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Abstract

The concept okllipsoidal anisotropy first introduced in linear elasticity by Saint hvant, has
reappeared in recent years in diverse applicatidren the phenomenological to
micromechanical modeling of materials. In this apicindicator surfaceswhich represent the
variation of some elastic parameters in differantaions of the material, are ellipsoidal. This
concept recovers different models according to elestic parameters that have ellipsoidal
indicator surfaces An interesting feature of some models introdubgdSaint Venant is the
formation of analytical solutions for basic probkewf linear elasticity. This paper has two main
objectives. First, an accurate definition of theéety of anisotropy calleéllipsoidalis provided,
which corresponds to a family of materials thatetefs on 12 independent parameters, including
varieties of orthotropic and non-orthotropic matkxi An explicithondegenerat&reen function
solution is established for these materials. Thtas,shown that thellipsoidal model recovers a
variety of phenomenological and theoretical modeted in recent years, specifically for
geomaterials and damaged or micro-cracked matefibisse models can be used to approximate
the elastic parameters of any anisotropic matevidi different fitting qualities. A method to
optimize the parameters will be given.

Keywords: Linear elasticity, anisotropy, indicator surfa@dljpsoidal anisotropy, amorphous
materials, damage, Green Function

1. Introduction

In recent years, much research has focused on mgdbik elastic anisotropy of noncrystalline
materials with simple models. A major focus hasnbdetermining adequate models with a
reduced number of parameters, which have beenrootet using various methods. Cowin and
Mehrabadi (1987, 1995) defined classes of elastiterials based on the number and orientation
of reflective symmetry planes. This approach wadiag to model bone elasticity (Yargj al.
1999). Special cases of the fourth order elastteibgors have also been considered; these cases
can be expressed in terms of only one second ¢edsor. This model has been applied to the



micro-mechanical approach of damaged and micrdcerhenaterials (Halm & Dragon 1988,
Dragonet al. 2000, Sevostianov & Kachanov 2002, 2008). In ositedies, thendicator surface
properties of some “mono-directional” elastic paeéens have been used to define simple forms
of elastic anisotropy. A “mono-directional” paramets a parameter like Young’'s modulus or
the elastic coefficient defined by Eq. (1) that elegls on the elasticity tensarand only one
material directiomn. Examples of mono-directional elastic parametens lbe found in Pouya
(2007a). Theindicator surfaceof a mono-directional parameter is the surfacenddf by the
equationx(n) = r(n) n, wheren scans the unit sphere and represents a directitimei material
andr(n) is the distance from to the origin of coordinates that equals the valti¢ghe elastic
parameter in the direction. The characterization of material anisotropy bg #hape of the
indicator surfaces was initiated in the early wofkSaint Venant (1863), who first introduced
the concept of the ellipsoidal anisotropy. Becamsg¢erial isotropy geometrically corresponds to
the image of a sphere, anisotropies correspondinpeé image of an ellipsoid have naturally
been investigated. Saint Venant (1863) studiedraéedasticity models of this type, arguing the
utility of these models in representing the elatstiof anisotropic amorphous materials. This

included the study of materials for which the irdar surface of4E(n), whereE(n) is the
Young’s modulus in the material directiar(see Eq. 31), is an ellipsoid.

However, the research of Saint Venant has prewodosén neglected in the literature, and the
only evidence is a short quote in a book by Leldkit(1963). Independently, the concept of
ellipsoidal anisotropy has reappeared in recentsyas a guideline for modeling the elasticity of
geomaterialssuch as soils, rocks, and concrete. The anidotobyaracter of these geomaterials
is being accounted for more frequently in differapplications, including geotechnical design or
the study of seismic wave propagation, genesiseofagjical structures, and micro-cracking of
rocks. A rough representation of the anisotropyhwat minimum number of parameters is
sufficient for these applications. For this reas®eres Rodrigues and Aires-Barros (1970)
attempted to fit the Young's modulus values of @asi rocks measured in different directions by
ellipsoids. To study seismic wave propagation iomlggical layers, Daley and Hron (1979)
defined the “elliptically anisotropic” medium asitg characterized by elliptical P-wave fronts
emanating from a point source. Loesal. (2004) proposed a simplified method to analyze the
P-wave velocity data in anisotropic rocks; the mdtlassumes an ellipsoidal approximation of
certain elastic parameters. Pouya and ReiffsetdR3Rnoted that data from Boehler (1975) on
the Young's modulus of different soils present dipsoidal property, and these authors
demonstrated that this assumption allows for thmphkification of foundation design.

However, the concept of ellipsoidal anisotropy le aforementioned works covers a diverse
range of materials. The choice of the elastic patamwith ellipsoidal variation leads to very
different models. Furthermore, this concept hasnbesed incorrectly in some works. For
instance, the Young's modulus, considered by PRoelrigues and Aires-Barros (1970), is not
an appropriate parameter because its indicatoaceiidan never be an ellipsoid, except when it is
a sphere (Pouya 2007a). The second or fourth oddtss parameter should be utilized to define
ellipsoidal materials.

The interesting feature of models introduced bynSaienant is the ability to determine
analytical solutions for basic problems in linedasécity, specifically the Green functions.
Therefore, the present study focuses on severalaggpes of ellipsoidal materials introduced
by Saint Venant (1863).

This paper has two primary objectives. First, tlgpet of anisotropy calleckllipsoidal is
accurately defined, and an explioibndegeneratexpression of the Green function solution is



established for thesellipsoidal materials. Then, this family of materials is comguhto other
anisotropic material families existing in the laarre, and thellipsoidal family is demonstrated
to recover a large variety of models defined foorgaterials and damaged or micro-cracked
materials. Finally, it is shown how a given elastaterial is approximated by ellipsoidal models
followed by a description of the method to obtie best set of fitting parameters.

Notations

In the sequel, light-face (Greek or Latin) lettdesiote scalars, underlined letters denote vectors,
bold-faced letters designate second rank tensadsunle-index matrices, and outline letters are
reserved for fourth rank tensors. The conventiorswihmation on repeated indices is used
implicitly. The completely antisymmetric Levi-Ciattensor is denotef with the components:
L = 1 ifi,j,k is an even permutation of 1,2,3
L = -1 ifi,j,k is an odd permutation of 1,2,3
L = 0 otherwise.
The scalar product of two vectasandb is labeleda.b, and the associated tensor produeti®
with (allb); = a;b;. For second rank tensors, the matrix product isl&bAB, the inner product
is A:B =A;B;i, and the determinant i with (for 3x3 tensors) |a| =Lfx Lmndiamand6. The
operation of the fourth rank tensGron A will be labeled ag”:A with (C:A); = CjuAg and the
operation ofA ona by A.a. The tensor transposed franis denoted’.
For a fourth rank tensorC satisfying the symmetrie€j = Cjk = Cjiw, a matrix notationis
introduced : the double sub-scrii (s first abbreviated to a single sub-scrig} tunning from
1 to 6 by the following rule : 1L, 1, 222, 33- 3, 23- 4, 13- 5, 12- 6. The
matrix notationC is defined by the componertgs = Cj ).

2. Ellipsoidal materials

A material with the elasticity tensarand a direction in this material indicated by timét vector
nwill first be considered. Thelastic coefficienin the directiom is defined by:

c(n)=n0n):C: (n0n) (1)

The indicator surface of{n)]™**is the set of points =r n with n scanning the unit sphere and:
r (n) = [em)]™* (2)

The polynomial equation of this surface is thedwiing:
XL x:C: xUx) =1 3)

Hence, the indicator surface a{)] ™" is generally a fourth order surface. For specales of
C, this surface becomes an ellipsoid (second orddace). These cases define a family of

materials that we designate &( and callellipsoidal If the equation of an ellipsoid is written as
x.M.x =1, then the condition for (3) to define an edbp is the existence M satisfying:

Ox; xO0x):C: (xO0x =1« xMx=1 (4)

Appendix B shows that equation (4) leads to théowahg general expression faf whereM
andL are two second rank symmetric tensors ldnid positive-definite:

1 1
Ciji = E(Mik M + My M) + E(ﬂkmﬂun+ Lhm D) Lmn (5)

The family$4 depends on 12 independent parameters that areooemys ofM andL. Let (g,
&, &) represent a system of principal axes for thepsdid associated t@' [ c/l\>4. In this



coordinate system\ is diagonal. The coefficients dfl, L, and C in this system have the
following expressions that are functions of the components of”:

\/E Gz TG ~Cyp
M = NS L L=|-C Cy —Cy (6)
\/Q ~Cs TCa G
Gy G G3 Gy ]
C Gy Cx
Cx3 Gs
V2ls™Cs G _ %
C= 2 2 2 (7)
VaiCs~Gs Gy
2 2
VGi1Cr~Cp
L 2 i

The condition forC to be positive-definite imposes some conditiondaelative toM. These
conditions can be expressed more easily by usmdpilowing auxiliary tensokL.":

L'=[M[*PLP (8)
whereP is the symmetric and positive-definite solutiortlué equation:
PP=M (9)

The conditions forC to be positive-definite are then found to be egla@nt to the two following
conditions withddenoting the second rank unit tensor (see Appe@itix

J- L' % positive-definite, L' +2|L' >0 (10)
If we take two constantd andy and putM =,/A +2u dandL =49, then (5) would represent the

isotropic material with Lamé coefficiensandz. The conditions (10) in this case recouer 0
and 3+2u> 0.

An alternative expression for (5) can be given withxpressed as a quadratic expression of two
second rank tensors.|lf|£0, € =1 is denoted as the sign|bf and:

SENCIINE (11)
Then (5) can be written as:

Ciw = %(Mik Mji + My My) + 2(231 S0 -Sk S-Si SW) (12)

This expression is more restricted than (5) bectheseasel(#0 and|L|=0) is not recovered, but
is useful to demonstrate some properties of theselidal family as presented in Section 4.4.

Materials defined by these models have two interggeatures: 1) recovery of a large family of
phenomenological models defined for geomateriatsraitro-cracked materials and 2) ability to
derive closed-form solutions of Green functionkisTlatter property is studied in the following
section.



3. Green function

The Green function for an infinite medium represehe displacement field for a point force in
this medium. It is the key for many basic problevhénear elasticity. An explicit solution of the

Green function forc/l\>4 materials was given by Pouya (2007c). However soisition presents
some degeneracy problems which make it inappr@prfat numerical modelling. In the
following, a nondegenerate expression for this tsmuwill be derived after presenting briefly
the method used by Pouya (2007c) to obtain thedotsition.

This Green function, denoted KB(x), is the solution of the equati@}9jxGim(X) = dmAX) with
the condition Lim G(x) = 0. This solution can be deduced from the follayvcontour integral

] -

(Lifschitz & Rosenweig 1947, Synge 1957, Mura 1982)
1 21 -1
GX)=—|. I "(n)d@ 13
W= [, ) (13)

In this expressior, = |||, n(&) is the unit vector on the circle perpendiculaxtofis the polar
angle ofn, and/ (n) is theacoustic tensodefined by :
Fik = Cij 0y (14)

The calculation ofs from (13) faces the factorization problem of aym@mial of a degree 6. No
general solution is known for this problem. As attevaof fact,/~™" = /||, where/™" is the
matrix of cofactors of” and the determinaff| is convertible to a polynomial function of #n

that is generally of degree 6. However, Pouya (2Ddémonstrated that the determinantc/t\qr
materials can be reduced to a polynomial of de@ressing thelinear transformationof the
elastic body problem (Pouya 2000, Pouya & Zaoui6206or an elastic body with elasticity
tensorC subjected to given surface tractions and displacesy according to this transformation,
a simultaneous change of coordinates and of digpiaat field is considered that is definedxby

=P. X andu(x) = Q. i (X) whereQ = (P")%. The new equations correspond to a new elastig bod
problem with different geometry, elasticity tensord prescribed forces and displacements. The

transformed elasticity tens@ is given by:
gmnpq = CijkI QimanQkaIq (15)

Application of this transformation method to thelplem of a point force in an infinite medium
allows for the following relation between GreendtionsG andg related respectively t6 and

G® =P |P'GXP (16)

For C given by (5), let také® equal to the symmetric and positive-definite solutof the

equationPP = M. The transformation (15) then leads to the folloyvwexpression foéz:

gijkl =9 i - (LhanLlfint Lhm Lfen) Trnn (17)
whereT is deduced from the following equation in whichis given by (8):
L' =J-2T (18)

The first condition (10) implies that is positive definite with eigenvalues smaller tHanWve
denoteX= Qx, I'=||X|, X =X/F, n a unit vector orthogonal andt =n x X the vector product



of nandX. The acoustic tensor/D (n) associated toé7 has a simple expression with the
determinant as follows:

| Fo)| = éa- B2 = [T | (0T 2n) (19)

E=XT.X, a=tTt, B=XTt (20)
The right-hand side expression in (19) is a seasgtee trigonometric polynomial i which

with:

assures that the line integral (13) tgrcan be calculated explicitly. The explicit solutis given
by Pouya (2007c) using the eigenvectors of thewahg tensoB:

X=T.X, B=¢T-X0X (21)
The tensoB has two eigenvectors orthogonalowith positive eigenvalues that can be written
as:

B = p’(unu) + q(vav) (22)

where (X, u, V) represents a system of unit eigenvector8 @ndp > 0 andg > 0. With these
notations, the solution given by Pouya (2007c) sead

4T[PE(X)—_2( OX+ 1 {_(xT u)(XxO u+ udd )9+_(_)§|' OO v @ )(}
pq (p+Q)
t o 2[(UT U)(UD W)+ (T )T Y+ (T Y0 _v_@_})
{ U Tu+wT v)+—}(_uD VI Y+
2(p+ay
- [—(uTu)@D Y- LvT-_\bL\D_\)} 23)
(p+0)°

This expression can be considered an explicit swiutor the Green function. However, this
solution requires an eigenvalues and eigenvecticsilation to determinep( g, u, v) for eachx
direction. Directions ol andv become undetermined in certain cases, particuwahngnp = q,
and thisdegeneracygauses numerical problems. Accordingly, expressfdhis solution without
referencingu andv is more appropriate for implementation in numdrigeograms and for
analytical derivations. This can be obtained by meit@ng p andq from the following relations
(see Appendix D):

PP+ =T XX P =&r (24)

where: T=T:0 r=|T| (25)
Then, (23) is written as a combination of symmegxpressions inp{ uU) - (g, v) that can be
expressed as a function 6f T, and X. For instance,u(iu) + (vOlv) =d- X X or the equation
(22) can be used to eliminag ¢, u, v) in the equations. By using this method and dexgoti

n=(pra)’ = &T XX+ 2/é7 (26)
F=-&T +(n-&r) o+ X 0 X+&7 30X 27)

the solution (23) can be written as:



Sw=—L (T_"z+1j(5—gmg)+2i|:ﬂ: (29)
s |\ 7 n*\Er
Then, the relation (16) must be used to write thee@rfunction solution for the initial tensor
in terms of parameteid, L, andx. The final result is given in Appendix D.

This solution recovers those obtained for isotr@wd Saint Venant materials (see section 4.2).
It can be compared to analytical solutions obtaibgdother methods for special cases of
ellipsoidal materials. An interesting comparisorthie subfamily of ellipsoidal materials that are
transversely isotropic that depend on four intarsrameters (see Section 5.1). This comparison

can be executed without loss of generality on threesponding transformed materiéggiven

by (17). fT =t10 + (t3-t1) n(In, a material is obtained with transverse isotrapyund the axis

n. The solution (28) for this case can then be costptr transversely isotropic materials by Pan
& Chou (1976) and Pouya (2007b) with parameters=(C.2= Css= 1, Caa= Css5= t1, Ces= t3). The
comparison is very tedious and time-consuming beedhe two solutions use very different
basic functions obtained by fundamentally différemys. Equation (28) is obtained by using
line integral (13), while the solution from Pan &hdal (1976) is obtained by displacement
potentials method. However, all components of e solutions were compared and verified as
identical.

Notably, several Green function solutions in theréture for different anisotropy cases (Willis
1965, Kroner 1953, Pan & Chou 1976) present degegeior special combinations of elastic
parameters. A special treatment is then requireatiemuately derive nondegenerate expressions
from these solutions for implementation in humdricades (Pouya (2007b), Bonnet (2009)).
This is also the case of the expression (23) giweRduya (2007c). However, the solution (28)
does not present amiegeneracyAs previously mentioned, positive definiteness ampliesp,

g >0, and them > 0 andér > 0 according to equations (24) and (26). Therefiwe solution (28)

is nondegenerate for every set of elastic parameter

4. Comparison with other classes of materials

The ellipsoidal family</1\34 covers a large variety of linear elastic materidisfined by
phenomenological laws or by constitutive relatiomsspired from micro-mechanical
considerations or by other properties. Howevers flamily has restricted intersections with
classes of crystalline symmetries. The followingtisecfocuses on the possible symmetries of
this family and comparison to other families ofsatropic materials.

4.1 Symmetry properties

A geometrical symmetry property af necessarily implies the same symmetry for the atdic
surface §(n)]™Y*. Therefore, the possible symmetries ®fmay be searched for among the
symmetries of the indicator surface. If the haklirdeters of an ellipsoid are different, there are
only three planes of symmetry and all the possitymmetries reduce to combinations of
reflective symmetries relative to these planes. plames of symmetry for the ellipsoid are
determined by the principal directions M. The planes of symmetry fol are not planes of
symmetry forL if M andL do not have a common system of principal axeshibicase, these
are not planes of symmetry far which, therefore, does not have any possible plaihe

N
symmetry. Thus, thé&, materials cover a variety of non-orthotropic miatlsrthat do not have



any plane of symmetry. In this case, the Stroh &ism (Stroh 1958, Ting 1996) that
establishes closed-form solutions for a large waeé problems in three dimensional anisotropic
elasticity cannot be applied because this formalrequires a plane of symmetry for the

problem. The element&; with noncommutablé andL are among the rare variety of non-
orthotropic materials with a known closed-form swn of the Green function. Another group of
this kind of materials (non-orthotropic with clostesim Green function) was obtained by Pouya
(2007b) by application of tHenear transformatiormethod to transversely isotropic materials.

In contrast is orthotropic wheiM andL have a common system of principal axes. When there
is transverse symmetry fod andL around a common axis, théhhas the same symmetry.

Finally, C is isotropic whenM andL are spherical. Therefore, the ellipsoidal anisotrd/\py
defines, as other families of ellipsoidal anisotesp(Pouya 2007a), a classification that is
transversal to other classes of materials definedobational invariance or plane symmetries
(Forte & Vianello 1996). The symmetries of the iredar surface constitute weaker properties
than the symmetries of the actual material. Foraimse, a spherical indicator surface &om)
does not imply thatC is isotropic; it only implies thaiM is spherical and, in turn, that is
orthotropic. A more detailed discussion of the tieles between the symmetries of the indicator
surfaces and the materials is provided in Pouy@{ap

4.2 Saint Venant material

Let A and i represent two Lamé coefficientg>0, 31+2,~0) andD a symmetric and positive-
definite tensor:

M= JA+2uD, L=ADD* (29)
The relation (5) yields then the following:

Cij = AD;jDy + 1 (DiDji + DiDy) (30)

The Young’s modulus in directiamis defined by:

EM)= [0On:s: (aOdn)]” (31)
where theS = C* represents the compliance tensor. For materils t®th indicator surfaces of
[c(n)]™* and 4 E(n) are ellipsoidal. These materials were introducedsaint Venant (1863) as

suitable models for noncrystalline anisotropic mats. Independently, the expression (30) has
been used in recent micromechanical studies tesept the effective moduli of heterogeneous
media (Milgrom & Shtrikman 1992, Milton 2002) ansl suitable to represent the elasticity of
geomaterials and some specific rock masses (Chialk006).

As previously shown by Saint Venant (1863), thimifg of materials presents interesting
theoretical properties. In particular, d’Alembertssplacement potentials and the solution for
plane waves propagation in isotropic elasticity tenextended easily to this family. Pouya
(2000) demonstrated that this material (30) canlidained by dinear transformationdescribed
herein) from the isotropic material. The theoretmaperties of this material called Transformed
Isotropic material were investigated by Pouya & wWa@2006). Considering thdinear

transformationof the material (30) with® =J/D, then the transformeéz will correspond to an
isotropic material with Lamé coefficients and i Therefore, many closed-form solutions for
basic elasticity problems with isotropic materieds be extended ®aint Venan{30) materials.
The following are some examples of results extendetheseSaint Venant Eshelby (1957)



tensor for inclusion-matrix problem (Milgrom & Shman 1992, Pouya 2000) and the Green
function for infinite space (Pouya 2000) and folfispace (Pouya and Zaoui 2006). Extension
of the Green function solutions for two joined senfinite isotropic solids (Rongved 1955) or
for layered medium comprised of isotropic materi@Benitez & Rosakis 1987) to solids
constituted oSaint Venanmaterials would also be possible (Pouya and Z2006).

4.3 Bonnet materials

Bonnet (2009) defined two varieties of orthotropiaterials, denoted as CFO2 and CFO4, for
which a closed-form solution can be derived for @reen function. These materials are defined
on the basis of properties of the sixth order polgral corresponding to the determinant of the
acoustic tensor. As previously described, factogzthis polynomial, which is generally of

degree six, to irreducible polynomials of degressi¢han or equal to four is necessary to
determine a closed-form solution for the Green fimnc Bonnet (2009) introduced two families

of orthotropic materials that involve the polynomimeing factorized in the product of three

second degree polynomials for CFO2 materials acibifized in the product of a second degree
and a fourth degree irreducible polynomials for @R@aterials. Although Bonnet materials are
defined on the basis of mathematical consideratithresy can provide good approximations for
some physical types of materials with well pronadh@nisotropy, such as crystals and fiber

N N
reinforced composites. In comparison to dre family, the ®, materials are not generally
orthotropic, and therefore, are not included in Betnmaterials. However, the determinaE
N
(n)| reduces to a second degree polynomial for a amsfd tensorgof an element 0d, ,

which results in&CFOZ anngCFO4. For a general eIeme@’tD&\h with P denoting the

symmetric and positive solution & =M, consider a unit vectan and the unit vectoE =
(n.M.n)2P. n. The following can be deduced from equations (b4} @5):

() = (.M.n) P /D(E)P

Then |~ M| = @M.0)® P 2 | F(B)]. Using the relation (19) for the unit vectBrand then
replacingEWith (n.M.n)"Y?P. nresults in the following:

IF@I=M|[T|@Mn)? @PTP.n) (32)

Therefore, the|/(n)| is factorized in the product of three second degtegonometric
polynomials with two identical, as.M.n and n.PT™'P.n are second degree trigonometric
polynomials. This result indicates that orthotropitipsoidal materials are a special case of
CFO2 materials. However, the Bonnet (2009) mateah easily be extended to a larger family
of materials that are not necessarily orthotrogimg thelinear transformationmethod (Pouya
& Zaoui 2006). A transformation tensBrthat is not diagonal in the system of orthotrogmes
of the CFO2 material is sufficient for this procegsom (32), this transformation does not
change the nature d¢f (n)] decomposition in irreducible polynomials. The famdf CFO2-

N
extended materials obtained in this way contdins



4.4 Cracked materials

The “weak anisotropy” can be characterized by tlo¢ #aatM andL have small non-spherical
parts. IFa andap represent two non-spherical tensors with unit Eeen norm, considéd =
ad+ aa andS=bo+ fap with a >0, b >0, |a/al<<1, |f/bl<<1l and denote the sign bfby
&=1=1. Thefirst order expansiomf (12) with respect tar andS yields:

Cii = qVi + daVij + AW, + AWk +Wi +§Wik (33)

with: V = g(b?F+2bBap) andW = [(a°- €b?)/4]J +(ao wm-ebBap)/2. Expressions similar to (33)
with V and W considered as two independent symmetric tensore baen widely used in
various forms to represent the phenomenological @hofl geomaterial and/or micro-cracked
material elasticity. A special case of (33) is at¢d by taking two Lamé coefficients i with

a=\A+2u, b=\/m, £=%1 the sign ofd, and m = a»= w a symmetric tensor. Then, the
expression (33) reads as following:

Ci = AdjAa + U (G + A1) + ar(djwn+ daad) + ax(dkwj + diak + Jiax + dear) (34)

wherea; = 2sbB anda, = (A +2u a— ébp)/2 are very small. Without assuming small valu@s f

(a1, &) compared toA,u), expression (34) has been widely used in thealitee to represent the
elasticity tensor of damaged materials. From a enmi&chanical approach using a second order
crack densitytensora Kachanov (1980, 1992) deduced that the effectieeluli of an elastic
body containing a distribution of cracks can betten as a special case of (34) wéth=0 with
some approximation. For a material containing #ribtistion of penny-shaped cracks, the crack
density tensor is defined as:

1 DR AN i
sziZ(r()) D()DD() (35)

wherer® andn® represent the radius and the unit normal to tla@eplof the disc number i,
respectively, an is the volume of the material. The result obtaibgdachanov (1980, 1992)

also contains a fourth-order tensaf O n” O f” O A’ , but the contribution of this tensor was

found to be negligible (approximately 10 times I#san the other terms) in many current cases,
including parallel or isotropic crack arrays (Kacha 1980). With this approximation, the
effective moduli of the cracked material would beeg by (34) withA and u representing the
elastic parameters of the intact matemal= 0 anda, is a function of(A, ).

The same type of expression (34) wighz0 could also been obtained for a variety of
heterogeneous materials, such as an arbitrary reixdti spheroidal heterogeneities of diverse
aspect ratios and orientations (Sevostianov & Kaoti@002, 2008). The expression (34) is also
considered an intermediary between micromechanarad phenomenological models in
theoretical investigations on cracked materialsifHand Dragon 1988, Dragost al. 2000).
Finally, this expression has been widely used gsh@nomenological model for damaged
geomaterials (Chiarelét al. 2000, Alliche 2004).

It is worthy to note that Sevostianov & Kachano@@8) considered a family of materials with
the fourth-rank elasticity tensar represented in terms of a symmetric second-ramote These
authors termed this family of materials thaliptic orthotropy” materials but did not give an
explanation for the adjectivelliptic or any reference to some properties related tpseilds.
Expression (34) was determined to be the generakesgion of the elasticity tensor of these
materials. However, the materials (34) can be ddfidirectly by the property that some



indicator surface of the material is ellipsoida,shown by Pouya (2007). As a matter of fact, the

indicator surface o(w/c(g))_l is defined in spherical coordinates by the equatie- r n with
r(n)= («/c(g))_l, which is equivalent to the polynomial equatianix):C : (x 0 X) =x. x. The

family of orthotropic materials with an ellipsoidal indicator surface (Q/@)_lis the family
defined by (34) with arbitrary values, not nece$gamall, for a; and a,. The family of
materials (not necessarily orthotropic) with anipsibidal surface for(@)_lis defined
precisely by (33), which can be demonstrated byriethods described in Pouya (2007a, 2007c¢).

An interesting result of this analysis concerns faraily of materials with the elasticity tensor
written as (33) with small non-spherical partsVoandW (i.e.V andW can be written a¥ = a,
o+tay, w with w:0=0, ' w =1, |a/al<<l, and the same relations f@v). This family
includes cases of cracked materials mentionedrhéneigligible contribution of the fourth-order
tensor) with a weak crack density or damaged nasewith an elasticity tensor like (34) with
small values ford, a). For these materials, an ellipsoidal model (5) ba established as a first
order approximation of their elastic behavior. Tapproximation will allow use of the analytical
results obtained herein, particularly the closaurfdsreen function solutions for the study of
these materials.

5. Approximate phenomenological model for materials

The “ellipsoidal” concept and sub-varieties c/l\aj materials have been considered in empirical
characterizations of the anisotropic elasticitysofls and rocks. For instance, these have been
suitable for a variety of schistose rocks studigdPinto (1970) and soils studied by Boehler
(1975) (see Pouya & Reiffsteck 2003). In this settiapproximation of a variety of rocks and
rock masses by the ellipsoidal model (5) will bemined, and a general method of fitting the
parameters of this model for an arbitrary anisatropaterial will be provided.

5.1 Application to sedimentary rocks and fractured rot&sses

The elastic behavior of most sedimentary rocks carmdéscribed by a model of transverse
isotropy with an axis of revolution perpendicular the plane of geological layers. Thomsen
(1986) defined four dimensionless parameters, J, andy; that characterize the transversely
isotropic materials and the associated values farigty of sedimentary rocks. In the context of
“weak anisotropy”, the objective of Thomsen was t@mine the concept of “elliptically
anisotropic” medium defined by Daley & Hron (1978)r the study of seismic wave
propagation. This concept was widely used in gedphlystudies and is different from the
concept of ellipsoidal anisotropy considered in firesent paper. However, the data from
Thomsen (1986) provide the elastic coefficients messfor sedimentary rocks and can be used
to examine different approximate models. In thipgrathese data are fit to the ellipsoidal model
(5). For this purpose, the dimensionless elastaffioients cIJ are defined as the rat'cﬁj =Gjj/Ca3
with cs3 representing the elastic coefficient in the di@tiormal to the geological layers. The
values of these coefficients from Thomsen’s pararsete), J, y are given in Table 1 for rocks
studied by Thomsen (1986). The nature of the rockthedlepth of the sample are given in the
first and second column of the table, respectivielyjdentification of each material in this table



with Thomsen’s (1986) table. For an orthotropic mateo be ellipsoidal, as deduced from (7),
the following three relations have to be satisfied:
Vel ™ O V G5 Ci3 Va1~ Cp

= &, & (36)

In the context of transverse isotropy, the thidatien is automatically satisfied, and the second
one is identical to the first relation. Thereforalyoone condition must be fulfilled to obtain an
ellipsoidal material for a transversely isotropiaterial (Fig. 1). The distance between a
transversely isotropic material and the family diipsoidal models can be measured by the
difference between the two sides of the first eypuah (36) for the real material coefficients.
Consequently, alimensionless distancg between the transversely isotropic model and the
ellipsoidal model is defined as:

1 J€11€33=C13| . oy -C
d= [044— J: (';‘]_4—#:L3 (37)

Ca3 2 2

The value ofd calculated for the materials in Table 1 is presimehe last column of this table.
The parameterc;l gives an idea of the anisotropy of the initial enetl (the ratio betweeot;;
andcgg). For instance, the assumption of an ellipsoidatiet induces only a 0.3 % errat €
0.003) for the clay shale sample at the depth&&6 m with a noticeable anisotrop}i: 1.38.
Despite noticeable anisotropy, the other lineshef table demonstrate that the distance to the
ellipsoidal model is relatively small. The mean waltor d calculated for all sandstone,
limestone, mud shale, clay shale, and shale san{plasut 25 samples) in the table from
Thomsen (1986) is approximately 0.03. Therefore, ¢ligsoidal model seems to fit the
parameters of these sedimentary rocks.

T
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Figure 1: The indicator surface af(fi)]™"* for transversely isotropic material with ellipsdida
anisotropy

Another interesting application of ellipsoidal mé&lés fitting the data obtained by numerical
homogenization methods. Numerical homogenizatiom isommon method to determine the
properties of cracked or fractured materials, esfigcrocks and rock masses (Pouya &
Ghoreychi 2001, Min & Jing 2003, Chalhoub 2006, yo& Chalhoub 2007). In this method,
the deformation of a Representative Elementary Vel(REV), which contains a distribution of
cracks or fractures stochastically representatili@ real material, is simulated under different



boundary conditions. Adequate boundary conditioespaescribed to simulate loads in different
directions and to determine a complete set of ielgstrameters (up to 21) for the anisotropic
homogenized material. However, fitting the numdricesults with simplified models that

contain a reduced number of parameters is genesaitable to simplify data analysis and
interpretation. Investigation of this problem fofferent varieties of rock masses was performed
by Chalhoub (2006) in two dimensional plain stressdeling. An example of a limestone
sedimentary rock mass containing two families adhagonal fractures was studied and the

indicator surface of/E(n) was fitted by an ellipsoidal surface. These residgtsionstrated that

the Saint Venant model (30) can satisfactorily the numerical results for rock masses
containing more than one set of fractures. Moreotreg assumption of ellipsoidal anisotropy
proved to be an easy method for estimating theegatif out-of-plane elastic parameters, which
are not accessible through two dimensional numlesmaulation (Chalhoub 2006, Pouya &

Chalhoub 2007).

Table 1: Dimensionless parameters for some translyersotropic sedimentary rocks deduced
from Thomsen (1986) data and their distandceith ellipsoidal model (Pouya & Chalhoub
2007).

Rock depth o o o c, d
(m)
Sandstone 4912.0 119 040 0.28 0.31 -0.004
5481.3 118 0.35 0.44 0.34 0.022
6542.6 1.16 0.34 0.32 0.36 -0.037
1582.0 116 0.70 -0.34 -0.23 -0.012
Limestone 5469.5 111 034 0.32 0.34 -0.027

Mudshale 79395 1.16 0.33 0.45 0.43 0.019
Clayshale 5501.0 1.67 027 099  0.49 0.094
5858.6 1.38 030 0.59 0.58 0.003

3511.0 134 049 0.02 0.06 -0.064
450.0 122 017 0.74 0.76 -0.009
650.0 139 017 081 0.83 -0.009

5.2 General approximation procedure

The ellipsoidal model (5) can be used to approxintage elastic properties of a general
anisotropic material. The quality of fitting will wafor different classes of materials. Therefore,
the issue is how to determine the best fitting pexters for a given material, which is in the line
of previous research investigating the best madtavithin a given class to approximate a
material belonging to a larger class. For examptalya & Zaoui (2006) have approximated the
elastic properties of different orthotropic crystély Saint Venantnaterials as defined by (30),
and Bonnet (2009) obtained the closest elastielgdr of CFO2 or CFO4 classes for the same
crystals and other orthotropic materials. The foltgyvincludes a general procedure for
determining the best fitting parameters for the eld8).



Approximation of the elastic properties of a givaaterial by a family of models is based on
minimization of adistancebetween the elasticity tensor of the material #mal family. As
mentioned by Bonnet (2009), differedistance between two elasticity tensors can be used for
this purpose. The properties of these distances bese studied by Moakher & Norris (2006)
and Norris (2006). In this work, the Euclidean cis& is adopted based upon the Euclidean

norm:
|Cll= \/Cijkl Cijkl (38)

According to this distance, the best approximatelehcan be determined within the family of
ellipsoidal models (5) for any anisotropic matedat applied to crystals.

In the following, C represents the elasticity tensor of a given mateand the associated
parameters are known. Obtaining the closest ellilaanaterial toC consists of determininiyl

andL that minimizes the distan(ﬁ@- C || where:

Ci = %(Mik Mji + My M)+ %(ﬂkmﬂln"‘ Lhon Cfen) Lin (39)
The distance minimization leads to the followingteys of equations :
dIC-ClfoM =0 =  Omn;  (C i -Cija)(AmdaMji + GmdaMi) = 0 (40)
dlC-CloL =0= Omn;  Cija ~Ci)(Thkmn*Lhim Ter) = O (41)
By replacingéijm in these equations by (39) results in the folluyvsystem:
[(M:M) M + M 11 - Laplamalbng Mag = 2 C mang Mag (42)
Linn = :—13[ Cij - %(Mik Mit + Mit Mi)] Znin (43)

ReplacingL in (42) by (43) results in:
[(M:M)M + 2M %0 = (C g + 2C mang )M (44)

This is a highly nonlinear equation féf that theoretically allows for determination of ghi
tensor. Only a numerical iterative method coulhb®vided to solve this equation. This method
consists of beginning with an initial value fidr, designated a#1”, and then determininig®*"
from M® by the following equation :

M *k+D) :{E[N (k) —(M ® - M (k))M (k)j|}1/3 )
5 :

where :
Nr(ril(r)1 = (Cmm,B + ZCmr ;19) Mc(ri,(é)’ (46)

M© can be chosen as a function ©fgiven by (6). This procedure results in issues with
convergence and the uniqueness of this solutiomeler, this procedure has been investigated
for some cases of orthotropic materials, which gbveesulted in a rather quick convergence
(less than 1% relative error after approximatelyt8gations).

In the case of orthotropic materiald,andN are diagonal. Denoting the diagonal components of
M by (my, mp, mg), equations (45) and (46) reduce the system &ethcalar equations. The first
is the following:

1/3
D) :(%((3%— NP +(g+269 M+ (642 6) F@)J (47)



and the other two are obtained from this equatipmfex permutation. In these equations:
9 = nfR + i+ (48)

The initial values ofn are taken as® =¢,, mM’=g¢, M= q.

This approximation procedure has been applied tstieity of some orthotropic, crystalline and
composite materials to yield accurate results &ithuick convergence. An example of results
obtained for the Sulfur crystal is given in Fig@rand Table 2.
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Figure 2 :Iterative process for the Sulfur crystdde numerical values are given in Table 2.

For this crystal, the relative errof®*" -c¥||//|Ic™|]) found by the method is less than 0.1.
Considering the experimental uncertainty, utiliaatiof the approximate ellipsoidal model can
be acceptable for different studies concerningahystal. Although the global error in Table 2 is
less than 0.1, the error @y, is relatively high. This result demonstrates tifidhe maximum
error for individual components af are important in some investigations then the iHaah
distance would not be appropriate for optimizatafnparameters. As previously mentioned,
other distances can be chosen for the optimizapmtedure, but this requires rewriting
equations (40) to (48).

Table 2 : Elastic stiffnesses measured for theusufystal (Dieulesaint and Royer, 1974) and
their approximation by the ellipsoidal model. Ttedative error defined||C**"" -CM|/|ICY|]) is
less than 0.1.

Caa (1010 N/mZ) C11 Coo C33 Caa Css Cs6 Ci2 Ci13 Co3 S?EI(’::(I)\:‘

Measure 2.40 2.05 4.83 0.43 87 76 1.33 171 159
Approximation | ,ses 1973 4696 0628 0877 0560 1130 1717 1788 | 009895




Finally, theSaint Venanmaterial (30) has four, thellipsoidal material(5) has six, the STrTI
model obtained by symmetric transformation of tvamse isotropy (Pouya & Zaoui 2006) has
six, the CFO2 has seven, and the CFO4 has eiglkpé&mtient parameters in the family of
orthotropic materials. The generallipsoidal material (5) (non-orthotropic) has nine
independent paramete(aot accounting for the three Euler angles ofridference system). The
precision of the approximation model obtained witthese families increases with degrees of
freedom for each family.

6. Discussions and conclusions

The concept of ellipsoidal anisotropy is an atixectguideline for modeling the anisotropic
elastic behavior of a large family of materialsrtigallarly, soils, rocks, and rock masses.
Ellipsoidal anisotropy covers a large variety ofdals proposed in recent years for geomaterials
and cracked or damaged materials obtained by esapiapproaches or by micromechanical
analyses. The assumption of ellipsoidal anisotqmmyides approximate models with a reduced
number of parameters allowing for simplification tbe data analysis. In addition, ellipsoidal
models have very interesting theoretical propettias allow for elaborate closed-form solutions
for basic problems of linear elastic bodies. Fer general case of ellipsoidal material depending
on 12 independent parameters, an explicit and rgamdate closed-form solution of the Green
function has been provided in this paper. Thigsdidal family covers non-orthotropic materials
without any plane of symmetry. The explicit Greamdtion solution for these materials
constitutes a rare case of solution not coveredhieypowerful Stroh (1958) formalism that
requires the existence of at least one plane t¢attfe symmetry. This solution also opens the
door to many theoretical and numerical applicatiapecifically the development of numerical
methods using Boundary Elements.

The sub-family ofSaint Venanmaterials, which are orthotropic and depend om iiedependent
parameters, offers more facilities for analyticetatments because these materials can be
obtained by dinear transformatiorfrom the isotropic material.

As discussed herein, other hypotheses can alscsé@ o define relatively large families of

materials with closed-form solutions of the Greenction. The advantage of the ellipsoidal
model is the correspondence to anisotropy as a egimal property and the coverage of a large
family of phenomenological, micromechanical andotleéical models in the literature on

geomaterials.
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Appendix A : Mathematical identities

The following mathematical identities are usefutdamonstrate different results presented in this
paper. In particular :

Lfjm Lkim = Ak q_l o] q—k v Lhonlmn= Zdj (A1)
For every second-rank tend®ythe following identities can be established:

i 1
(R)mn= m LnikC iR Ra (A.2)
ChikiRjRaRes = 2 | R 845 (A.3)
R3=(R:é)R2-%[(R:d)2-R:R] R+R|& (A.4)

The following result is true iR is symmetric (and can be verified in the referesggiem where
R is diagonal):
Uampgonqﬂlc gkd F\|)'ijanpqu Rca F‘()j,B :| R| 2 [ 6aa 6b,8 + 6a,8 6bcr] (A.5)

Appendix B : General expression far

For a positive-definite tensdd, the conditiorx.M.x = 1 is equivalent tox(M .)_()2 = 1. Therefore,
the condition (4) in the main text can be writtan a

Ox; xOX:C:(xOx)=1= xMx?=1 (B.1)
The two polynomials are fourth-order and homogesedtherefore, this condition is equivalent

to:
Ox; XOX:C: (xOX) = xM.x)? (B.2)
Then, ifF'is defined by:
1
Fi = Cix - E(Mik Mji + Mii M) (B.3)
F has the following properties:
Ox ; XOX):F:(xUx)=0 (B.4)
Oi,jk,l; Fik = Fik = Fuij (B.5)

The relation (B.4) implies that for every setxp¥, a, andb:
(xUx):F:(xUx)+ (YOy):F:(yDy) - 2 @Da):F:(alla) - 2 @Ub):F:(bUb)= 0 (B.6)

Usingx =at+b, y =a-b , and (B.6) results in the following:
Da,b; (eda):F:(blb) + 2 @b):F:(allb)= 0 (B.7)
Then if M is defined by:
Miia = (Fij + Fiki + Fiji )/3 (B.8)
This tensor satisfies the symmetries of elasti@tysorsMii =Mj= Myjj and in consequence of
(B.7), also satisfie§la, b; (alda):M:(bJb) =0. This is sufficient to state that =0. Then, ifL is
deduced fronf by:

1
Lpg = 3 Lk Fijw (B.9)



(LhenLlhin* Lhm Lhn) Lm/2 = Fij - M using the mathematical identities (A.1), and wifiF0:
1
Fij = 5 (L Lhm k) Linn (B.10)

This demonstrates the general expression (5) fan the main text.

Appendix C : Properties ofL'

Applying the transformation (15) on (5) resultghe following:

1
gmnpq: 5 (Gnp Ahg + Ang Ghp)+ Hmnpg (C.1)
. 1 . |
with ‘Hmnpg E(Ulkcﬂjld +UI|CUjkd) QmQinQxpQigLca- DefiningL' as:
1
L'ab = E Uampgonq(ﬂlkcgld + /i Djkd) QmanQkaqucd (C.2)
and using the first equation (A.HmnpqCan be written as :
1 .
Hij = E(Ulkmﬂjln+ Lhm Chen) L'mn (C.3)

This yields the expression (17) in the main teikt."l = PLP andQ = P, (C.2) can be written
as:

1
L'ap= E Uampﬂnne(ﬂlkcﬂjld +L e Ujkd) QmanQkaIq Qca Qd,B L" ap (C.4)

The identities (A.5) and (A.1) allow computing:

Ll g (Dhkea *Che Dka) QnQinQipQg Qear Qup = 4 Q1 ? Baar 8 +1 Q1? (Baa Sost Ba Soa)
andL" is symmetric to determinie = |Q|?L" . Then (9) is used in the main text to find (8).

The condition ofC as positive-definite is equivalent f% given by (15), to be positive-definite.
The expression (17) of this tensor and the referesystem withiL' diagonal is considered. For
an arbitrary symmetric second rank tersanr this system results in the following:

a:tla= af +ad,+ a5+ 2L pa @, 2L a,a4 2L ,A.a

"'2[(1‘ L 13)ads+ (1- L 'p)as+ (- L '33)321% (C.5)
This is the sum of two independent polynomialsai, (@22, 8s3) and @2, azs, az1). The condition
that the first one be positive for every ay», ag3) reads:
L'y <1, |L'y<1, |Liyd<1, Lo+ LT L= 20"yl "l " ] (C.6)
These conditions assure that the second polynoiglositive, which can be written in a
reference system independent notatiordad:'? positive-definite and.":L' -2|L'| < 1.

Appendix D : Calculation ofG

The method to obtain solution (23) in the main tbas been explained in detail in Pouya
(2007c). Symmetric combination of these variablasutd be determined and replaced by

functions ofd, T, X, etc to eliminate, q andu andv in this expression. In particula®® + of =
B:J =T —XX. The computation opq is more technical and involves writigdg® = |B+ X0 X|
based on the expression (22), then using (21) ite pig® = |£T-XOX+ X0 X| and computing this
expression as a function of the component¥ @i a coordinate system witR for one axis to



determine thatp’q® = &|T|. With these manipulations, (28) is found as a fiamc of the
transformed variables. The final expressiorGas deduced from inversion of (16) and is given
in the following.

Final expression of :

The displacement field in an infinite body with thkasticity tensor (5) defined byt andL and
subjected to a point forck at the origin of coordinates is given kby(x)=G(x).f, where the
expression o6 is derived in the following way fromvl, L, x, and the unit tensa¥

P denotes the symmetric and positive solutiorPd=M and:

Q=P?, =%(5—|M|‘1PLP), T=T:5, r=[T| (D.1)
F=yxMix :r%z.QTQz, n=ET+2J&r —rizz(-QTzQz (D.2)
R=2QX, X=T.X, F=-aT+(p-J&r)e+ X0 X+ & X0 X (D-3)
Then

_Q (T_-f J R0+ 2
GQ()—STIFQ p +1|(d 2(D2()+,72\/E_T FTF :Q (D.4)



