TABLE 2. Blending lengths for geometric paths

Curve Type Length [mm] Curve Type Length [mm]

Lamé 42.156 Extended Lamé 59.307

Clothoid 41.333 Extended Clothoid 57.015

Polar 41.106

TABLE 3. Parameters of the modeled five bar mechanism
Links li j Length [m] Di j Diameter [d]

11,21 0.24 0.035

12,22 0.38079 0.035

Other Parameters

Material Aluminium

ρ Density [kg/m3] 2710

Y Young’s Modulus [GPa] 70
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FIGURE 7. Motion profiles generated for t f = 1

a finite element model built in Castem [?]. Confidence in the
model was ascertained by validating the natural frequencies and
loaded deformations of the system.

Trajectory Characteristics
In this section, the effect of transversing a particular geomet-

ric path with a given motion profile is studied.
The profiles and paths listed in Table 4 allow 12 different

path-profile combinations to be analyzed. At this point, the mo-
tion profiles are generated for a cycle time of 1 second, various
characteristics of the generated trajectories may then be inves-
tigated. The 1

4 and 1
8 trapezoidal profiles refer to acceleration

TABLE 4. Tested motion profiles and geometric paths

Motion Profiles Geometric Paths

7th order polynomial Lamé curve

Bang-bang Clothoid pair
1
4 Trapezoidal Polar polynomial
1
8 Trapezoidal

TABLE 5. Task space acceleration comparison

Acceleration [m/s2]

Motion Profiles Lamé Clothoid Polar

7th order polynomial 7.7818 7.3686 7.0384

Bang-bang 5.1687 4.7268 4.4662
1
4 Trapezoidal 6.8895 6.2916 5.9544
1
8 Trapezoidal 11.8115 10.7638 10.0453

durations of t f
4 and t f

8 respectively.

Task Space Table 5 shows a comparison of the accelera-
tion characteristics of each desired trajectory in the task space. A
trend that can be observed is that the Lamé curve requires higher
accelerations because it has the longest curve length (Table 2).

Joint Space The effect of trajectory following on the five
bar mechanism in the joint space is now investigated. The joint
trajectories are computed with the inverse geometric model and
are assessed with respect to:

1. motion profile - geometric path combinations
2. cycle times
3. blending lengths

Figure 8 shows the articulated joint displacements for the tra-
jectory plotted in Fig. 9 and for t f = 1. The spectral content of
each signal in acceleration is determined. The figure shows the
Power Spectral Density (PSD) function of each signal. This dis-
tribution of energy is important as it gives an indication to the
extent whereby the resonance frequencies of the structure will
be excited by each trajectory. It can be observed that the spec-
tral content of the 7th degree polynomial is much more forgiving
than those of the trapezoidal and bang-bang profiles.

The features of each trajectory in the task space are shown
in Table 6. Figures 10 and 11 show the effect of varying the cy-
cle time and the blending length d. As expected, decreasing the
cycle time t f inflates the energy content at all frequencies. Fur-
thermore, the shorter the blending length, and thus, the sharper
the corner, the higher the energy content of the input signal.

Trajectory Discussion It is clear that there is a trade-
off between the cycle time and the amount of energy distribu-

6
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TABLE 6. Joint space acceleration comparison

Acceleration [rad/s2]

Motion Profiles Lamé Clothoid Polar

7th order polynomial 25.0858 25.3279 21.2023

Bang-bang 16.4343 16.4834 13.7179
1
4 Trapezoidal 21.8879 21.9759 18.1215
1
8 Trapezoidal 37.432 37.6681 30.9457

tion in the trajectory signals. The following conclusions may be
drawn:

1. Shorter curve lengths require lower accelerations
2. Lower cycle times require higher accelerations and increase

the spectral content of the signal at all frequencies
3. Sharp corners increase the spectral content of the signal at
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FIGURE 10. Spectral content for seventh-lamé trajectories for cycle
times of t f = 1, t f = 0.5 and t f = 0.25
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FIGURE 11. Spectral content for seventh-lamé trajectories for sym-
metric blending lengths of d = 25mm, d = 12.5mm and d = 6.125mm

all frequencies

In the upcoming section the elastodynamic model of the five bar
mechanism will be excited with the trajectories discussed in this
section.

It is assumed that a perfect controller is available. The in-
verse elastodynamic model is used to evaluate the vibratory per-
formance of the five bar mechanism as it traverses the various tra-
jectories. The simulations are conducted for a payload of 0.1kg
and 6.0kg. The simulation is run at a sampling frequency of
10MHz. Note that gravity is taken upwards.
The following results will be presented and discussed:

1. Trajectory following in the task space
2. Required joint torques
3. Excited vibrations

7



TABLE 7. Performances comparison along the generated trajectories

Lamé Clothoid Polar

Motion Profiles Torque [Nm]

7th order polynomial 73.634 70.046 71.298

Bang-bang 56.084 50.848 50.734
1
4 Trapezoidal 75.208 74.605 62.496
1
8 Trapezoidal 125.45 124.45 119.16

Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 2.7168 3.3724 6.641

Bang-bang 4.5245 4.7786 5.4098
1
4 Trapezoidal 6.0193 6.3989 8.6868
1
8 Trapezoidal 10.572 10.731 13.865

Motion Profiles Max Deflection [mm]

7th order polynomial 0.09700 0.09226 0.09392

Bang-bang 0.07387 0.06696 0.06681
1
4 Trapezoidal 0.09911 0.09832 0.08233
1
8 Trapezoidal 0.16540 0.16408 0.13813

4. Spectral content of the vibratory signal

Simulation Set 1: 6.0kg, t f = 0.43s
Vibrational Domain

With a payload of 6kg, a frequency analysis along the geo-
metric curve reveals that the first natural frequency of the robot
varies with ±1Hz about 58Hz.

From Table 7, it can be seen that high input accelerations,
and thus high torques, correspond to the highest deflections,
while the opposite is true for low input accelerations. From
the investigation, it can be seen that the vibratory content of a
given signal depends on the smoothness of the trajectory, with
less oscillations attributable to the 7th degree polynomial. The
smoother the trajectory and geometric path, the less oscillatory
the signal, this is revealed through the RMS error values.

Errors in the Task Space The norm of the error in the
task space for a payload of 6kg and a cycle time of t f = 0.43s is
shown in Fig. 12. The results are detailed in Table 8. Although
the bang-bang profile yields a lower residual error norm in posi-
tion at t f = 0.43s than the 7th order polynomial, it can be seen
that the residual errors in velocity and acceleration are attenuated
to greater extent by the 7th order polynomial. Therefore, bang-
bang trajectories lead to poorer vibration attenuation.

TABLE 8. Residual error norms at end effector end points for a pay-
load of 6kg

Lamé Clothoid Polar

Motion Profiles Position [mm]

7th order polynomial 0.9355 0.0009 0.3109

Bang-bang 4.8557 0.0007 0.5573
1
4 Trapezoidal 5.5411 0.0017 0.9366
1
8 Trapezoidal 8.7118 0.0049 0.2872

Motion Profiles Velocity [m/s]

7th order polynomial 0.0009 0.0053 0.4973

Bang-bang 0.0049 0.0050 1.0716
1
4 Trapezoidal 0.0055 0.0055 0.2611
1
8 Trapezoidal 0.0087 0.0062 0.8352

Motion Profiles Acceleration [m/s2]

7th order polynomial 0.5573 0.0045 1.3193

Bang-bang 0.4973 0.0087 3.8472
1
4 Trapezoidal 0.8352 0.0056 1.8212
1
8 Trapezoidal 1.8212 0.0083 3.0404
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FIGURE 12. Path tracking errors in the task space for the payload of
6kg.

Simulation Set 2: Payload of 0.1kg, t f = 0.3s

Vibrational Domain

With a payload of 0.1kg, a frequency analysis along the ge-
ometric curve reveals that the first natural frequency of the robot
varies with ±2Hz about 126Hz, while the margin increases to
±7.5Hz about 1912Hz for the third natural frequency.
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TABLE 9. Task space comparison along the generated trajectories

Lamé Clothoid Polar

Motion Profiles Torque [Nm]

7th order polynomial 33.6384 32.737 33.0867

Bang-bang 23.9012 23.1011 22.3707
1
4 Trapezoidal 30.6662 29.4722 28.56
1
8 Trapezoidal 51.3054 45.9056 47.4447

Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 3.3563 3.8525 6.2169

Bang-bang 5.2095 5.3852 5.7002
1
4 Trapezoidal 5.2813 5.6053 5.9695
1
8 Trapezoidal 9.8592 8.7226 9.5968

Motion Profiles Max End-effector Deflection [mm]

7th order polynomial 0.04339 0.04223 0.04269

Bang-bang 0.03082 0.02979 0.02885
1
4 Trapezoidal 0.03957 0.03802 0.03684
1
8 Trapezoidal 0.0663 0.05931 0.06134

Simulation Results
The results of the simulation are summarized in Table 9. It

can be observed that the end-effector states in position are the
best for the bang-bang profile, as the bang-bang profile has the
lowest acceleration value. Moreover, the 7th degree polynomial
offers the best performance in acceleration error, owing to the
continuity and smoothness of its acceleration profile at this point.

From the table it can be seen that the worst performance, on
all counts, is associated with the 1

8 trapezoidal profile as it re-
quires the highest accelerations. The required torque is related
to the path length, and thus the lowest torques correspond to the
polar polynomial trajectories. The best performance in terms of
the RMS acceleration error is associated with the smoothest tra-
jectory, i.e., the 7th degree polynomial-Lamé curve.

Residual errors in the Task Space The norm of the
error in the task space is summarized in Table 10. While the
smoothness of a curve significantly decreases the residual error,
the maximum acceleration achieved along a path plays a domi-
nant role. The trends correspond to those seen earlier. The po-
lar polynomial has slightly higher spectral energy at the natural
frequencies of the robot and is associated with higher residual
errors.

It is apparent that the smooth 7th order curve presents the
best results in the error norms. At this slower cycle speed of t f =
0.3 and low payload of 100g, the smoothness of the trajectory is

TABLE 10. Residual norms at end effector end points

Lamé Clothoid Polar

Motion Profiles Position [mm]

7th order polynomial 0.0157 0.0009 0.3109

Bang-bang 0.0078 0.0007 0.5573
1
4 Trapezoidal 0.0160 0.0017 0.9366
1
8 Trapezoidal 0.0439 0.0049 0.2872

Motion Profiles Velocity [m/s]

7th order polynomial 0.0009 0.0053 0.4973

Bang-bang 0.0049 0.0050 1.0716
1
4 Trapezoidal 0.0055 0.0055 0.2611
1
8 Trapezoidal 0.0087 0.0062 0.8352

Motion Profiles Acceleration [m/s2]

7th order polynomial 0.5573 0.0045 1.3193

Bang-bang 0.4973 0.0050 1.0716
1
4 Trapezoidal 0.8352 0.0045 1.3193
1
8 Trapezoidal 1.8212 0.0083 3.0404

the dominant factor for the level of residual activity in position.

Simulation Set 3: Extended Curve Lengths
This section deals with the effect of varying the blending

lengths of the clothoid pairs and the Lamé curve. The blending
curves with d = e = 25mm are compared with a Lamé curve with
e = 125mm and a clothoid pair with e = 44mm (referred to as
extended curves).

Table 11 shows the error norms in position, velocity and ac-
celeration. It can be observed that the shortest trajectory, i.e., the
extended Lamé curve, shows the best performance on all counts.
In general it can be shown that shorter path lengths yield better
results, with the 7th order polynomial providing the best results
in terms of velocity and acceleration.

5 CONCLUSIONS
This research investigated the definition of an optimal mo-

tion generator for a five-bar mechanism performing pick and
place tasks. Several path and motion plannings have been simu-
lated using an elastodynamic model of a flexible five-bar mecha-
nism.

The simulation results showed the following:

1. The pick and place trajectories only excite the first and sec-
ond natural frequencies of the five bar mechanism;
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TABLE 11. Comparison of error norms on short and extended cycle
lengths

Lamé Clot. Lamé Ext Clot. Ext

Motion Profiles Total Path Length [mm]

N/A 0.3843 0.3840 0.3687 0.3751

Motion Profiles Position [mm]

7th order polynomial 0.0524 0.0503 0.0606 0.0905

Bang-bang 0.0219 0.0293 0.0125 0.0461
1
4 Trapezoidal 0.0158 0.0221 0.0056 0.0320
1
8 Trapezoidal 0.0968 0.0919 0.0441 0.0659

Motion Profiles Velocity [m/s]

7th order polynomial 0.0014 0.0044 0.0005 0.0058

Bang-bang 0.0085 0.0102 0.0007 0.0039
1
4 Trapezoidal 0.0122 0.0130 0.0134 0.0138
1
8 Trapezoidal 0.0162 0.0253 0.0081 0.0283

Motion Profiles Acceleration [m/s2]

7th order polynomial 1.7121 2.0211 0.3816 0.2521

Bang-bang 1.6179 2.9177 0.2230 0.8533
1
4 Trapezoidal 1.6563 2.2635 1.0501 1.2532
1
8 Trapezoidal 18.1496 17.4328 8.9629 12.2502

2. The maximum deflection along the path is directly related to
the maximum torque required to complete the given trajec-
tory in a given cycle time t f ;

3. The shorter the path length, the lower the required accelera-
tion and as a result the lower the required torques;

4. The terminal state accuracy can be attributed to the smooth-
ness of the trajectory, with 7th degree polynomial-Lamé tra-
jectories showing the best results.

For the future works, it is envisioned that trajectory opti-
mization may take place as well as the inclusion of conventional
feedback controllers coupled with input shapers for the reduction
of residual vibrations.
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