1 Introduction and motivations

Regression and classification from an infinite dimensional predictor

Settings

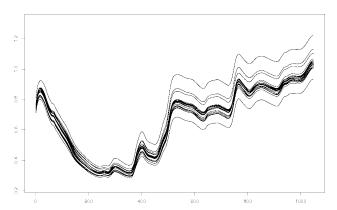
(X, Y) is a random pair of variables where

- $Y \in \{-1, 1\}$ (binary classification problem) or $Y \in \mathbb{R}$
- $X \in (X, \langle ., . \rangle_X)$, an infinite dimensional Hilbert space.

We are given a **learning set** $S_n = \{(X_i, Y_i)\}_{i=1}^n$ of n i.i.d. copies of (X, Y).

Purpose: Find $\phi_n: X \to \{-1,1\}$ or \mathbb{R} , that is universally consistent: *Classification case*: $\lim_{n \to +\infty} \mathbb{P}\left(\phi_n(X) \neq Y\right) = L^*$ where $L^* = \inf_{\phi: X \to \{-1,1\}} \mathbb{P}\left(\phi(X) \neq Y\right)$ is the **Bayes risk**. *Regression case*: $\lim_{n \to +\infty} \mathbb{E}\left(\left[\phi_n(X) - Y\right]^2\right) = L^*$ where $L^* = \inf_{\phi: X \to \mathbb{R}} \mathbb{E}\left(\left[\phi(X) - Y\right]^2\right)$ will also be called the Bayes risk.

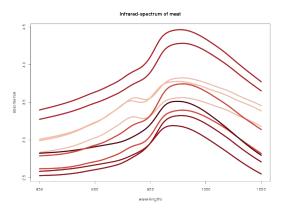
An example



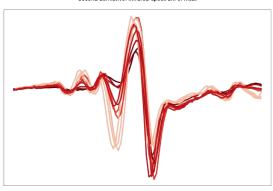
Predicting the rate of yellow berry in durum wheat from its NIR spectrum.

Using derivatives

Practically, $X^{(m)}$ is often more relevant than X for the prediction.



Second derivative: infrared-spectrum of meat



But $X \to X^{(m)}$ induces information loss and

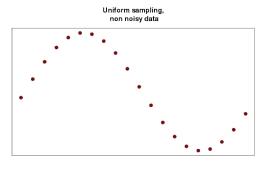
$$\inf_{\phi:D^mX\to\{-1,1\}}\mathbb{P}\left(\phi(X^{(m)})\neq Y\right)\geq\inf_{\phi:X\to\{-1,1\}}\mathbb{P}\left(\phi(X)\neq Y\right)=L^*$$

and

$$\inf_{\phi:D^mX\to\mathbb{R}}\mathbb{E}\left(\left[\phi(X^{(m)})-Y\right]^2\right)\geq\inf_{\phi:X\to\mathbb{R}}\mathbb{P}\left(\left[\phi(X)-Y\right]^2\right)=L^*.$$

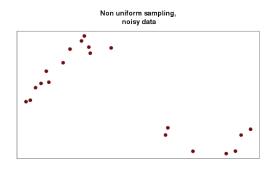
Sampled functions

Practically, $(X_i)_i$ are not perfectly known; only a discrete sampling is given: $\mathbf{X}_i^{\tau_d} = (X_i(t))_{t \in \tau_d}$ where $\tau_d = \{t_1^{\tau_d}, \dots, t_{|\tau_d|}^{\tau_d}\}$.



Non uniform sampling, non noisy data

The sampling can be non uniform...



... and the data can be corrupted by noise. Then, $X_i^{(m)}$ is **estimated** from $\mathbf{X}_i^{\tau_d}$, by $\widehat{X}_{\tau_d}^{(m)}$, which also induces **information loss**:

$$\inf_{\phi:D^mX\to\{-1,1\}}\mathbb{P}\left(\phi(\widehat{X}^{(m)}_{\tau_d})\neq Y\right)\geq\inf_{\phi:D^mX\to\{-1,1\}}\mathbb{P}\left(\phi(X^{(m)})\neq Y\right)\geq L^*$$

and

$$\inf_{\phi:D^mX\to\mathbb{R}}\mathbb{E}\left(\left[\phi(\widehat{X}^{(m)}_{\tau_d})-Y\right]^2\right)\geq\inf_{\phi:D^mX\to\mathbb{R}}\mathbb{E}\left(\left[\phi(X^{(m)})-Y\right]^2\right)\geq L^*.$$

Purpose of the presentation

Find a classifier or a regression function ϕ_{n,τ_d} built from $\widehat{X}_{\tau_d}^{(m)}$ such that the risk of ϕ_{n,τ_d} asymptotically reaches the Bayes risk L^* :

$$\lim_{|\tau_d| \to +\infty} \lim_{n \to +\infty} \mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\tau_d}^{(m)}) \neq Y\right) = L^*$$

or

$$\lim_{|\tau_d| \to +\infty} \lim_{n \to +\infty} \mathbb{E}\left(\left[\phi_{n,\tau_d}(\widehat{X}_{\tau_d}^{(m)}) - Y\right]^2\right) = L^*$$

Main idea: Use a relevant way to estimate $X^{(m)}$ from \mathbf{X}^{τ_d} (by smoothing splines) and combine the consistency of splines with the consistency of a $\mathbb{R}^{|\tau_d|}$ -classifier or regression function.

2 A general consistency result

Basics about smoothing splines I

Suppose that X is the Sobolev space

$$\mathcal{H}^m = \left\{ h \in L^2_{[0,1]} | \forall j = 1, \dots, m, D^j h \text{ exists (weak sense) and } D^m h \in L^2 \right\}$$

equipped with the scalar product

$$\langle u, v \rangle_{\mathcal{H}^m} = \langle D^m u, D^m v \rangle_{L^2} + \sum_{i=1}^m B^i u B^i v$$

where *B* are *m* boundary conditions such that $\text{Ker}B \cap \mathbb{P}^{m-1} = \{0\}$.

 $(\mathcal{H}^m, \langle .,. \rangle_{\mathcal{H}^m})$ is a RKHS: $\exists k_0 : \mathbb{P}^{m-1} \times \mathbb{P}^{m-1} \to \mathbb{R}$ and $k_1 : \operatorname{Ker} B \times \operatorname{Ker} B \to \mathbb{R}$ such that

$$\forall u \in \mathbb{P}^{m-1}, t \in [0,1], \langle u, k_0(t,.) \rangle_{\mathcal{H}^m} = u(t)$$

and

$$\forall u \in \text{Ker} B, t \in [0, 1], \langle u, k_1(t, .) \rangle_{\mathcal{H}^m} = u(t)$$

See [Berlinet and Thomas-Agnan, 2004] for further details.

Basics about smoothing splines II

A simple example of boundary conditions:

$$h(0) = h^{(1)}(0) = \dots = h^{(m-1)}(0) = 0.$$

Then,

$$k_0(s,t) = \sum_{k=0}^{m-1} \frac{t^k s^k}{(k!)^2}$$

and

$$k_1(s,t) = \int_0^1 \frac{(t-w)_+^{m-1}(s-w)_+^{m-1}}{(m-1)!} dw.$$

Estimating the predictors with smoothing splines I

Assumption (A1)

- $|\tau_d| \ge m 1$
- sampling points are distinct in [0, 1]
- B^j are linearly independent from $h \to h(t)$ for all $t \in \tau_d$

[Kimeldorf and Wahba, 1971]: for \mathbf{x}^{τ_d} in $\mathbb{R}^{|\tau_d|}$, $\exists ! \hat{x}_{\lambda,\tau_d} \in \mathcal{H}^m$ solution of

$$\arg\min_{h\in\mathcal{H}^m} \frac{1}{|\tau_d|} \sum_{l=1}^{|\tau_d|} (h(t_l) - \mathbf{x}^{\tau_d})^2 + \lambda \int_{[0,1]} (h^{(m)}(t))^2 dt.$$

and $\hat{x}_{\lambda,\tau_d} = S_{\lambda,\tau_d} \mathbf{x}^{\tau_d}$ where $S_{\lambda,\tau_d} : \mathbb{R}^{|\tau_d|} \to \mathcal{H}^m$.

These assumptions are fullfilled by the previous simple example as long as $0 \notin \tau_d$.

Estimating the predictors with smoothing splines II

 S_{λ,τ_d} is given by:

$$\begin{split} \mathcal{S}_{\lambda,\tau_{d}} &= \omega^{T} (U(K_{1} + \lambda \mathbb{I}_{|\tau_{d}|})U^{T})^{-1} U(K_{1} + \lambda \mathbb{I}_{|\tau_{d}|})^{-1} \\ &+ \eta^{T} (K_{1} + \lambda \mathbb{I}_{|\tau_{d}|})^{-1} (\mathbb{I}_{|\tau_{d}|} - U^{T} (U(K_{1} + \lambda \mathbb{I}_{|\tau_{d}|})^{-1} U(K_{1} + \lambda \mathbb{I}_{|\tau_{d}|})^{-1}) \\ &= \omega^{T} M_{0} + \eta^{T} M_{1} \end{split}$$

with

- $\{\omega_1,\ldots,\omega_m\}$ is a basis of \mathbb{P}^{m-1} , $\omega=(\omega_1,\ldots,\omega_m)^T$ and $U=(\omega_i(t))_{i=1,\ldots,m}$ $t\in\tau_d$;
- $\eta = (k_1(t,.))_{t \in \tau_d}^T$ and $K_1 = (k_1(t,t'))_{t,t' \in \tau_d}$.

The observations of the **predictor** X (**NIR spectra**) are then estimated from their sampling \mathbf{X}^{τ_d} by $\widehat{X}_{\lambda,\tau_d}$.

Two important consequences

1. No information loss

$$\inf_{\phi:\mathcal{H}^m\to\{-1,1\}}\mathbb{P}\left(\phi(\widehat{X}_{\lambda,\tau_d})\neq Y\right)=\inf_{\phi:\mathbb{R}^{|\tau_d|}\to\{-1,1\}}\mathbb{P}\left(\phi(\mathbf{X}^{\tau_d})\neq Y\right)$$

and

$$\inf_{\phi:\mathcal{H}^m\to\{-1,1\}}\mathbb{E}\left(\left[\phi(\widehat{X}_{\lambda,\tau_d})-Y\right]^2\right)=\inf_{\phi:\mathbb{R}^{|\tau_d|}\to\{-1,1\}}\mathbb{P}\left(\left[\phi(\mathbf{X}^{\tau_d})-Y\right]^2\right)$$

2. Easy way to use derivatives:

Easy way to use derivatives:
$$(\mathbf{Q}_{\lambda,\tau_{d}}\mathbf{u}^{\tau_{d}})^{T}(\mathbf{Q}_{\lambda,\tau_{d}}\mathbf{v}^{\tau_{d}})(\mathbf{u}^{\tau_{d}})^{T}\mathbf{M}_{\lambda,\tau_{d}}\mathbf{v}^{\tau_{d}}(\mathbf{u}^{\tau_{d}})^{T}M_{0}^{T}WM_{0}\mathbf{v}^{\tau_{d}} + (\mathbf{u}^{\tau_{d}})^{T}M_{1}^{T}K_{1}M_{1}\mathbf{v}^{\tau_{d}}\langle \mathcal{S}_{\lambda,\tau_{d}}\mathbf{u}^{\tau_{d}}, \mathcal{S}_{\lambda,\tau_{d}}\mathbf{v}^{\tau_{d}}\rangle_{\mathcal{H}^{m}} = \langle \widehat{u}_{\lambda,\tau_{d}}, \widehat{v}_{\lambda,\tau_{d}}, \widehat{v}_{\lambda,\tau_{d$$

where K_1 , M_0 and M_1 have been previously defined and W = $(\langle \omega_i, \omega_j \rangle_{\mathcal{H}^m})_{i,j=1,\dots,m}$. where $\mathbf{M}_{\lambda,\tau_d}$ is symmetric, definite positive. where $\mathbf{Q}_{\lambda,\tau_d}$ is the Choleski triangle of $\mathbf{M}_{\lambda,\tau_d}$: $\mathbf{Q}_{\lambda,\tau_d}^T \mathbf{Q}_{\lambda,\tau_d} = \mathbf{M}_{\lambda,\tau_d}$. **Remark**: $\mathbf{Q}_{\lambda,\tau_d}$ is calculated only from the RKHS, λ and τ_d : it does not depend on the data set.

Classification and regression based on derivatives

Suppose that we know a **consistent classifier or regression function in** $\mathbb{R}^{|\tau_d|}$ that is based on $\mathbb{R}^{|\tau_d|}$ scalar product or norm. The **corresponding derivative based classifier or regression function** is given by using the norm induced by $\mathbf{Q}_{\lambda,\tau_d}$:

Example: Nonparametric kernel regression

$$\Psi: u \in \mathbb{R}^{|\tau_d|} \to \frac{\sum_{i=1}^n T_i K\left(\frac{\|u - U_i\|_{\mathbb{R}^{|\tau_d|}}}{h_n}\right)}{\sum_{i=1}^n K\left(\frac{\|u - U_i\|_{\mathbb{R}^{|\tau_d|}}}{h_n}\right)}$$

where $(U_i, T_i)_{i=1,\dots,n}$ is a learning set in $\mathbb{R}^{|\tau_d|} \times \mathbb{R}$.

$$\phi_{n,d} = \Psi \circ \mathbf{Q}_{\lambda,\tau_{d}} : x \in \mathcal{H}^{m} \rightarrow \frac{\sum_{i=1}^{n} Y_{i} K\left(\frac{\|\mathbf{Q}_{\lambda,\tau_{d}}\mathbf{x}^{\tau_{d}} - \mathbf{Q}_{\lambda,\tau_{d}}\mathbf{X}_{i}^{\tau_{d}}\|_{\mathbb{R}^{|\tau_{d}|}}\right)}{\sum_{i=1}^{n} K\left(\frac{\|\mathbf{Q}_{\lambda,\tau_{d}}\mathbf{x}^{\tau_{d}} - \mathbf{Q}_{\lambda,\tau_{d}}\mathbf{X}_{i}^{\tau_{d}}\|_{\mathbb{R}^{|\tau_{d}|}}\right)}{h_{n}}$$

$$\stackrel{\simeq}{\longrightarrow} \frac{\sum_{i=1}^{n} Y_{i} K\left(\frac{\|\mathbf{x}^{(m)} - X_{i}^{(m)}\|_{L^{2}}}{h_{n}}\right)}{\sum_{i=1}^{n} K\left(\frac{\|\mathbf{x}^{(m)} - X_{i}^{(m)}\|_{L^{2}}}{h_{n}}\right)}$$

Remark for consistency

Classification case (approximatively the same is true for regression):

$$\mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\lambda,\tau_d}) \neq Y\right) - L^* = \mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\lambda,\tau_d}) \neq Y\right) - L_d^* + L_d^* - L^*$$

where $L_d^* = \inf_{\phi: \mathbb{R}^{|\tau_d|} \to \{-1,1\}} \mathbb{P} (\phi(\mathbf{X}^{\tau_d}) \neq Y).$

1. For all fixed d,

$$\lim_{n \to +\infty} \mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\lambda,\tau_d}) \neq Y\right) = L_d^*$$

as long as the $\mathbb{R}^{|\tau_d|}$ -classifier is consistent because there is a one-to-one mapping between \mathbf{X}^{τ_d} and $\widehat{X}_{\lambda,\tau_d}$.

2. $L_d^* - L^* \leq \mathbb{E}\left(\left|\mathbb{E}(Y|\widehat{X}_{\lambda,\tau_d}) - \mathbb{E}(Y|X)\right|\right)$ with consistency of spline estimate $\widehat{X}_{\lambda,\tau_d}$ and assumption on the regularity of $\mathbb{E}(Y|X=.)$, consistency would be proved. **But** continuity of $\mathbb{E}(Y|X=.)$ is a strong assumption in infinite dimensional case, and is not easy to check.

Spline consistency

Let λ depends on d and denote $(\lambda_d)_d$ the series of regularization parameters. Also introduce $\overline{\Delta}_{\tau_d} := \max\{t_1, t_2 - t_1, \dots, 1 - t_{|\tau_d|}\}, \qquad \underline{\Delta}_{\tau_d} := \min_{1 \le i < |\tau_d|}\{t_{i+1} - t_i\}$

Assumption (A2) it $\overline{\Delta}_{\tau_d}/\underline{\Delta}_{\tau_d} \leq R$ for all d;

- $\lim_{d\to+\infty} |\tau_d| = +\infty$;
- $\lim_{d\to+\infty} \lambda_d = 0$.

[Ragozin, 1983]: Under (A1) and (A2), $\exists A_{R,m}$ and $B_{R,m}$ such that for any $x \in \mathcal{H}^m$ and any $\lambda_d > 0$,

$$\left\| \hat{x}_{\lambda_{d},\tau_{d}} - x \right\|_{L^{2}}^{2} \le \left(A_{R,m} \lambda_{d} + B_{R,m} \frac{1}{|\tau_{d}|^{2m}} \right) \|D^{m} x\|_{L^{2}}^{2} \xrightarrow{d \to +\infty} 0$$

Bayes risk consistency

Assumption (A3a)

$$\mathbb{E}\left(\|D^m X\|_{L^2}^2\right) \text{ is finite and } Y \in \{-1, 1\}.$$

Assumption (A3b)

 $\tau_d \subset \tau_{d+1}$ for all d and $\mathbb{E}(Y^2)$ is finite.

Under (A1)-(A3),
$$\lim_{d\to+\infty} L_d^* = L^*$$
.

Proof under assumption (A3a)

Assumption (A3a)

$$\mathbb{E}\left(\|D^mX\|_{L^2}^2\right) \text{ is finite and } Y \in \{-1, 1\}.$$

The proof is based on a result of [Faragó and Györfi, 1975]:

For a pair of random variables (X,Y) taking their values in $X \times \{-1,1\}$ where X is an arbitrary metric space and for a series of functions $T_d: X \to X$ such that

$$\mathbb{E}(\delta(T_d(X), X)) \xrightarrow{d \to +\infty} 0$$

then
$$\lim_{d\to+\infty}\inf_{\phi:X\to\{-1,1\}}\mathbb{P}(\phi(T_d(X))\neq Y)=L^*$$
.

- T_d is the spline estimate based on the sampling;
- the inequality of [Ragozin, 1983] about this estimate is exactly the assumption of Farago and Gyorfi's Theorem.

Then the result follows.

Proof under assumption (A3b)

Assumption (A3b)

 $\tau_d \subset \tau_{d+1}$ for all d and $\mathbb{E}(Y^2)$ is finite.

Under (A3b), $(\mathbb{E}(Y|\widehat{X}_{\lambda_d,\tau_d}))_d$ is a uniformly bounded martingale and thus converges for the L^1 -norm. Using the consistency of $(\widehat{X}_{\lambda_d,\tau_d})_d$ to X ends the proof.

Concluding result (consistency)

Theorem

Under assumptions (A1)-(A3),

$$\lim_{|\tau_d| \to +\infty} \lim_{n \to +\infty} \mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\lambda_d,\tau_d}) \neq Y\right) = L^*$$

and

$$\lim_{|\tau_d| \to +\infty} \lim_{n \to +\infty} \mathbb{E}\left(\left[\phi_{n,\tau_d}(\widehat{X}_{\lambda_d,\tau_d}) - Y\right]^2\right) = L^*$$

Proof: For a $\epsilon > 0$, fix d_0 such that, for all $d \ge d_0$, $L_d^* - L^* \le \epsilon/2$. Then, by consistency of the $\mathbb{R}^{|\tau_d|}$ -classifier or regression function, conclude.

A practical application to SVM I

Recall that, for a learning set $(U_i, T_i)_{i=1,\dots,n}$ in $\mathbb{R}^p \times \{-1, 1\}$, gaussian SVM is the classifier

$$u \in \mathbb{R}^p \to \operatorname{Sign}\left(\sum_{i=1}^n \alpha_i T_i e^{-\gamma ||u-U_i||_{\mathbb{R}^p}^2}\right)$$

where $(\alpha_i)_i$ satisfy the following quadratic optimization problem:

$$\arg\min_{w} \sum_{i=1}^{n} |1 - T_{i}w(U_{i})|_{+} + C||w||_{S}^{2}$$

where $w(u) = \sum_{i=1}^{n} \alpha_i e^{-\gamma ||u-U_i||_{\mathbb{R}^p}^2}$ and S is the RKHS associated with the gaussian kernel and C is a **regularization parameter**.

Under suitable assumptions, [Steinwart, 2002] proves the consistency of SVM classifiers.

A practical application to SVM II

Additional describe the stream of the second distribution of the second di

• For all d, there is a bounded subset of $\mathbb{R}^{|\tau_d|}$, \mathcal{B}_d , such that \mathbf{X}^{τ_d} belongs to \mathcal{B}_d .

Result: Under assumptions (A1)-(A4), the SVM $\phi_{n,d}: x \in \mathcal{H}^m \to$

$$\operatorname{Sign}\left(\sum_{i=1}^{n} \alpha_{i} Y_{i} e^{-\gamma \|\mathbf{Q}_{\lambda_{d},\tau_{d}} \mathbf{x}^{\tau_{d}} - \mathbf{Q}_{\lambda_{d},\tau_{d}} \mathbf{X}_{i}^{\tau_{d}}\|_{\mathbb{R}^{d}}^{2}}\right) \simeq \operatorname{Sign}\left(\sum_{i=1}^{n} \alpha_{i} Y_{i} e^{-\gamma \|\mathbf{x}^{(m)} - \mathbf{X}_{i}^{(m)}\|_{L^{2}}^{2}}\right)$$

 $\text{is consistent: } \lim_{|\tau_d| \to +\infty} \lim_{n \to +\infty} \mathbb{P}\left(\phi_{n,\tau_d}(\widehat{X}_{\lambda_d,\tau_d}) \neq Y\right) = L^*.$

Additional remark about the link between n and $|\tau_d|$

Under suitable (and usual) regularity assumptions on $\mathbb{E}(Y|X=.)$ and if $n \sim \nu^{|\tau_d| \log |\tau_d|}$, the **rate of convergence** of this method is of order $d^{-\frac{2\nu}{2\nu+1}}$ where ν is either equal to m or to a Lipschitz constant related to $\mathbb{E}(Y|X=.)$.

3 Examples

 ${\bf Chosen\ regression\ method:\ Regression\ with\ kernel\ ridge\ regression}$

Recall that **kernel ridge regression** in \mathbb{R}^p is given by solving

$$\arg\min_{w} \sum_{i=1}^{n} (T_i - w(U_i))^2 + C||w||_{\mathcal{S}}^2$$

where S is a RKHS induced by a given kernel (such as the Gaussian kernel) and $(U_i, T_i)_i$ is a training sample in $\mathbb{R}^p \times \mathbb{R}$.

In the following examples, U_i is either:

- the original (sampled) functions \mathbf{X}_i (viewed as $\mathbb{R}^{|\tau_d|}$ vectors);
- $\mathbf{Q}_{\lambda,\tau_d}\mathbf{X}_i^{\tau_d}$ for derivatives of order 1 or 2.

Example 1: Predicting yellow berry in durum wheat from NIR spectra

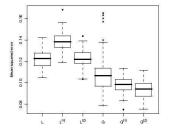
953 wheat samples were analyzed:

- NIR spectrometry: 1049 wavelengths regularly ranged from 400 to 2498 nm;
- Yellow berry: manual count (%) of affected grains.

Methodology for comparison:

- Split the data into train/test sets (50 times);
- **Train** 50 regression functions for the 50 train sets (hyper-parameters were tuned by CV);
- Evaluate these regression functions by calculating the MSE for the 50 corresponding test sets.

Kernel (SVM)	MSE on test (and sd $\times 10^{-3}$)	
Linear (L)	0.122 (8.77)	
Linear on derivatives $(L^{(1)})$	0.138 (9.53)	
Linear on second derivatives $(L^{(2)})$	0.122 (1.71)	
Gaussian (G)	0.110 (20.2)	
Gaussian on derivatives $(G^{(1)})$	0.098 (7.92)	
Gaussian on second derivatives $(G^{(2)})$	0.094 (8.35)	



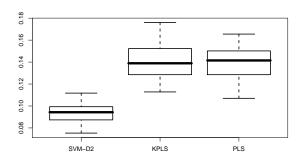
The differences are significant between $G^{(2)}$ / $G^{(1)}$ and between $G^{(1)}$ / G.

Comparison with PLS...

	MSE (mean)	MSE (sd)
PLS	0.154	0.012
Kernel PLS	0.154	0.013
KRR splines (reg. D^2)	0.094	0.008

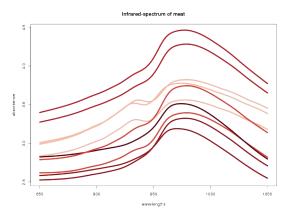
Error decrease: almost

40 %

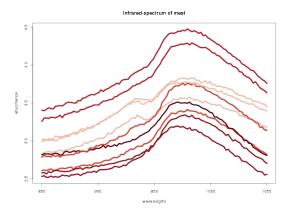


Example 2: Simulated noisy spectra

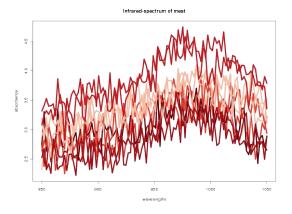
Original data:



Variable to predict: Fat content of pieces of meat. Noisy data: $X_i^b(t) = X_i(t) + \epsilon_{it}$, $\epsilon_{it} \sim \mathcal{N}(0, 0.01)$, i.i.d.:



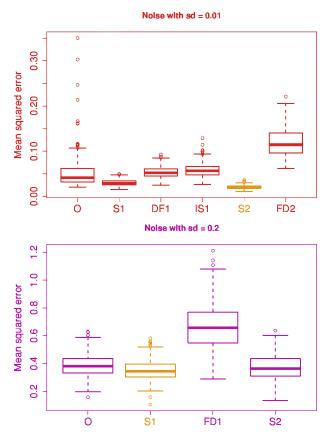
Worse noisy data: $X_i^b(t) = X_i(t) + \epsilon_{it}$, $\epsilon_{it} \sim \mathcal{N}(0, 0.2)$, i.i.d.:



Methodology for comparison

- Split the data into train/test sets (250 times);
- **Train** 250 regression functions for the 250 train sets (hyper-parameters were tuned by CV) with the predictors being
 - the original (sampled) functions \mathbf{X}_i (viewed as $\mathbb{R}^{| au_d|}$ vectors);
 - $\mathbf{Q}_{\lambda,\tau_d}\mathbf{X}_i^{\tau_d}$ for derivatives of order 1 or 2: **smoothing splines derivatives**;
 - $\mathbf{Q}_{0,\tau_d}\mathbf{X}_i^{\tau_d}$ for derivatives of order 1 or 2: **interpolating splines derivatives**;
 - derivatives of order 1 or 2 evaluated by $\frac{X_i(t_{j+1})-X_i(t_j)}{t_{j+1}-t_j}$: **finite differences derivatives**;
- **Evaluate** these regression functions by calculating the **MSE** for the 50 corresponding test sets.

Performances



References

References

[Berlinet and Thomas-Agnan, 2004] Berlinet, A. and Thomas-Agnan, C. (2004). *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Kluwer Academic Publisher.

[Faragó and Györfi, 1975] Faragó, T. and Györfi, L. (1975). On the continuity of the error distortion function for multiple-hypothesis decisions. *IEEE Transactions on Information Theory*, 21(4):458–460.

[Kimeldorf and Wahba, 1971] Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. *Journal of Mathematical Analysis and Applications*, 33(1):82–95.

[Ragozin, 1983] Ragozin, D. (1983). Error bounds for derivative estimation based on spline smoothing of exact or noisy data. *Journal of Approximation Theory*, 37:335–355.

[Steinwart, 2002] Steinwart, I. (2002). Support vector machines are universally consistent. *Journal of Complexity*, 18:768–791.

Any question?