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Abstract—An iterative method for automatic discounting rate
computation is introduced in this paper. As part of a conjunctive
combination of sources, discounting reduces the impact of a
source on the result of the fusion. The key problems related
to discounting are: what sources must be discounted and up to
what degree. We propose a method that jointly tackles these two
issues by computing rates using a dissent measure. The dissension
of the sources is evaluated by comparing them to the average of
their mass functions. Sources very different from others (like
sources resulting from outliers) are thus heavily discounted. This
discounting process is iterated so as to obtain a minimum distance
between the conjunctive combination of the discounted sources
and a categorical mass function. The efficiency of the method is
evaluated through several simulations.
Keywords: belief functions, discounting rates.

I. INTRODUCTION

The Dempster-Shafer theory [1], also known as evidence
theory, is a mathematical framework that allows uncertain and
imprecise data to be modelled and processed. This theory
has gained popularity because it has proved to be efficient
on various data fusion problems. Each source of information
involved in the data fusion problem at stake collects pieces of
evidence, yielding a mass function. These functions are then
aggregated using a combination rule.
Many authors have thus worked on combination rules in order
to provide a fusion tool that would produce results matching
expectations. As expectations are rather subjective or applica-
tion driven, designing a universal rule is virtually infeasible.
Consequently, authors introducing a new rule usually proceed
as follows: first identify what properties are required to resolve
the fusion problem, and then design a rule that possesses such
properties.
The most widely used rules are Dempster’s rule and the
conjunctive rule whose core principles are identical. They both
aggregate sources conjunctively, i.e. belief mass redistributions
is allowed if all the sources share common evidences. This
property is very interesting because the output mass function
is more informative than the initial ones. The conjunctive
rule is the unnormalized version of Dempster’s rule and
was introduced by Smets in the Transferable Belief Model
(TBM) [2]. In this article, we focus on the conjunctivity
property and thus on these two rules.
Although these two rules are well founded theoretically, they
have one major limitation: a lack of robustness with respect

to conflicting evidences. This is why all sources are supposed
to be reliable when performing a conjunctive combination. In
many applications, it is difficult to design a system free of
outliers. An outlier is likely to produce conflicting evidence,
thereby violating the reliability hypothesis.
When sources are conflicting, a conjunctive combination as-
signs a large mass to the empty set ∅. This mass is also known
as the degree of conflict. In Dempster’s rule, the degree of
belief is redistributed identically to all other masses. In the
conjunctive rule, this degree is considered as a meaningful
mass and is kept without any redistribution.
Several strategies exist to deal with an excessively large degree
of conflict. First, the most simple is to consider that no reliable
conclusion can be drawn from the collected data and thus no
decision can be made. This solution is cautious but may not
be acceptable for some systems in which the decision is of
critical interest.
Another possibility is to redistribute the degree of conflict in a
way that may impact less heavily on the output mass function.
Yager’s rule [3] transfers it directly to the set representing
ignorance. Inagaki [4] and Lefevre et al. [5] designed a family
of rules dealing with conflict reallocation. The main idea
behind these approaches is to identify which member of the
rule family is optimal regarding an appropriate criterion. Using
non-linear functions, Dezert and Smarandache’s PCR5 [6]
redistributes conflict to the subsets from which it was gener-
ated. These solutions have proved to be efficient in particular
contexts but they imply a modification of the conjunctive or
Dempster’s rule inner process.
Indeed, it may also be argued that applying conjunctive rules
to conflicting sources is simply irrelevant and that the mass
function models1 should then be revised [7]. This implies
notably that outliers can be dodged at an early stage of the
mass function construction. However the amount of collected
data may not always be sufficient to design of a fully robust
mass function model.
An intermediate approach consists in revising the mass func-
tion themselves instead of revising the models. In this article
we follow this strategy. As part of the Dempster-Shafer theory,
discounting is a tool that revises the mass function of a source
by lowering the certainty of the information carried by the

1a mathematical process that derives mass functions from raw data.



source. In Ref. [8], Smets introduces an expert system that
comprises several combination and discounting steps in order
to respond to situations with large conflicts.
When one decides to implement a discounting step, a two-fold
problem must be dealt with:

• What sources must be discounted? (identification)
• Up to what degree should the identified sources be

discounted? (valuation)

We propose to tackle directly the valuation issue and to
consider that the identification step can be skipped provided
that the computed discounting coefficient for reliable sources
is negligible as compared to those of unreliable sources. We
thus introduce an iterative method that automatically evaluates
optimal coefficient regarding a dissent criterion.
Our approach is novel in the sense that no meta-information on
the reliability of the source is needed. The only assumption on
which our method relies is the following: the more a source is
in conflict with the majority opinion, the more heavily it must
be discounted.
In the next section, we remind of some classical Dempster-
Shafer theory definitions. Following that, our new iterative
method for discounting coefficient calculation is presented and
justified. In the final section, the efficiency of our approach
is demonstrated on several bba sets with various degrees of
certainty and proportions of conflicting sources.

II. DEMPSTER-SHAFER THEORY

A. Fundamental concepts

Dempster-Shafer Theory (DST) provides a formal frame-
work for dealing with both imprecise and uncertain data.
The finite set of mutually exclusive solutions is denoted by
Ω = {ω1, ..., ωK} and is called the frame of discernment.
The set of all subsets of Ω is denoted by 2Ω. A source S
collects pieces of evidence leading to the assignment of belief
masses to some elements of 2Ω. The mass of belief assigned
to A by S is denoted m [S] (A). For the sake of simplicity,
the notation m [S1] is replaced by m1 hereafter. The function
m : 2Ω → [0, 1] is called basic belief assignment (bba) and
is such that

∑
A⊆Ωm (A) = 1. A set A such that m (A) > 0

is called a focal element. Two elements of 2Ω represents
hypotheses with noteworthy interpretations:

• ∅: the solution of the problem may not lie within Ω.
• Ω: the problem’s solution lies in Ω but is undetermined.

The open-world assumption states that m (∅) > 0 is pos-
sible. The closed-world assumption bans ∅ from any belief
assignments. Under the closed-world assumption, the standard
way of combining distinct2 pieces of evidence m1 and m2 is

2Pieces of evidence are distinct if the construction of beliefs according
to one piece of evidence does not restrict the construction of beliefs using
another piece of evidence.

Dempster’s combination rule ⊕: ∀A 6= ∅,

m⊕ (A) =
1

1− κ
∑

B,C⊆Ω

B∩C=A

m1 (B)m2 (C) , (1)

with κ =
∑

B,C⊆Ω

B∩C=∅

m1 (B)m2 (C) . (2)

The mass κ is called the degree of conflict. The open-world
counterpart of Dempster’s rule is the conjunctive rule ∩©:
∀A ⊆ Ω,

m ∩© (A) =
∑

B,C⊆Ω

B∩C=A

m1 (B)m2 (C) . (3)

Along with mass function combination, it is also possible
to revise beliefs thanks to a process named discounting [1].
Discounting with discount rate α ∈ [0, 1] is defined as:

mα (X) =

{
(1− α)m (X) if X 6= Ω,

(1− α)m (X) + α if X = Ω.
(4)

The higher α is, the stronger the discounting. Thanks to
discounting, an unreliable source’s bba is transformed into a
function assigning a larger mass to Ω.

B. Related works

A classical data fusion processing using DST consists of,
first, obtaining bbas thanks a bba model and raw data, then,
discounting some of the bbas according to bba or data analysis
and finally aggregate the bbas using an appropriate combina-
tion rule. As exposed in the introduction, the discounting step
can be applied if sources to be discounted are identified and
if their discounting rates have been evaluated.
Most of the time, discounting rates are hand-tuned but some
authors have proposed several methods to obtain them without
supervision. In [9], Smets computes discounting rates using a
error function minimization. This method is dedicated to data
classification and requires a set labelled data. In [10], Martin
et al. introduce a discounting rate evaluation method that relies
only on bba values themselves. Their approach is based on a
measure of conflict between two bbas defined by:

Conf (m1,m2) = dBPA (m1,m2) (5)

with dBPA a bba distance introduced by Jousselme
et al. in [11] and defined as: dBPA (m1,m2) =√

1/2 ( ~m1 − ~m2)
t
D ( ~m1 − ~m2) with ~m a vector form of

the bba m and D a 2N × 2N matrix whose elements are
D (A,B) = |A ∩B| / |A ∪B|. When dealing with a larger
set of bbas S = {m1, ...,mM}, the authors investigate several
ways to compute the measure Conf :

Conf (mi, S) =
1

M − 1

M∑
j=1,i6=j

dBPA (mi,mj) (6)

or Conf (mi, S) = dBPA (mi,m∗) (7)



with m∗ the combination of all bbas of S except mi. m∗ can
be obtained using different combination rules. Once the con-
flict measure chosen, the authors further propose to compute
discounting rates as follows:

αi = f (Conf (mi, S)) (8)

with αi the discounting rate to apply to mi and f a decreasing
function.
In this article, we have developed independently an iterative
method that is based on a similar procedure as the one of
Martin et al. We first compute coefficients

{
α0
i

}M
i=1

for
each member of the initial set S using equation (8) with
the identity function as function f but then, in contrast to
Martin et al., we iterate the process on the discounted set of
bbas S1 =

{
m
α0

1
1 , ...,m

α0
M

M

}
and thus obtain new coefficients{

α1
i

}M
i=1

. Under a few conditions on the discounting rates
calculation, the method converges as the rate values increase
more and more slowly.
To identify the optimal set of discounting rates{
α
iopt
1 , ..., α

iopt
M

}
among those computed at each iteration,

an a posteriori analysis step is employed. We examine the
conjunctive combinations obtained at each step and compare
them to categorical bbas3 using the distance dBPA. The
iteration yielding the minimum distance is iopt. Figure 1
summarizes our approach.
Our approach prevents from choosing function f and tuning
its parameters. A comparison of the performances of our
approach and Martin et al.’s approach can be found in
section IV.
Note that Schubert [12] also introduced an iterative approach
for discounting rates computation. At step j the rate of

source Si is computed as follows : αji =
1−mj−1

∩© (∅)

1−mj−1
i∗ (∅)

with

3a bba assigning mass 1 to a singleton.

mj
∩© the conjunctive combination of

{
m
αj

1
1 , ...,m

αj
M

M

}
and

mj
i∗ the result of the same combination without mαj

i
i . This

formula is less robust than a distance-based one because when
there is more than one source in conflict with the majority
opinion, removing a conflicting source from the conjunctive
combination will not yield a steep reduction of the degree of
conflict. Furthermore, the method is iterated until the degree
of conflict gets beneath a predefined threshold but there is no
proof of convergence that would guarantee that any threshold
can be reached.

III. ITERATIVE METHOD FOR AUTOMATIC DISCOUNTING
RATE COMPUTATION

A. Initial settings

As explained in the introduction, the advantage of our ap-
proach and Martin et al.’s approach is that the only assumption
on which they rely is that ”the majority opinion is the actual
one”. This said, defining what the majority opinion is as part
of DST is not a trivial task. In [13], Murphy proposed to use
the mean of bbas arguing that the properties of the mean are
better suited for conflicting evidences:

mmean =
1

M

M∑
i=1

mi (9)

Indeed if a subset s1 of S corresponds to a cluster of
concordant bbas and if this subset contains more bbas than
any other cluster, then mmean is likely to be close to the
bbas composing s1. In conclusion, mmean can be used as an
estimation of the majority opinion. We thus propose to evaluate
a first set of discounting rates as follows:

α0
i = dBPA (mi,mmean) (10)

Equation (10) yields low rates for bbas close to the mean
(those in accordance with the majority opinion) and high rates

Figure 1. Iterative procedure for discounting rates computation.



for bbas afar from the mean (those which are the cause of the
dissent).
Note that the mean of bbas is one of the combination
techniques investigated in [10] but equation (10) is slightly
different from equation (7) as we do not discard mi from
the calculation of mmean. Removing it produces a significant
difference only in the case of isolated bbas. In this article, it
is preferred to allow a singular bba to impact on the results.
The presence of an outlier-bba should (at least even slightly)
alter the certainty of the bba obtained after combination.

B. Iterating the process

The relative values of the rates impacts on the fusion
result at least as much as the absolute values of the rates. In
other words, it is not sufficient to have high valued rates for
unreliable sources, it is also necessary that the difference be-
tween rates of reliable and unreliable source be large enough.
Consequently, the relevance of the values of the rates

{
α0
i

}M
i=1

can be questioned. Should the difference between unreliable
and reliable bbas be stressed or softened? And by what mean
can it be done?
Martin et al.’s answer to this issue is function f but they do
not specify what is the optimal function or how to set the
parameter of the function. To avoid such problems, we propose
to discount the initial set of bbas and recalculate new rates on
this new set of bbas using the method described in the previous
subsection.
By iterating this process, successive sets of discounting rates
are produced and can be analysed afterwards to determine
which set is optimal according to a criterion. An iterative
procedure implies successive discounting on the original bbas.
mα0,α1

denotes bba mα0

discounted with rate α1. Note
that successive discountings with rates

{
α0, ..., αK

}
can be

summarized into a global one with rate βK :

βK = 1−
K∏
i=0

(
1− αi

)
(11)

and βK = βK−1
(
1− αK

)
+ αK . (12)

The main difficulty regarding the implementation of such an
iterative method is to determine a stopping condition C. If
the series αji are decreasing w.r.t. j, it can easily be proved
that the series ∆βji = βj+1

i − βji are also decreasing w.r.t. j.
Consequently, the following condition C can be used to stop
iterations:

C = ORMi=1

(
βji > ε

)
(13)

with ε a classical stopping parameter which is related to the
desired precision on the rates and OR the logical or. To ensure
that all series αji are decreasing, we use:

∀j > 0, αji = αj−1
i dBPA

(
m
βj−1
i
i ,mmean

)
(14)

The discounted rates computation procedure is summarized by
algorithm 1.

Algorithm 1 Iterative discounting rates computation (IDRC)
for i = 1 to M do
α0
i ←− dBPA (mi,mmean)

end for
j ←− 0
while condition C is true do

for i = 1 to M do
Compute discounted bba mβj−1

i
i = m

α0
i ,...,α

j−1
i

i

αji ←− α
j−1
i dBPA

(
m
βj−1
i
i ,mmean

)
end for
j ←− j + 1

end while

C. Analysis step

At this stage, several sets of discounting rates have been
computed and the most relevant set must be determined. First,
as explained in the introduction, it is intended here to process
the bbas using the conjunctive rule so as to obtain a more
committed4 bba after combination. Consequently, the series
of the conjunctive combinations mj

∩© = ∩©Mi=1m
βj

i must be
screened in order to identify the optimal iteration jopt.
A plethora of commitment measures can be found in the
literature [15]–[24], proving that it is not easy to jointly weigh
imprecision and uncertainty as part of a single measure. If
the initial bbas were not conflicting and sufficiently precise
the output bba would be close to a categorical bba {ωi}0,
i.e. a bba assigning a mass 1 to only one focal element
{ωi}. A categorical bba is the most committed kind of bba,
therefore we propose to evaluate the commitment of a bba m
by computing the minimal distance between m and categorical
bbas. Consequently, we have:

jopt = argminj

[
min
i,j

dBPA

(
{ωi}0 ,mj

∩©
)]

(15)

The iterative discounting rate computation is now complete. Its
efficiency is tested on various sets of bbas in the next section.

IV. RESULTS AND DISCUSSIONS

In this section, our iterative discounting rate computation
(IDRC) method is tested and compared to other techniques.
The bbas used in the experiments are generated randomly on
the basis of the bba model of Appriou [25].

A. Robustness to the proportion of unreliable sources

To validate our approach, it is important to monitor its be-
haviour regarding the proportion of unreliable sources among
the total number of bbas to aggregate. In this experiment,
sets of 100 bbas are aggregated: x of them are unreliable and
100− x are reliable. The reliable sources assign a large mass
to a singleton denoted {a}. The unreliable sources assign a
large mass to another singleton denoted {b}. Table I shows
one of the reliable bbas (assigning a large mass to {a}) and
one of the unreliable bbas (assigning a large mass to {b}).

Figure 2 shows the performances in terms of conflict
reduction and discounting rates computation for both IDRC



Table I
BBA EXAMPLES (RELIABLE AND UNRELIABLE)

∅ {c} {a} {a, c} {b} {b, c} {a, b} {Ω}
reliable bba 0 0.0010 0.9979 0 0.0010 0 0 0

unreliable bba 0 0.0011 0.0010 0 0.9977 0 0 0

Figure 2. Comparison of IDRC and Matin et al.’s approach when x varies.

and Martin et al.’s approach. The proportion x varies between
0 and 100, consequently when x exceeds 50 the sources
advocating for {b} become the reliable ones in the sense that
they carry the majority opinion. When x = 50, a borderline
case is met. In such a situation, IDRC and Martin et al.’s
approach both assign identical rates to all the sources and the
degree of conflict remains very large which is the expected
behaviour. However, as the proportion of unreliable sources
goes over 10% Martin et al.’s approach is no longer able to
reduce significantly the degree of belief.
On figure 3, the mass assigned to {a} w.r.t. x is displayed
for the conjunctive rule, Dempster’s rule, Martin et al.’s
approach and IDRC. Both Martin et al.’s approach and IDRC
appears to be intermediate response to the fusion problem as
compared to the conjunctive and Dempster’s rules. The fact
that mIDRC ({a}) increases between x = 0% and x = 20%
can be questioned. This is due to the fact that IDRC removes
not only the conflict that is due to the dissent of the sources
but also a part of the conflict that is due the non-idempotent
aspect of conjunctive rules. In [10], this latter part of the
conflict is called the auto-conflict. As the auto-conflict is
not meaningful in terms of source unreliability, there is no
information loss when removing it. The auto-conflict can
evaluated when x = 0, it would be thus possible to post-
process IDRC results in order to fully remove it and thus
obtain a decreasing curve. Such a post-processing could be a
simple conflict redistribution similar to the one of Dempster’s
rule.

4A definition of commitment of belief functions can be found in [14].

Figure 3. Comparison of IDRC, ∩©, ⊕ and Matin et al.’s approach when x
varies.

Table II
BBA EXAMPLES WITH LOW AND HIGH NOISE

∅ {c} {a} {a, c} {b} {b, c} {a, b} {Ω}
low noise bba 0 0.0021 0.9958 0 0.0020 0 0 0
high noise bba 0 0.0181 0.1436 0.1328 0.0180 0.0664 0.1328 0.4879

B. Robustness to noise

We now investigate the behaviour of the tested approaches
when the proportion of unreliable sources is stable but the level
of noise varies. In this experiment, the proportion of unreliable
sources is set to 20% and the number of sources is 100. The
noise variation results in bbas that assign significant weights
to all singletons. Table II gives an example of a bba with low
noise and an example of a bba with high noise. To display
the results, we use a measure µ that is noise-dependent and
defined as follows:

µ =

80∑
i=1

mi [reliable] ({a})−mi [reliable] ({b}) (16)

µ is the average difference between the masses allocated to {a}
and {b} by reliable sources (for reliable sources m ({a}) >
m ({b})). Figure 4 shows the performances in terms of conflict
reduction and discounting rates computation for both IDRC
and Martin et al.’s approach. Martin et al.’s approach does not
reduce the degree of conflict whatever the level of noise is,
because 20% of unreliable sources is already too much for it
to cope with. IDRC reduces the degree of conflict when the
level of noise is low. When the level is too high the conflict
cannot be further reduced as the amount of auto-conflict is
very large.

C. A broader case study

In this experiment, it is intended to aggregate sources with
more disparity in their focal elements. The set of bbas to
aggregate is made of 6 elements. Table III displays these bbas
as well as the output bbas obtained using Dempster’s rule, the



Figure 4. Comparison of IDRC and Matin et al.’s approach when noise
varies.

Table III
BBA SET TO AGGREGATE AND THE OUTPUT BBAS FOR SEVERAL

COMBINATION TECHNIQUES

∅ {c} {a} {a, c} {b} {b, c} {a, b} {Ω}
m1 0 0.0644 0.8341 0.0141 0.0644 0.0070 0.0141 0.0015
m2 0 0.0647 0.8339 0.0141 0.0643 0.0070 0.0141 0.0015
m3 0 0 0 0.9064 0.0767 0 0 0.0168
m4 0 0.0772 0 0 0 0 0.9058 0.0168
m5 0 0.0641 0.0646 0.0070 0.8342 0.0141 0.0141 0.0015
m6 0 0.8332 0.0661 0.0141 0.0636 0.014 0.0070 0.0015
m⊕ 0 0.0097 0.9803 0 0.0098 0 0 0
m ∩© 0.9950 0 0.0048 0 0 0 0 0

mMartin 0.8599 0.0067 0.1239 0.0011 0.0066 0 0.0011 0.0003
mIDRC 0.3163 0.0734 0.3089 0.0523 0.0735 0.0019 0.0523 0.1211

conjunctive, Martin et al.’s approach and IDRC. The results
of Table III show that IDRC allows a steeper reduction of the
degree of conflict than Martin et al.’s approach. Again, both
of these approaches deliver intermediate solution as compared
to Dempster’s rule and the conjunctive rule.

V. CONCLUSION

In this article, a new iterative discounting rate computation
(IDRC) technique is presented. It has the advantage to directly
deliver discounting rates without needing first to identify
what sources must be discounted. Furthermore, there is no
additional information required to apply the method. IDRC
relies on the assumption that the majority opinion is the actual
solution, therefore bbas that far from this majority opinion are
heavily discounted.
IDRC is compared to a reference method in the field of
automatic discounting rate computation that was proposed by
Martin et al. [10]. IDRC appears to produce results signif-
icantly different as compared to this method. IDRC allows
notably to reduce the degree of conflict even if the proportion
of unreliable sources is large. In future work, it is intended
to investigate the possibility to further combine Martin et
al.’s approach with ours. For example, it is possible to use
a function f as well during the rate calculation in each step of

IDRC. This may accelerate the convergence of IDRC without
deteriorating discounting rate precision.
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[18] U. Höhle, “Entropy with respect to plausibility measures,” in 12th IEEE
Int. Symposium on Multiple-Valued Logic, 1982, pp. 167–169.

[19] G. Klir and J. Wierman, Uncertainty-Based information: elements of
generalized information theory. New-York (USA): Physica-Verlag,
1998.

[20] Y. Maeda and H. Ichihashi, “An uncertainty measure with monoticity
under the random set of inclusion,” Int. Journal of General Systems,
vol. 21, no. 4, pp. 379–392, 1993.

[21] M. T. Lamata and S. Moral, “Measures of entropy in the theory of
evidence,” Int.Journal of General Systems, vol. 14, no. 4, pp. 297–305,
1988.

[22] A. Ramer and G. Klir, “Measures of discord in the Dempster-Shafer
theory,” Information Sciences, vol. 67, no. 1 and 2, pp. 35–50, 1993.

[23] J. Vejnarova and G. Klir, “Measure of strife in Dempster-Shafer theory,”
int. Journal of General Systems, vol. 22, no. 1, pp. 25–42, 1993.

[24] R. Yager, “Entropy and specificity in a mathematical theory of evidence,”
Int. Journal of General Systems, vol. 9, pp. 249–260, 1983.

[25] A. Appriou, “Probabilités et incertitude en fusion de données multi-
senseurs,” Revue scientifique de la defense, vol. 11, pp. 27–40, 1991.


