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Abstract 
 
The concept of ellipsoidal anisotropy, first introduced in linear elasticity by Saint Venant, has 
reappeared in recent years in diverse applications from the phenomenological to 
micromechanical modeling of materials. In this concept, indicator surfaces, which represent the 
variation of some elastic parameters in different directions of the material, are ellipsoidal. This 
concept recovers different models according to the elastic parameters that have ellipsoidal 
indicator surfaces. An interesting feature of some models introduced by Saint Venant is the 
formation of analytical solutions for basic problems of linear elasticity. This paper has two main 
objectives. First, an accurate definition of the variety of anisotropy called ellipsoidal is provided, 
which corresponds to a family of materials that depends on 12 independent parameters, including 
varieties of orthotropic and non-orthotropic materials. An explicit nondegenerate Green function 
solution is established for these materials. Then, it is shown that the ellipsoidal model recovers a 
variety of phenomenological and theoretical models used in recent years, specifically for 
geomaterials and damaged or micro-cracked materials. These models can be used to approximate 
the elastic parameters of any anisotropic material with different fitting qualities. A method to 
optimize the parameters will be given. 
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1. Introduction 

In recent years, much research has focused on modeling the elastic anisotropy of noncrystalline 
materials with simple models. A major focus has been determining adequate models with a 
reduced number of parameters, which have been constructed using various methods. Cowin and 
Mehrabadi (1987, 1995) defined classes of elastic materials based on the number and orientation 
of reflective symmetry planes. This approach was applied to model bone elasticity (Yang et al. 
1999). Special cases of the fourth order elasticity tensors have also been considered; these cases 
can be expressed in terms of only one second order tensor. This model has been applied to the 



micro-mechanical approach of damaged and micro-cracked materials (Halm & Dragon 1988, 
Dragon et al. 2000, Sevostianov & Kachanov 2002, 2008). In other studies, the indicator surface 
properties of some “mono-directional” elastic parameters have been used to define simple forms 
of elastic anisotropy. A “mono-directional” parameter is a parameter like Young’s modulus or 
the elastic coefficient defined by Eq. (1) that depends on the elasticity tensor  and only one 
material direction n. Examples of mono-directional elastic parameters can be found in Pouya 
(2007a). The indicator surface of a mono-directional parameter is the surface defined by the 
equation x(n) = r(n) n, where n scans the unit sphere and represents a direction in the material 
and r(n) is the distance from x to the origin of coordinates that equals the value of the elastic 
parameter in the direction n. The characterization of material anisotropy by the shape of the 
indicator surfaces was initiated in the early work of Saint Venant (1863), who first introduced 
the concept of the ellipsoidal anisotropy. Because material isotropy geometrically corresponds to 
the image of a sphere, anisotropies corresponding to the image of an ellipsoid have naturally 
been investigated. Saint Venant (1863) studied several elasticity models of this type, arguing the 
utility of these models in representing the elasticity of anisotropic amorphous materials. This 

included the study of materials for which the indicator surface of 4 ( )E n , where E(n) is the 

Young’s modulus in the material direction n (see Eq. 31), is an ellipsoid. 

However, the research of Saint Venant has previously been neglected in the literature, and the 
only evidence is a short quote in a book by Lekhnitskii (1963). Independently, the concept of 
ellipsoidal anisotropy has reappeared in recent years as a guideline for modeling the elasticity of 
geomaterials, such as soils, rocks, and concrete. The anisotropic character of these geomaterials 
is being accounted for more frequently in different applications, including geotechnical design or 
the study of seismic wave propagation, genesis of geological structures, and micro-cracking of 
rocks. A rough representation of the anisotropy with a minimum number of parameters is 
sufficient for these applications. For this reason, Peres Rodrigues and Aires-Barros (1970) 
attempted to fit the Young’s modulus values of various rocks measured in different directions by 
ellipsoids. To study seismic wave propagation in geological layers, Daley and Hron (1979) 
defined the “elliptically anisotropic” medium as being characterized by elliptical P-wave fronts 
emanating from a point source. Louis et al. (2004) proposed a simplified method to analyze the 
P-wave velocity data in anisotropic rocks; the method assumes an ellipsoidal approximation of 
certain elastic parameters. Pouya and Reiffsetck (2003) noted that data from Boehler (1975) on 
the Young’s modulus of different soils present an ellipsoidal property, and these authors 
demonstrated that this assumption allows for the simplification of foundation design. 
 
However, the concept of ellipsoidal anisotropy in the aforementioned works covers a diverse 
range of materials. The choice of the elastic parameter with ellipsoidal variation leads to very 
different models. Furthermore, this concept has been used incorrectly in some works. For 
instance, the Young’s modulus, considered by Peres Rodrigues and Aires-Barros (1970), is not 
an appropriate parameter because its indicator surface can never be an ellipsoid, except when it is 
a sphere (Pouya 2007a). The second or fourth roots of this parameter should be utilized to define 
ellipsoidal materials. 
 
The interesting feature of models introduced by Saint Venant is the ability to determine 
analytical solutions for basic problems in linear elasticity, specifically the Green functions. 
Therefore, the present study focuses on several special types of ellipsoidal materials introduced 
by Saint Venant (1863).  
 
This paper has two primary objectives. First, the type of anisotropy called ellipsoidal is 
accurately defined, and an explicit nondegenerate expression of the Green function solution is 



established for these ellipsoidal materials. Then, this family of materials is compared to other 
anisotropic material families existing in the literature, and the ellipsoidal family is demonstrated 
to recover a large variety of models defined for geomaterials and damaged or micro-cracked 
materials. Finally, it is shown how a given elastic material is approximated by ellipsoidal models 
followed by a description of the method  to obtain the best set of fitting parameters.  
 
 
Notations: 
 
In the sequel, light-face (Greek or Latin) letters denote scalars, underlined letters denote vectors, 
bold-faced letters designate second rank tensors or double-index matrices, and outline letters are 
reserved for fourth rank tensors. The convention of summation on repeated indices is used 
implicitly. The completely antisymmetric Levi-Civita tensor is denoted ∈ijk with the components: 
  ∈ijk = 1 if i,j,k is an even permutation of 1,2,3 
  ∈ijk = -1 if i,j,k is an odd permutation of 1,2,3 
  ∈ijk = 0 otherwise. 
The scalar product of two vectors a and b is labeled a.b, and the associated tensor product is a⊗b 
with (a⊗b)ij = aibj. For second rank tensors, the matrix product is labeled AB, the inner product 
is A:B =AijBji, and the determinant is |.| with (for 3×3 tensors)  |a| =∈ijk∈lmnailajmank/6. The 
operation of the fourth rank tensor  on A will be labeled as :A with ( :A)ij = CijklAkl and the 
operation of A on a by A.a. The tensor transposed from a is denoted aT. 
For a fourth rank tensor  satisfying the symmetries Cijkl = Cijlk = Cjikl, a matrix notation is 
introduced : the double sub-script (ij ) is first abbreviated to a single sub-script (α) running from 
1 to 6 by the following rule : 11 → 1,   22 →2,   33 → 3,   23 → 4,   13 → 5,   12 → 6. The 
matrix notation C is defined by the components cαβ = C(ij)(kl). 
 
2. Ellipsoidal materials 
 
A material with the elasticity tensor  and a direction in this material indicated by the unit vector 
n will first be considered. The elastic coefficient in the direction n  is defined by:  

c(n) = (n ⊗ n):  : (n ⊗ n)    (1) 
The indicator surface of [c(n)]-1/4 is the set of points x = r n with n scanning the unit sphere and: 

r (n) = [c(n)]-1/4     (2) 
The polynomial equation of this surface is the following: 

(x ⊗ x):  : (x ⊗ x) =1     (3) 
Hence, the indicator surface of [c(n)]-1/4 is generally a fourth order surface. For special cases of 

, this surface becomes an ellipsoid (second order surface). These cases define a family of 

materials that we designate by Φ̂4 and call ellipsoidal. If the equation of an ellipsoid is written as 
x.M.x = 1, then the condition for (3) to define an ellipsoid is the existence of M satisfying: 

 
∀x ;  (x ⊗ x): : (x ⊗ x) =1 ⇔  x.M.x = 1   (4) 

 
Appendix B shows that equation (4) leads to the following general expression for  where M 
and L are two second rank symmetric tensors and M is positive-definite: 

Cijkl = 
1

2
(Mik Mjl + Mil Mjk) +

1

2
(∈ikm∈jln+ ∈ilm∈jkn) Lmn  (5) 

The family Φ̂4 depends on 12 independent parameters that are components of M and L. Let (e1, 

e2, e3) represent a system of principal axes for the ellipsoid associated to  ∈ Φ̂4. In this 



coordinate system, M is diagonal. The coefficients of M, L, and C in this system have the 
following expressions that are functions of the cαβ components of :  
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The condition for  to be positive-definite imposes some conditions on L relative to M. These 
conditions can be expressed more easily by using the following auxiliary tensor L': 

L' = M-1 PLP            (8) 
where P is the symmetric and positive-definite solution of the equation: 

  PP = M      (9) 
The conditions for  to be positive-definite are then found to be equivalent to the two following 
conditions with δδδδ denoting the second rank unit tensor (see Appendix C): 

 δδδδ - L' 2  positive-definite,        1- L': L ' +2L'> 0   (10) 

If we take two constants λ and µ and put M = 2+λ µ δδδδ and L =λδδδδ,,,, then (5) would represent the 

isotropic material with Lamé coefficients λ and µ. The conditions (10) in this case recover µ > 0 
and 3λ+2µ> 0. 
 
An alternative expression for (5) can be given with  expressed as a quadratic expression of two 
second rank tensors. If |L |≠0, ε = ±1 is denoted as the sign of |L| and: 

-1εS = L L      (11) 

Then (5) can be written as: 

Cijkl = 
1

2
(Mik Mjl + Mil Mjk) +

2

ε
(2Sij Skl -Sik Sjl-Sil Sjk)  (12) 

  
This expression is more restricted than (5) because the case (L≠0 and |L|=0) is not recovered, but 
is useful to demonstrate some properties of the ellipsoidal family as presented in Section 4.4. 
 
Materials defined by these models have two interesting features: 1) recovery of a large family of 
phenomenological models defined for geomaterials and micro-cracked materials and 2) ability to 
derive  closed-form solutions of Green functions. This latter property is studied in the following 
section. 



 
3. Green function 
 
The Green function for an infinite medium represents the displacement field for a point force in 
this medium. It is the key for many basic problems of linear elasticity. An explicit solution of the 

Green function for Φ̂4 materials was given by Pouya (2007c). However this solution presents 
some degeneracy problems which make it inappropriate for numerical modelling. In the 
following, a nondegenerate expression for this solution will be derived after presenting briefly 
the method used by Pouya (2007c) to obtain the first solution. 
 
This Green function, denoted by G(x), is the solution of the equation Cijkl∂jkGlm(x) = δimδ(x) with 
the condition 

x
Lim

→∞
G(x) = 0. This solution can be deduced from the following contour integral 

(Lifschitz & Rosenweig 1947, Synge 1957, Mura 1982):  

G(x)= 
2 1

2 0

1
( )

8
n d

r
θπ −

π ∫ ΓΓΓΓ     (13) 

In this expression, r = ||x||, n(θ) is the unit vector on the circle perpendicular to x , θ is the polar 
angle of n, and ΓΓΓΓ (n) is the acoustic tensor defined by :        

Γik = Cijkl njnl      (14) 
    
The calculation of G from (13) faces the factorization problem of a polynomial of a degree 6. No 
general solution is known for this problem. As a matter of fact, Γ Γ Γ Γ -1 = Γ Γ Γ Γ */|ΓΓΓΓ |, where Γ Γ Γ Γ * is the 
matrix of cofactors of Γ Γ Γ Γ  and the determinant |ΓΓΓΓ | is convertible to a polynomial function of tanθ 

that is generally of degree 6. However, Pouya (2007c) demonstrated that the determinant for Φ̂4 
materials can be reduced to a polynomial of degree 2 using the linear transformation of the 
elastic body problem (Pouya 2000, Pouya & Zaoui 2006). For an elastic body with elasticity 
tensor  subjected to given surface tractions and displacements, according to this transformation, 
a simultaneous change of coordinates and of displacement field is considered that is defined by x 
= P. x∼ and u(x) = Q. u∼ (x∼) where Q = (PT)-1. The new equations correspond to a new elastic body 
problem with different geometry, elasticity tensor and prescribed forces and displacements. The 

transformed elasticity tensor 
 ∼

 is given by: 

  C
 ∼

mnpq  = CijklQimQjnQkpQlq    (15) 
 
Application of this transformation method to the problem of a point force in an infinite medium 

allows for the following relation between Green functions G and G
 ∼

 related respectively to  and 
 ∼

 : 

G
 ∼

 (x∼) = |P | PTG(x)P       (16) 
For  given by (5), let take P equal to the symmetric and positive-definite solution of the 

equation PP = M. The transformation (15) then leads to the following expression for 
 ∼

: 

C
 ∼

ijkl = δij δkl - (∈ikm∈jln+∈ilm∈jkn) Tmn    (17) 
where T is deduced from the following equation in which L'  is given by (8): 

L'  = δδδδ -2T     (18) 
The first condition (10) implies that T is positive definite with eigenvalues smaller than 1. We 

denote  x∼= Q.x , r∼ = || x∼||,  x̂  =x∼/r∼,  n a unit vector orthogonal to x∼ and t = n × x̂  the vector product 



of n andx̂ . The acoustic tensor ΓΓΓΓ
  ∼

(n) associated to 
 ∼

 has a simple expression with the 
determinant as follows: 

     | ΓΓΓΓ
  ∼

(n)| = ξα- β 2 =  |T | (n.T -1.n)   (19) 
with: 

ξ = x̂ .T. x̂  ,   α = t.T.t , β = x̂ .T.t    (20) 

The right-hand side expression in (19) is a second degree trigonometric polynomial in θ, which 

assures that the line integral (13) for 
 ∼

 can be calculated explicitly. The explicit solution is given 
by Pouya (2007c) using the eigenvectors of the following tensor B:  

X = T. x̂ ,  B = ξ T -X⊗X      (21) 

The tensor B has two eigenvectors orthogonal to x̂  with positive eigenvalues that can be written 
as: 

B =  p2(u⊗u) + q2(v⊗v)    (22) 
where (x̂ , u, v) represents a system of unit eigenvectors of B and p > 0 and q > 0. With these 
notations, the solution given by Pouya (2007c) reads: 
 

4π r∼ G
 ∼

( xɶ )=
pq

ξ
x̂ ⊗ x̂+

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ( . . )( ) ( . . )( )

( )
x u x u u x x v x v v x

p q p q

 
⊗ + ⊗ + ⊗ + ⊗ +  

T T  

+ [ ]2

1
( . . )( ) ( . . )( ) ( . . )( )

( )
u u u u v v v v u v u v v u

p q
⊗ + ⊗ + ⊗ + ⊗

+
T T T   

+
2

1 1
( . . . . ) ( )

22 ( )
u u v v u u v v

p q

 
+ + ⊗ + ⊗ 

+ 
T T +

2

1 1
( . . )( ) ( . . )( )

( )

q p
u u u u v v v v

p qp q

 − ⊗ − ⊗ +  
T T       (23) 

 
This expression can be considered an explicit solution for the Green function. However, this 
solution requires an eigenvalues and eigenvectors calculation to determine (p, q, u, v) for each x 
direction. Directions of u and v become undetermined in certain cases, particularly when p = q, 
and this degeneracy causes numerical problems. Accordingly, expression of this solution without 
referencing u and v is more appropriate for implementation in numerical programs and for 
analytical derivations. This can be obtained by determining p and q from the following relations 
(see Appendix D): 
 
      p2 + q2 = ξT –X.X   ,  p2q2  = ξ τ   (24) 
 
where:     T  = T :δδδδ    τ  = |T |  (25) 
Then, (23) is written as a combination of symmetric expressions in (p, u)↔(q, v) that can be 
expressed as a function of δδδδ, T, and x̂ . For instance, (u⊗u) + (v⊗v) =δ δ δ δ - x̂⊗ x̂  or the equation 
(22) can be used to eliminate (p, q, u, v) in the equations. By using this method and denoting: 

η = (p+q)2 = ξT –X.X + 2 ξτ    (26) 

( ) ˆ ˆ- - X X x x= + + ⊗ + ⊗ξ η ξτ ξτF T δδδδ   (27) 

the solution (23) can be written as: 



G
 ∼

(x∼)= ( ) 2

1 - 2
ˆ ˆ1

8

T
x x

r

   + − ⊗ +  π ξ   

ξ
η η τɶ

FTFδδδδ    (28) 

Then, the relation (16) must be used to write the Green function solution for the initial tensor  
in terms of parameters M, L, and x. The final result is given in Appendix D. 
 
This solution recovers those obtained for isotropic and Saint Venant materials (see section 4.2). 
It can be compared to analytical solutions obtained by other methods for special cases of 
ellipsoidal materials. An interesting comparison is the subfamily of ellipsoidal materials that are 
transversely isotropic that depend on four intrinsic parameters (see Section 5.1). This comparison 

can be executed without loss of generality on the corresponding transformed materials 
 ∼

 given 
by (17). If T = t1δδδδ  + (t3-t1) n⊗n,  a material is obtained with transverse isotropy around the axis 
n. The solution (28) for this case can then be compared to transversely isotropic materials by Pan 
& Chou (1976) and Pouya (2007b) with parameters (c11= c22= c33= 1, c44 = c55 = t1, c66 = t3). The 
comparison is very tedious and time-consuming because the two solutions use very different 
basic functions  obtained by fundamentally different ways. Equation (28) is obtained by using 
line integral (13), while the solution from Pan & Chou (1976) is obtained by displacement 
potentials method. However, all components of the two solutions were compared and verified as 
identical. 
 
Notably, several Green function solutions in the literature for different anisotropy cases (Willis 
1965, Kroner 1953, Pan & Chou 1976) present degeneracy for special combinations of elastic 
parameters. A special treatment is then required to adequately derive nondegenerate expressions 
from these solutions for implementation in numerical codes (Pouya (2007b), Bonnet (2009)). 
This is also the case of the expression (23) given by Pouya (2007c). However, the solution (28) 
does not present any degeneracy. As previously mentioned, positive definiteness of  implies p, 
q >0, and then η > 0 and ξτ > 0 according to equations (24) and (26). Therefore, the solution (28) 
is nondegenerate for every set of elastic parameters. 
 
 
4. Comparison with other classes of materials 
 

The ellipsoidal family Φ̂4 covers a large variety of linear elastic materials defined by 
phenomenological laws or by constitutive relations inspired from micro-mechanical 
considerations or by other properties. However, this family has restricted intersections with 
classes of crystalline symmetries. The following section focuses on the possible symmetries of 
this family and comparison to other families of anisotropic materials. 
 
4.1 Symmetry properties 
    
A geometrical symmetry property of necessarily implies the same symmetry for the indicator 
surface [c(n)]-1/4. Therefore, the possible symmetries of  may be searched for among the 
symmetries of the indicator surface. If the half-diameters of an ellipsoid are different, there are 
only three planes of symmetry and all the possible symmetries reduce to combinations of 
reflective symmetries relative to these planes. The planes of symmetry for the ellipsoid are 
determined by the principal directions of M. The planes of symmetry for M are not planes of 
symmetry for L if M and L do not have a common system of principal axes. In this case, these 
are not planes of symmetry for  which, therefore, does not have any possible plane of 

symmetry. Thus, the Φ̂4 materials cover a variety of non-orthotropic materials that do not have 



any plane of symmetry. In this case, the Stroh formalism (Stroh 1958, Ting 1996) that 
establishes closed-form solutions for a large variety of problems in three dimensional anisotropic 
elasticity cannot be applied because this formalism requires a plane of symmetry for the 

problem. The elements Φ̂4 with noncommutable M and L are among the rare variety of non-
orthotropic materials with a known closed-form solution of the Green function. Another group of 
this kind of materials (non-orthotropic with closed-form Green function) was obtained by Pouya 
(2007b) by application of the linear transformation method to transversely isotropic materials.    
 
In contrast,  is orthotropic when M and L have a common system of principal axes. When there 
is transverse symmetry for M and L around a common axis, then  has the same symmetry. 

Finally,  is isotropic when M and L are spherical. Therefore, the ellipsoidal anisotropy Φ̂4 
defines, as other families of ellipsoidal anisotropies (Pouya 2007a), a classification that is 
transversal to other classes of materials defined by rotational invariance or plane symmetries 
(Forte & Vianello 1996). The symmetries of the indicator surface constitute weaker properties 
than the symmetries of the actual material. For instance, a spherical indicator surface for c(n) 
does not imply that  is isotropic; it only implies that M is spherical and, in turn, that  is 
orthotropic. A more detailed discussion of the relations between the symmetries of the indicator 
surfaces and the materials is provided in Pouya (2007a).  
 
4.2 Saint Venant material 
 
Let λ and µ represent two Lamé coefficients (µ>0, 3λ+2µ>0) and D a symmetric and positive-
definite tensor: 
 

M = +2λ µ D ,    L = λ |D |D -1    (29) 

The relation (5) yields then the following: 
 

Cijkl = λDijDkl + µ (DikDjl + DilDjk)     (30) 
 
The Young’s modulus in direction n is defined by:  

E(n) =   [(n ⊗ n):  : (n ⊗ n)]-1   (31) 
where the  = -1 represents the compliance tensor. For materials (30), both indicator surfaces of 

[c(n)]-1/4 and 4 ( )E n are ellipsoidal. These materials were introduced by Saint Venant (1863) as 

suitable models for noncrystalline anisotropic materials. Independently, the expression (30) has 
been used in recent micromechanical studies to represent the effective moduli of heterogeneous 
media (Milgrom & Shtrikman 1992, Milton 2002) and is suitable to represent the elasticity of 
geomaterials and  some specific rock masses (Chalhoub 2006).  
 
As previously shown by Saint Venant (1863), this family of materials presents interesting 
theoretical properties. In particular, d’Alembert’s displacement potentials and the solution for 
plane waves propagation in isotropic elasticity can be extended easily to this family. Pouya 
(2000) demonstrated that this material (30) can be obtained by a linear transformation (described 
herein) from the isotropic material. The theoretical properties of this material called Transformed 
Isotropic material were investigated by Pouya & Zaoui (2006). Considering the linear 

transformation of the material (30) with P = D , then the transformed 
 ∼

 will correspond to an 
isotropic material with Lamé coefficients λ and µ. Therefore, many closed-form solutions for 
basic elasticity problems with isotropic materials can be extended to Saint Venant (30) materials. 
The following are some examples of results extended to these Saint Venant: Eshelby (1957) 



tensor for inclusion-matrix problem (Milgrom & Shtrikman 1992, Pouya 2000) and the Green 
function for infinite space (Pouya 2000) and for half-space (Pouya and Zaoui 2006). Extension 
of the Green function solutions for two joined semi-infinite isotropic solids (Rongved 1955) or 
for layered medium comprised of isotropic materials (Benitez & Rosakis 1987) to solids 
constituted of Saint Venant materials would also be possible (Pouya and Zaoui 2006). 
 
 
4.3 Bonnet materials  
 
Bonnet (2009) defined two varieties of orthotropic materials, denoted as CFO2 and CFO4, for 
which a closed-form solution can be derived for the Green function. These materials are defined 
on the basis of properties of the sixth order polynomial corresponding to the determinant of the 
acoustic tensor. As previously described, factorizing this polynomial, which is generally of 
degree six, to irreducible polynomials of degree less than or equal to four is necessary to 
determine a closed-form solution for the Green function. Bonnet (2009) introduced two families 
of orthotropic materials that involve the polynomial being factorized in the product of three 
second degree polynomials for CFO2 materials and factorized in the product of a second degree 
and a fourth degree irreducible polynomials for CFO4 materials. Although Bonnet materials are 
defined on the basis of mathematical considerations, they can provide good approximations for 
some physical types of materials with well pronounced anisotropy, such as crystals and fiber 

reinforced composites. In comparison to the Φ̂4 family, the Φ̂4 materials are not generally 

orthotropic, and therefore, are not included in Bonnet materials. However, the determinant | ΓΓΓΓ
  ∼

(n)| reduces to a second degree polynomial for a transformed tensor 
 ∼

 of an element  ∈Φ̂4 , 

which results in 
 ∼

∈CFO2 and 
 ∼

∈CFO4. For a general element  ∈Φ̂4  with P denoting the 

symmetric and positive solution of P2 = M, consider a unit vector n and the unit vector n∼ = 
(n.M.n)-1/2 P. n. The following can be deduced from equations (14) and (15): 
 

ΓΓΓΓ (n) = (n.M.n) P ΓΓΓΓ
  ∼

(n∼)P       
 

Then |ΓΓΓΓ (n)| = (n.M.n)3 |P |2 | ΓΓΓΓ
  ∼

(n∼)|. Using the relation (19) for the unit vector n∼ and then 

replacing n∼ with (n.M.n)-1/2 P. n results in the following: 
 

|ΓΓΓΓ (n)| = |M | |T | (n.M.n)2  (n.PT -1P. n)   (32) 
 
Therefore, the |ΓΓΓΓ(n)| is factorized in the product of three second degree trigonometric 
polynomials with two identical, as n.M.n and n.PT -1P.n are second degree trigonometric 
polynomials. This result indicates that orthotropic ellipsoidal materials are a special case of 
CFO2 materials. However, the Bonnet (2009) materials can easily be extended to a larger family 
of materials that are not necessarily orthotropic using the linear transformation method (Pouya 
& Zaoui 2006). A transformation tensor P that is not diagonal in the system of orthotropic axes 
of the CFO2 material is sufficient for this process. From (32), this transformation does not 
change the nature of |ΓΓΓΓ (n)| decomposition in irreducible polynomials. The family of CFO2-

extended materials obtained in this way contains Φ̂4. 
 
 



4.4 Cracked materials 
 
The “weak anisotropy” can be characterized by the fact that M and L have small non-spherical 
parts. IF ωωωω1 and ωωωω2 represent two non-spherical tensors with unit Euclidean norm, consider M = 
a δδδδ + αωωωω1 and S = bδδδδ + βωωωω2  with a >0, b >0, |α/a|<<1, |β/b|<<1 and denote the sign of b by 
ε = ±1. The first order expansion of (12) with respect to α and β yields: 
 

Cijkl ≈ δijVkl + δklV ij   + δikWjl + δilWjk +δjkWil +δjlWik   (33) 
 
with: V = ε(b2δδδδ+2bβωωωω2) and W = [(a2- εb2)/4]δδδδ +(aαωωωω1-εbβωωωω2)/2. Expressions similar to (33) 
with V and W considered as two independent symmetric tensors have been widely used in 
various forms to represent the phenomenological model of geomaterial and/or micro-cracked 
material elasticity. A special case of (33) is obtained by taking two Lamé coefficients λ, µ with 

a = 2+λ µ , b = λ , ε = ±1 the sign of λ, and ωωωω1
 = ωωωω2

 = ωωωω a symmetric tensor. Then, the 

expression (33) reads as following: 
 
Cijkl = λδijδkl + µ (δikδjl + δilδjk) + a1(δijω kl + δklωij) + a2(δikω jl + δilωjk + δjlωik + δjkωil) (34) 
 

where a1 = 2εbβ and a2 = ( 2+λ µ α− εbβ)/2 are very small. Without assuming small values for 

(a1, a2) compared to (λ,µ), expression (34) has been widely used in the literature to represent the 
elasticity tensor of damaged materials. From a micromechanical approach using a second order 
crack density tensor ωωωω, Kachanov (1980, 1992) deduced that the effective moduli of an elastic 
body containing a distribution of cracks can be written as a special case of (34) with a1 =0 with 
some approximation. For a material containing a distribution of penny-shaped cracks, the crack 
density tensor is defined as: 

( )3 (i) (i)(i)1

i

r n n
V

= ⊗∑ωωωω     (35) 

where r(i) and n(i) represent the radius and the unit normal to the plane of the disc number i, 
respectively, and V is the volume of the material. The result obtained by Kachanov (1980, 1992) 

also contains a fourth-order tensor (i) (i) (i) (i)n n n n⊗ ⊗ ⊗ , but the contribution of this tensor was 
found to be negligible (approximately 10 times less than the other terms) in many current cases, 
including parallel or isotropic crack arrays (Kachanov 1980). With this approximation, the 
effective moduli of the cracked material would be given by (34) with λ  and µ representing the 
elastic parameters of the intact material, a1 = 0 and a2 is a function of  (λ, µ). 
The same type of expression (34) with a1≠0 could also been obtained for a variety of 
heterogeneous materials, such as an arbitrary mixture of spheroidal heterogeneities of diverse 
aspect ratios and orientations (Sevostianov & Kachanov 2002, 2008). The expression (34) is also 
considered an intermediary between micromechanical and phenomenological models in 
theoretical investigations on cracked materials (Halm and Dragon 1988, Dragon et al. 2000). 
Finally, this expression has been widely used as a phenomenological model for damaged 
geomaterials (Chiarelli et al. 2000, Alliche 2004). 
 
It is worthy to note that Sevostianov & Kachanov (2008) considered a family of materials with 
the fourth-rank elasticity tensor  represented in terms of a symmetric second-rank tensor. These 
authors termed this family of materials the “elliptic orthotropy” materials but did not give an 
explanation for the adjective elliptic or any reference to some properties related to ellipsoids. 
Expression (34) was determined to be the general expression of the elasticity tensor of these 
materials. However, the materials (34) can be defined directly by the property that some 



indicator surface of the material is ellipsoidal, as shown by Pouya (2007). As a matter of fact, the 

indicator surface of ( ) 1

( )c n
−

 is defined in spherical coordinates by the equation x = r n with 

r (n) = ( ) 1

( )c n
−

, which is equivalent to the polynomial equation (x ⊗ x):  : (x ⊗ x) = x. x. The 

family of orthotropic materials with an ellipsoidal indicator surface for ( ) 1

( )c n
−

is the family 

defined by (34) with arbitrary values, not necessarily small, for a1 and a2. The family of 

materials (not necessarily orthotropic) with an ellipsoidal surface for ( ) 1

( )c n
−

is defined 

precisely by (33), which can be demonstrated by the methods described in Pouya (2007a, 2007c). 
 
An interesting result of this analysis concerns the family of materials with the elasticity tensor 
written as (33) with small non-spherical parts for V and W (i.e. V and W can be written as V = av 

δδδδ +αv ωωωωv with ωωωωv:δδδδ = 0, ωωωωv:ωωωωv = 1, |αv/av|<<1, and the same relations for W). This family 
includes cases of cracked materials mentioned herein (negligible contribution of the fourth-order 
tensor) with a weak crack density or damaged materials with an elasticity tensor like (34) with 
small values for (a1, a2). For these materials, an ellipsoidal model (5) can be established as a first 
order approximation of their elastic behavior. This approximation will allow use of the analytical 
results obtained herein, particularly the closed-form Green function solutions for the study of 
these materials. 

 
5. Approximate phenomenological model for materials 
 

The “ellipsoidal” concept and sub-varieties of Φ̂4 materials have been considered in empirical 
characterizations of the anisotropic elasticity of soils and rocks. For instance, these have been 
suitable for a variety of schistose rocks studied by Pinto (1970) and soils studied by Boehler 
(1975) (see Pouya & Reiffsteck 2003). In this section, approximation of a variety of rocks and 
rock masses by the ellipsoidal model (5) will be examined, and a general method of fitting the 
parameters of this model for an arbitrary anisotropic material will be provided. 
 
 
5.1 Application to sedimentary rocks and fractured rock masses  
 
 
The elastic behavior of most sedimentary rocks can be described by a model of transverse 
isotropy with an axis of revolution perpendicular to the plane of geological layers. Thomsen 
(1986) defined four dimensionless parameters, ε, δ, δ*, and γ, that characterize the transversely 
isotropic materials and the associated values for a variety of sedimentary rocks. In the context of 
“weak anisotropy”, the objective of Thomsen was to examine the concept of “elliptically 
anisotropic” medium defined by Daley & Hron (1979) for the study of seismic wave 
propagation. This concept was widely used in geophysical studies and is different from the 
concept of ellipsoidal anisotropy considered in the present paper. However, the data from 
Thomsen (1986) provide the elastic coefficients measured for sedimentary rocks and can be used 
to examine different approximate models. In this paper, these data are fit to the ellipsoidal model 
(5). For this purpose, the dimensionless elastic coefficients c*

  ij are defined as the ratio c*
  ij =cij/c33 

with c33 representing the elastic coefficient in the direction normal to the geological layers. The 
values of these coefficients from Thomsen’s parameters ε, δ, δ*, γ are given in Table 1 for rocks 
studied by Thomsen (1986). The nature of the rock and the depth of the sample are given in the 
first and second column of the table, respectively, for identification of each material in this table 



with Thomsen’s (1986) table. For an orthotropic material to be ellipsoidal, as deduced from (7), 
the following three relations have to be satisfied: 

22 33 23 11 33 13 11 22 12
44 55 66, ,

2 2 2

c c c c c c c c c
c c c

− − −
= = =   (36) 

In the context of transverse isotropy, the third relation is automatically satisfied, and the second 
one is identical to the first relation. Therefore, only one condition must be fulfilled to obtain an 
ellipsoidal material for a transversely isotropic material (Fig. 1). The distance between a 
transversely isotropic material and the family of ellipsoidal models can be measured by the 
difference between the two sides of the first equality in (36) for the real material coefficients. 
Consequently, a dimensionless distance d between the transversely isotropic model and the 
ellipsoidal model is defined as:  

* *
11 33 13 11 13*

44 44
33

1

2 2

c c c c c
d c c

c

 − −
 = − = −
 
 

  (37) 

The value of d calculated for the materials in Table 1 is presented in the last column of this table. 
The parameter c*

   11 gives an idea of the anisotropy of the initial material (the ratio between c11 
and c33). For instance, the assumption of an ellipsoidal model induces only a 0.3 % error (d = 
0.003) for the clay shale sample at the depth of 5,858.6 m with a noticeable anisotropyc*

   11= 1.38. 
Despite noticeable anisotropy, the other lines of the table demonstrate that the distance to the 
ellipsoidal model is relatively small. The mean value for d calculated for all sandstone, 
limestone, mud shale, clay shale, and shale samples (about 25 samples) in the table from 
Thomsen (1986) is approximately 0.03. Therefore, the ellipsoidal model seems to fit the 
parameters of these sedimentary rocks. 
                                            

 
 

                                            

Figure 1: The indicator surface of [c(n)]-1/4 for transversely isotropic material with ellipsoidal 
anisotropy 

 

Another interesting application of ellipsoidal models is fitting the data obtained by numerical 
homogenization methods. Numerical homogenization is a common method to determine the 
properties of cracked or fractured materials, especially rocks and rock masses (Pouya & 
Ghoreychi 2001, Min & Jing 2003, Chalhoub 2006, Pouya & Chalhoub 2007). In this method, 
the deformation of a Representative Elementary Volume (REV), which contains a distribution of 
cracks or fractures stochastically representative of the real material, is simulated under different 



boundary conditions. Adequate boundary conditions are prescribed to simulate loads in different 
directions and to determine a complete set of elastic parameters (up to 21) for the anisotropic 
homogenized material. However, fitting the numerical results with simplified models that 
contain a reduced number of parameters is generally suitable to simplify data analysis and 
interpretation. Investigation of this problem for different varieties of rock masses was performed 
by Chalhoub (2006) in two dimensional plain stress modeling. An example of a limestone 
sedimentary rock mass containing two families of orthogonal fractures was studied and the 

indicator surface of 4 ( )E n  was fitted by an ellipsoidal surface. These results demonstrated that  

the Saint Venant model (30) can satisfactorily fit the numerical results for rock masses 
containing more than one set of fractures. Moreover, the assumption of ellipsoidal anisotropy 
proved to be an easy method for estimating the values of out-of-plane elastic parameters, which 
are not accessible through two dimensional numerical simulation (Chalhoub 2006, Pouya & 
Chalhoub 2007). 

 

Table 1: Dimensionless parameters for some transversely isotropic sedimentary rocks deduced 
from Thomsen (1986) data and their distance d with ellipsoidal model (Pouya & Chalhoub 
2007). 

 

 

 

 

 

 

 

 

 
 
 
 
5.2 General approximation procedure 
 
The ellipsoidal model (5) can be used to approximate the elastic properties of a general 
anisotropic material. The quality of fitting will vary for different classes of materials. Therefore,  
the issue is how to determine the best fitting parameters for a given material, which is in the line 
of previous research investigating the best material within a given class to approximate a 
material belonging to a larger class. For example, Pouya & Zaoui (2006) have approximated the 
elastic properties of different orthotropic crystals by Saint Venant materials as defined by (30), 
and Bonnet (2009) obtained the closest elasticity tensor of CFO2 or CFO4 classes for the same 
crystals and other orthotropic materials. The following includes a general procedure for 
determining the best fitting parameters for the model (5). 
 

Rock depth 
(m) 

*
11c  *

44c  *
13c  *

12c     d 

Sandstone 4912.0 1.19 0.40 0.28 0.31 -0.004 
 5481.3 1.18 0.35 0.44 0.34 0.022 
 6542.6 1.16 0.34 0.32 0.36 -0.037 
 1582.0 1.16 0.70 -0.34 -0.23 -0.012 
Limestone 5469.5 1.11 0.34 0.32 0.34 -0.027 
Mudshale 7939.5 1.16 0.33 0.45 0.43 0.019 
Clayshale 5501.0 1.67 0.27 0.99 0.49 0.094 
 5858.6 1.38 0.30 0.59 0.58 0.003 
 3511.0 1.34 0.49 0.02 0.06 -0.069 
 450.0 1.22 0.17 0.74 0.76 -0.009 
 650.0 1.39 0.17 0.81 0.83 -0.009 



Approximation of the elastic properties of a given material by a family of models is based on 
minimization of a distance between the elasticity tensor of the material and the family. As 
mentioned by Bonnet (2009), different distances between two elasticity tensors can be used for 
this purpose. The properties of these distances have been studied by Moakher & Norris (2006) 
and Norris (2006). In this work, the Euclidean distance is adopted based upon the Euclidean 
norm:  

||  || = ijkl ijklC C     (38) 

According to this distance, the best approximate model can be determined within the family of 
ellipsoidal models (5) for any anisotropic material and applied to crystals.  
 
In the following,  represents the elasticity tensor of a given material and the associated 
parameters are known. Obtaining the closest ellipsoidal material to  consists of determining M 

and L that minimizes the distance ||
 -

-  || where: 

 C
 -

ijkl = 
1

2
(Mik Mjl + Mil Mjk)+ 

1

2
(∈ikm∈jln+ ∈ilm∈jkn) Lmn  (39) 

The distance minimization leads to the following system of equations : 

∂|| -
 -

||/∂M = 0  ⇒    ∀m,n;    (C ijkl -C
 -

ijkl)(δimδknMjl + δjmδlnMik) = 0  (40) 

∂|| -
 -

 ||/∂L = 0 ⇒  ∀m,n;    (C ijkl -C
 -

ijkl)(∈ikm∈jln+∈ilm∈jkn) = 0   (41) 

By replacing C
 -

ijkl  in these equations by (39) results in the following system: 
[(M:M) M + M  3]mn - Lab∈amα∈bnβ Mαβ = 2 C mα nβ Mαβ   (42) 

     Lmn = 
1

3
[ C ijkl - 

1

2
(Mik Mjl + Mil Mjk)]∈ikm∈jln    (43) 

Replacing L in (42) by (43) results in: 
 

[(M:M) M + 2M  3]mn = (C mnαβ + 2C mα nβ )Mαβ   (44) 
 
This is a highly nonlinear equation for M that theoretically allows for determination of this 
tensor. Only a numerical iterative method could be provided to solve this equation. This method 
consists of beginning with an initial value for M, designated as M(0), and then determining M(k+1) 
from M(k) by the following equation : 

( )
1/ 3

(k+1) (k) (k) (k) (k)1

2
  = −   

:M N M M M   (45)   

where :  

         (k) (k)( 2 )mn mn m nN C C M= +αβ α β αβ     (46) 

 
M(0) can be chosen as a function of given by (6). This procedure results in issues with 
convergence and the uniqueness of this solution. However, this procedure has been investigated 
for some cases of orthotropic materials, which always resulted in a rather quick convergence 
(less than 1% relative error after approximately 30 iterations). 
 
In the case of orthotropic materials, M and N are diagonal. Denoting the diagonal components of 
M by (m1, m2, m3), equations (45) and (46) reduce the system to three scalar equations. The first 
is the following:  

( )
1/ 3

(k+1) (k) (k) (k) (k)
1 11 1 12 66 2 13 55 3

1
(3 ) ( 2 ) ( 2 )

2
m c s m c c m c c m

 = − + + + + 
 

     (47) 



and the other two are obtained from this equation by index permutation. In these equations: 
(k) (k) (k) (k)

1 2 3s m m m= + +         (48) 

The initial values of mi are taken as (0) (0) (0)
1 11 2 22 3 33, ,m c m c m c= = = . 

 
This approximation procedure has been applied to elasticity of some orthotropic, crystalline and 
composite materials to yield accurate results with a quick convergence. An example of results 
obtained for the Sulfur crystal is given in Figure 2 and Table 2.  
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Figure 2 :Iterative process for the Sulfur crystal. The numerical values are given in Table 2. 

 
 
For this crystal, the relative error (|| Appr - M||/|| M||) found by the method is less than 0.1. 
Considering the experimental uncertainty, utilization of the approximate ellipsoidal model can 
be acceptable for different studies concerning this crystal. Although the global error in Table 2 is 
less than 0.1, the error on c44 is relatively high. This result demonstrates that if the maximum 
error for individual components of  are important in some investigations then the Euclidean 
distance would not be appropriate for optimization of parameters. As previously mentioned, 
other distances can be chosen for the optimization procedure, but this requires rewriting 
equations (40) to (48). 
 
 
Table 2 : Elastic stiffnesses measured for the Sulfur crystal (Dieulesaint and Royer, 1974) and 
their approximation by the ellipsoidal model. The relative error defined (|| Appr - M||/|| M||) is 
less than 0.1. 
 
  cαα (1010 N/m2) c11 c22 c33 c44 c55 c66 c12 c13 c23 Relativ

e Error  
Measure         2.40 2.05 4.83 0.43 .87 .76 1.33 1.71 1.59 - 

Approximation 2.566 1.973 4.696 0.628 0.877 0.560 1.130 1.717 1.788 0.09895 

 
 



    
Finally, the Saint Venant material (30) has four, the ellipsoidal material (5) has six, the STrTI 
model obtained by symmetric transformation of transverse isotropy (Pouya & Zaoui 2006) has 
six, the CFO2 has seven, and the CFO4 has eight independent parameters in the family of 
orthotropic materials. The general ellipsoidal material (5) (non-orthotropic) has nine 
independent parameters (not accounting for the three Euler angles of the reference system). The 
precision of the approximation model obtained within these families increases with degrees of 
freedom for each family.  
 
 
6. Discussions and conclusions 
 
The concept of ellipsoidal anisotropy is an attractive guideline for modeling the anisotropic 
elastic behavior of a large family of materials, particularly, soils, rocks, and rock masses. 
Ellipsoidal anisotropy covers a large variety of models proposed in recent years for geomaterials 
and cracked or damaged materials obtained by empirical approaches or by micromechanical 
analyses. The assumption of ellipsoidal anisotropy provides approximate models with a reduced 
number of parameters allowing for simplification of the data analysis. In addition, ellipsoidal 
models have very interesting theoretical properties that allow for elaborate closed-form solutions 
for basic problems of linear elastic bodies. For the general case of ellipsoidal material depending 
on 12 independent parameters, an explicit and nondegenerate closed-form solution of the Green 
function has been provided in this paper. This ellipsoidal family covers non-orthotropic materials 
without any plane of symmetry. The explicit Green function solution for these materials  
constitutes a rare case of solution not covered by the powerful Stroh (1958) formalism that 
requires the existence of at least one plane of reflective symmetry. This solution also opens the 
door to many theoretical and numerical applications, specifically the development of numerical 
methods using Boundary Elements. 

The sub-family of Saint Venant materials, which are orthotropic and depend on four independent 
parameters, offers more facilities for analytical treatments because these materials can be 
obtained by a linear transformation from the isotropic material.  

As discussed herein, other hypotheses can also be used to define relatively large families of 
materials with closed-form solutions of the Green function. The advantage of the ellipsoidal 
model is the correspondence to anisotropy as a geometrical property and the coverage of a large 
family of phenomenological, micromechanical and theoretical models in the literature on 
geomaterials. 
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Appendix A : Mathematical identities 
 
The following mathematical identities are useful to demonstrate different results presented in this 
paper. In particular : 
 
∈ijm∈klm = δik δjl  - δil  δjk  ,     ∈imn∈jmn= 2δij       (A.1) 
 
For every second-rank tensor R, the following identities can be established:              

(R-1)mn = 1

2  R
∈mik∈njlRijRkl            (A.2) 

∈aik∈cjlRijRklRcb = 2 Rδab         (A.3) 

R 3 = (R:δδδδ) R 2 - 
1

2
[(R:δδδδ)2- R:R    ] R + |R | δδδδ       (A.4) 

The following result is true if R is symmetric (and can be verified in the reference system where 
R is diagonal): 
∈amp∈bnq∈ilc∈jkd RimRjnRkpRlq Rcα Rdβ =R

2 [ δaα δbβ + δaβ δbα]     (A.5) 
 
 
Appendix B : General expression for  
 
For a positive-definite tensor M, the condition x.M.x = 1 is equivalent to (x.M.x)2 = 1. Therefore, 
the condition (4) in the main text can be written as:  

∀x ;  (x ⊗ x): : (x ⊗ x) =1 ⇔  (x.M.x)2 = 1   (B.1) 
The two polynomials are fourth-order and homogeneous. Therefore, this condition is equivalent 

to: 

∀x ;  (x ⊗ x): : (x ⊗ x) = (x.M.x)2   (B.2) 
Then, if  is defined by: 

Fijkl = Cijkl - 
1

2
(Mik Mjl + Mil Mjk)    (B.3) 

 has the following properties: 
 ∀x ;  (x⊗x): :(x⊗x)= 0     (B.4) 
∀ i,j,k,l;  Fijkl = Fijlk = Fklij     (B.5) 

The relation (B.4) implies that for every set of x, y, a, and b: 
 

(x⊗x): :(x⊗x)+ (y⊗y): :(y⊗y) - 2 (a⊗a): :(a⊗a) - 2 (b⊗b): :(b⊗b)= 0  (B.6) 
 

Using x =a+b, y =a-b , and (B.6) results in the following: 
∀a, b ;   (a⊗a): :(b⊗b) + 2 (a⊗b): :(a⊗b)= 0  (B.7) 

Then if  is defined by: 
Mijkl = (Fijkl + Fikjl + Filjk )/3    (B.8) 

This tensor satisfies the symmetries of elasticity tensors Mijkl =Mijlk= Mklij and in consequence of 
(B.7), also satisfies ∀a, b; (a⊗a): :(b⊗b) =0. This is sufficient to state that  =0. Then, if L is 
deduced from  by: 

Lpq = 
1

3
∈pik∈qjlFijkl     (B.9) 



(∈ikm∈jln+∈ilm∈jkn) Lmn/2 = Fijkl - Mijkl using the mathematical identities (A.1), and with  =0:  

Fijkl = 
1

2
 (∈ikm∈jln+∈ilm∈jkn) Lmn    (B.10) 

This demonstrates the general expression (5) for   in the main text.  
 
 
Appendix C : Properties of  L'  
 
Applying the transformation (15) on (5) results in the following: 

C
 ∼

mnpq = 
1

2
(δmp δnq + δmq δnp)+ Hmnpq    (C.1) 

with :Hmnpq=
1

2
(∈ikc∈jld +∈ilc∈jkd) QimQjnQkpQlqLcd.  Defining L ' as: 

L'ab =
1

6
∈amp∈bnq(∈ikc∈jld +∈ilc∈jkd) QimQjnQkpQlqLcd  (C.2) 

and using the first equation (A.1), Hmnpq can be written as : 

Hijkl = 
1

2
(∈ikm∈jln+ ∈ilm∈jkn) L

 'mn     (C.3) 

This yields the expression (17) in the main text. If L" = PLP  and Q = P-1, (C.2) can be written 
as:    

L'ab =
1

6
∈amp∈bnq(∈ikc∈jld +∈ilc∈jkd) QimQjnQkpQlq Qcα Qdβ L"αβ     (C.4) 

The identities (A.5) and (A.1) allow computing:   
∈amp∈bnq (∈ikc∈jld +∈ilc∈jkd) QimQjnQkpQlq Qcα Qdβ = 4Q2 δaα δbβ +Q2 (δaα δbβ+ δaβ δbα) 
and L"  is symmetric to determine L' = Q2 L" . Then (9) is used in the main text to find (8).  

The condition of  as positive-definite is equivalent to 
 ∼

, given by (15), to be positive-definite. 
The expression (17) of this tensor and the reference system with L'  diagonal is considered. For 
an arbitrary symmetric second rank tensor a in this system results in the following: 

a :
 ∼

: a = 2 2 2
11 22 33 33 11 22 11 22 33 22 33 112 ' 2 ' 2 'a a a L a a L a a L a a+ + + + +  

   
2 2 2

11 23 22 31 33 122 (1 ' ) (1 ' ) (1 ' )L a L a L a + − + − + −       (C.5) 

This is the sum of two independent polynomials in (a11, a22, a33) and (a12, a23, a31). The condition 
that the first one be positive for every (a11, a22, a33) reads: 

11 22 33' 1 , ' 1 , ' 1L L L< < < ,  2 2 2
11 11 11 11 22 33' ' ' 2 ' ' ' 1L L L L L L+ + − <    (C.6) 

These conditions assure that the second polynomial is positive, which can be written in a 
reference system independent notation as: δδδδ - L' 2  positive-definite  and  L' :L'  -2L' < 1. 
     
 
Appendix D : Calculation of G 
 
The method to obtain solution (23) in the main text has been explained in detail in Pouya 
(2007c). Symmetric combination of these variables should be determined and replaced by 
functions of δδδδ, T, x̂ , etc to eliminate p, q and u and v in this expression. In particular, p2 + q2 = 

B:δδδδ =ξT –X.X. The computation of pq is more technical and involves writing p2q2 = |B+ x̂ ⊗ x̂ | 
based on the expression (22), then using (21) to write p2q2 = |ξT-X⊗X+ x̂ ⊗ x̂ | and computing this 

expression as a function of the components of T in a coordinate system with x̂  for one axis to 



determine that p2q2 = ξ |T|. With these manipulations, (28) is found as a function of the 
transformed variables. The final expression of G is deduced from inversion of (16) and is given 
in the following. 
 
Final expression of G : 
The displacement field in an infinite body with the elasticity tensor (5) defined by M and L and 
subjected to a point force f at the origin of coordinates is given by U(x)=G(x).f, where the 
expression of G is derived in the following way from M, L, x, and the unit tensor δδδδ: 
 
P denotes the symmetric and positive solution of  P2 = M and: 

Q = P-1 ,     ( )-11

2
= −T M PLPδδδδ ,      T = T :δδδδ ,      τ = |T |    (D.1) 

-1. .r x x=ɶ M  ,      
2

1
x x

r
ξ =
ɶ

.QTQ. ,     2
2

1
2T x x

r
= + −η ξ ξτ

ɶ
.QT Q.       (D.2) 

1
ˆ .x x

r
=
ɶ

Q  ,     X = T. x̂  ,       ( ) ˆ ˆ- - X X x x= + + ⊗ + ⊗ξ η ξτ ξτF T δδδδ       (D.3) 

 
Then: 

( ) 2

- 2
ˆ ˆ( ) 1

8

T
x x x

r

   = + − ⊗ +  π ξ   

ξ
η η τɶ

Q
G Q FTF Qδδδδ        (D.4) 

 


