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Singular sources mining using evidential conflict

analysis

John Kleina,∗, Olivier Colota

a LAGIS - FRE CNRS 3303, University of Lille1, France

Abstract

Singular sources mining is essential in many applications like sensor fusion or
dataset analysis. A singular source of information provides pieces of evidence
that are significantly different from the majority of the other sources. In the
Dempster-Shafer theory, the pieces of evidence collected by a source are sum-
marized by basic belief assignments (bbas). In this article, we propose to mine
singular sources by analysing the conflict between their corresponding bbas. By
viewing the conflict as a function of parameters called discounting rates, new
developments are obtained and a criterion that weights the contribution of each
bba to the conflict is introduced. The efficiency and the robustness of this
criterion is demonstrated on several sets of bbas with various specificities.

Keywords: Dempster-Shafer Theory, Conflict analysis, Outlier detection

1. Introduction

The Belief Function Theory (BFT), also known as the Dempster-Shafer the-
ory [1, 2], has gained popularity because it can process data that are not only
uncertain but also imprecise and then aggregate these different data using a
combination rule. When tackling data fusion problem, a major difficulty to re-
solve is how to deal with conflicting pieces of information. The BFT allows the
computation of a measure called the degree of conflict. This measure is an indi-
cation on how much the sources of information, from which data are originated,
are in conflict. Smets [3] analysed combination processes in case of conflicting
sources i.e. when the degree of conflict is positive. Yet the degree of conflict
has a major drawback in the sense that it does not evaluate how each source
individually contributes to the conflict.
A more refined analysis of conflicting pieces of evidence can indeed bring valu-
able information as it allows to outline that some data appears to be singular
as compared to the whole data collection. Singularity ranges from a situation
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where a piece of evidence is completely isolated to a situation where a piece
of evidence shares common view with a substantial proportion of the collected
pieces. It is thus a notion that needs to be gradually evaluated in order to be
efficiently integrated inside an information processing system.
Individual evaluations of the singularity of pieces of evidence are notably of
great importance in the field of outlier, fault or novelty detection. Hodge and
Austin [4] propose an extensive survey of outlier detection methodologies. The
safety performances at stake are presented and a broad range of approaches
are analysed among which statistical methods, neural networks and machine
learning are found. There are ties between conflicting and outlying data and we
believe that the degree of conflict encompasses precious information toward the
identification of singular or outlying data, hence the motivation to investigate
on new conflict analysis criteria.
Martin et al. [5] and Schubert [6, 7] have both proposed criteria that allow an
individual measure of conflict for each bba involved into a combination process.
However both of these approaches are highly dependent on the proportion of
singular bbas and the total number of processed bbas.
These dependencies make them difficult to use in contexts where these two
quantities may vary. We propose in this article a new criterion that is more
robust to the variations of the proportion of conflicting bbas as well as to the
number of bbas. This criterion is derived by analysing the degree of conflict as
a function of discounting rates. Discounting rates are used as part of a belief
updating mechanism. A bba yielded by a source that is known to be unreliable
is assigned a large discounting rate so that its weight in the combination process
is reduced.
The first section of this paper presents general facts about belief functions and
the BFT. The second section contains an overview of conflicting bba characteri-
zation methods. Our new criterion is presented and justified. The third section
presents experiments on synthetic sets of bbas. These sets are made of various
kinds of bbas so as to highlight the differences between the proposed criterion
and existing criteria.

2. Dempster-Shafer Theory: fundamental concepts

2.1. Problem modelling

The BFT provides a formal framework for dealing with both imprecise and
uncertain data. The finite set of mutually exclusive solutions is denoted by
Ω = {ω1, ..., ωK} and is called the frame of discernment. The set of all
subsets of Ω is denoted by 2Ω. A source Si collects pieces of evidence leading
to the assignment of belief masses to some elements of 2Ω. The mass of belief
assigned to A by Si is denoted mi (A). The function mi is called basic belief

assignment (bba) and is such that:

mi : 2
Ω → [0, 1] (1)

∑

A⊆Ω

mi (A) = 1. (2)
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The set of all bbas is denoted by B
Ω.

A set A such that mi (A) > 0 is called a focal element of mi. Two elements
of 2Ω represents hypotheses with noteworthy interpretations:

• ∅: the solution of the problem may not lie within Ω.

• Ω: the problem’s solution lies in Ω but is undetermined.

Considering the interpretation of ∅, two assumptions can be made concerning
the frame of discernment. The open-world assumption states that m (∅) > 0 is
possible. The closed-world assumption bans ∅ from any belief assignments.
A bba is denoted by Ax if it has two focal elements: Ω and A ( Ω, and if:

Ax (A) = 1− x and Aw (Ω) = x. (3)

with x ∈ [0, 1]. Such bbas are called simple bbas (sbbas). By extension of this
notation, the bba denoted by A0 stands for the certainty that the truth belongs
to A. Thus, Ω0 stands for total ignorance (Ω0(Ω) = 1); it is called the vacuous
bba. This set of bbas are called categorical bbas.
Furthermore, a bba such that m (Ω) = 0 is said to be dogmatic. It is said to
be normalized if m (∅) = 0.

2.2. Pieces of evidence combination

Suppose one has obtained two bbas from two distinct1 pieces of evidence Ev1
and Ev2 collected respectively by sources S1 and S2. Let us further imagine
that Ev2 states that the solution of the problem lies for sure in a set A ⊂ Ω.
This piece of information is thus represented by the bba m2 = A0.
The basic combination problem consists in finding a way to aggregate m1 and
A0. In the bayesian framework, this situation is known as conditioning and it is
named likewise in the BFT. To integrate the information represented by A0 into
m1, an intuitive solution is to reassign any mass allocated to a focal element B
of m1 to the intersection of A and B. This leads to the following formula :

m1 [A] (X) =
∑

B|B∩A=X

m1 (B) (4)

with m1 [A] the bba m1 contionned on A. Now, one can generalize this process
to define a combination rule between any bbas m1 and m2. This leads to
the definition of the most commonly used combination rule in the BFT : the
conjunctive rule ∩© :

∀X ∈ 2Ω,m1 ∩©2 (X) =
∑

B,C|B∩C=X

m1 (B)m2 (C) . (5)

1Pieces of evidence are distinct if the construction of beliefs according to one piece of
evidence does not restrict the construction of beliefs using another piece of evidence.
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This combination rule is compliant with the open-world assumption. The closed-
world counterpart of the conjunctive rule is known as Dempster’s combination
rule ⊕:

∀X 6= ∅,m1⊕2 (X) =
1

1− κ

∑

B,C|B∩C=X

m1 (B)m2 (C) , (6)

with κ =
∑

B,C|B∩C=∅

m1 (B)m2 (C) . (7)

The mass κ = m (∅) is a normalization factor. This mass is given support when
S1 and S2 advocate respectively for non-intersecting solutions. It is thus an
indication on how much the two sources disagree, that is why it is named the
degree of conflict. For the convenience of developments to come, the degree
of conflict resulting from the combination of a set S = (m1, ...,mM ) of M bbas
is denoted κS

The bba m1 ∩©2 resulting from the conjunctive combination mentioned above
assigns larger weights to small sets of Ω. Consequently, the amount of uncer-
tainty is reduced and m1 ∩©2 is said to be more committed than both m1 and
m2. More precisely, m1 ∩©2 is a specialization of both m1 and m2. mi is a special-
ization of mj , if there exists a square matrix Spe with general term Spe (A,B),
A,B ⊆ Ω verifying:

mi (A) =
∑

B⊆Ω

Spe (A,B)mj (A) , ∀A ⊆ Ω (8)

with Spe such that :

∑

B⊆Ω

Spe (A,B) = 1, ∀A ⊆ Ω (9)

Spe (A,B) > 0 ⇒ A ⊆ B, ∀A,B ⊆ Ω. (10)

This leads to the definition of a partial order mi ⊑ mj on B
Ω.

Note that the two rules presented in this subsection are associative and com-
mutative, therefore the order with which a whole set of bbas are combined does
not matter. In addition, many other combination rules can be defined, one may
find overviews of combination rules in [8], [9].

2.3. The discounting operation

It is possible to reduce the impact of a source of information and its corre-
sponding bba using an operation called discounting [2]. This can be required for
several reasons notably if the source of information is known to be unreliable or
to enclose perishable information. Discounting mi with discount rate α ∈ [0, 1]
is defined as:

mα
i (X) =

{

(1 − α)mi (X) if X 6= Ω,
(1− α)mi (X) + α if X = Ω.

(11)
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The higher α is, the stronger the discounting. Thanks to discounting, a source’s
bba is transformed into a function closer to the vacuous bba and mi ⊑ mα

i . One
may remark that a sbba Ax is A0 discounted with rate x.
Mercier et al. [10] presented a refined discounting, in which discount rates are
computed for each subset X ⊂ Ω and each bba. The discounting is consequently
more precise and efficient. It is, however, necessary to have enough information
allowing subset-specific computation.
Recent developments [11] [12] have led to the definition of more general bba
correction mechanisms than the discounting operation. Instead of being dis-
counted, a bba can also be notably re-inforced.
In this paper, our study is limited to classical discounting as defined in equa-
tion (11). As part of sequential approches [7] or iterative methods [13], it is
sometimes needed to discount a bba mi sequentially: m

α1◦α2

i = (mα1

i )
α2 with ◦

the composition law for successive discountings. If discountings are repeated n
times with rates (α1, ..., αn), one has the following property [3] :

mβ
i = mα1◦...◦αn

i , (12)

with β = 1−
n
∏

i=0

(1− αi) . (13)

Note that when ∀i, αi = α, we have β = 1− (1− α)
n
.

3. Singular bbas mining using the degree of conflict

3.1. Problem statement and related works

A classical tricky situation with which data fusion system developers have
to deal with is to combine a set of sources among which some conflicting sources
are found. As experienced by these developers, the conflict observed does not
originate from conflicting sources in identical proportions. In particular, singu-
lar sources prevail in conflict generation. By singular, one may understand a
source that delivers information that is significantly different from the rest of
the sources. Being singular or not is thus dependent on the fact that a source
is in accordance with the majority opinion or not.
The difficulty is that a source can either be singular or outlying:

• because the device or the agent from which information is derived are
respectively faulty or unreliable,

• because this source has detected some evidence to which other sources are
blind, and this source is consequently very informative.

In the first case, singular sources must be detected and treated as erroneous to
make the fusion process more robust. In the second case, singular sources must
be identified and trigger an ad hoc process so that the information it contains
is not lost or under-weighted as compared to the majority opinion.
In the BFT, each source Si yields a bba mi and consequently, singular source
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mining and singular bba mining are understood in the same way in the rest of
the paper. BFT approaches for outlier detection are proposed in [14, 15] but
they do not use BFT tools for the outlier detection itself. The BFT is used
to aggregate pieces of evidence on the presence of an outlier or not. Instead,
we propose here to investigate how the singularity of some evidence can be
pinpointed by the BFT. Indeed, combining a set S = (m1, ...,mM ) of M bbas
derived from singular sources will always result in a positive value for κ. The
greater the discordance is, and the larger the number of singular sources are, the
higher κ will be. Some criteria related to the degree of conflict can consequently
be defined so as to detect singular bbas but a more detailed analysis than a
single valued measure is needed.
First, multiple bba-dependent values are needed in order to be able to evaluate
the contribution of each bba to the conflict. Second, for each bba this value
must represent its singularity as compared to the values assigned to the other
bbas. There are many ways to obtain a criterion of this kind. Defining new
criteria is a task that requires specifications before starting to design such a
mathematical tool. As part of such specifications, formal properties need to be
defined. Properties are a simple and clear way of stating the goal that we intend
to reach.
As reasoning in the general case is not an easy task in the BFT, let us focus
on a specific situation that is easy to interpret and analyse. Suppose one has
to process the following bba set Sspe: Sspe = s1 ∪ s2 and ∀m ∈ s1, m = Ax,
∀m ∈ s2, m = Bx with A ∩ B = ∅. Let us denote M = |Sspe| (with |X |
the cardinal of set X) and ri = |si|

|S| . r1 represents the proportion of bbas

belonging to s1 and if |s1| < |s2| these bbas are singular as compared to those
belonging to s2 which correspond to the majority group. All bbas are identically
committed in this example therefore the value assigned to a bba should be a
simple expression of r1 or r2. We thus propose the definition of the following
homogeneity property:

Property 1. Let Sspe be a bba set defined as above and γi the value assigned to
mi and representing its contribution to the conflict. The criterion γ is homoge-
neous if when mi ∈ sj , we have γi = h (rj) with h :]0, 1] → [0,+∞[ a bijective
decreasing function independent of M with h (1) = 0.

The function h has to be decreasing because a gradual evaluation of the sin-
gularity is needed: the larger the proportion of bbas belonging to a group is, the
smaller its contribution to the conflict is. Note that when one has r1 = r2 = 0.5,
then a homogeneous criterion assigns the same value to all bbas. It is also desir-
able for h to be bijective so that one can fully control the criterion on this simple
specific situation: one proportion of singular bbas is associated to one value and
conversely. Finally, h is also independent of M because the same proportion of
singular bbas implies the same contribution to the conflict whether the bba set
is large or not.

Recently, Schubert [6, 7] proposed a criterion ci, called the degree of falsity,
that identifies to some extent the contribution of each individual bbami involved
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in the computation of κS :

ci =
κS − κS\{mi}

1− κS\{mi}
(14)

where S \ {mi} is the set difference of S and {mi}. It is clear that if mi is the
only bba advocating for a particular solution, there will be a huge drop from
κS to κS\{mi}. Consequently, this very singular bba will have a large degree of
falsity.
This criterion can be addressed a criticism because if there are at least two
singular bbas in S, the drop will be far less large. Looking at the specific
situation depicted by the set Sspe, the degree of falsity is very efficient but when
r > 1/M , the detection of singular bbas may be impaired. ci is obviously non-
linear with respect to r and these non-linearities are dependent on the total
number M of bbas involved in the fusion process. The degree of falsity fails
to possess the homogeneity property and cannot be fully controlled on such a
simple set as Sspe.
Another minor drawback of ci is also met when categorical bbas are aggregated.
One may well have κS\{mi} = 1, meaning that removing mi does not suffice
to avoid the full conflict case. In this situation, the falsity criterion reaches an
undetermined value. In this paper, we consider that this value is 0 since it is
not possible to conclude on the falsity of mi. It may be possible to introduce a
parameter to prevent bbas from being categorical, but this implies an additional
parameter tuning.
Martin et al. [5] have also introduced several criteria, called conflict measures,
evaluating the conflict provoked by a bba as compared to a set of bbas. These
criteria are defined using a distance dBPA between bbas introduced by Jousselme
et al. [16]:

dBPA (m1,m2) =

√

1/2 ( ~m1 − ~m2)
t
D ( ~m1 − ~m2) (15)

with ~m a vector form2 of the bba m and D a 2N×2N matrix whose elements are
D (A,B) = |A ∩B| / |A ∪B|. Martin et al. propose then the following conflict
measures Confi :

Confi =
1

M − 1

M
∑

j=1,i6=j

dBPA (mi,mj) (16)

or Confi = dBPA (mi,m∗) (17)

with m∗ the combination of bbas in S\{mi}. m∗ can be obtained using different
combination rules or by using the mean. Furthermore, the authors propose to
tune this measure using a function f :

f (Confi) . (18)

2Subsets of Ω can be indexed as Ai using a binary order and the vector form of m is just
(

m (A1) , ...,m
(

A|2Ω|

))

.
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The heuristic choice for f indicated by the authors is f (x) = 1 −
(

1− xλ
)1/λ

and λ = 1.5
For some of the conflict measures, it can be shown that a bijective decreasing
function h can be found when one processes a bba set such as Sspe. However,
these functions fail to be independent of M and consequently conflict measures
are not homogeneous.
In this paper, we intend to introduce a new criterion that also evaluates the
contribution to the conflict of each individual bba and that possesses the homo-
geneity property. Thanks to this property, the behaviour of this criterion would
be more easily predictable and thus more robust and easy to adapt when used
in real problems.

3.2. Analysing the degree of conflict as a function of discounting rates

The degree of conflict is a measure that indicates the intensity with which
a set of bbas S = (m1, ...,mM ) are in conflict. When this set is discounted
using predefined rates (α1, ..., αM ) for each bba, one may wonder what is the
impact on the degree of conflict, hence, the idea of analysing κS as a function
of discounting rates :

κS (~α) =
(

∩©M
i=1m

αi

i

)

(∅) (19)

with ~α = (α1, ..., αM ). Note that when brackets are omitted, we define κS =

κS

(

~0
)

. Following this idea, new developments and interpretations can be de-

rived. We present a few of them hereafter.
Using this representation, one of the first idea that comes to mind is to investi-
gate partial derivatives of function κS . This leads to proposition 1:

Proposition 1. ∀S = {mi}Mi=1 ⊂ B
Ω, |S| = M > 1, ∀~α ∈ [0, 1]M ,

∂κS

∂αi
(~α) = κS\{mi}

(

pS\{mi} (~α)
)

− κS (~α− αi~ei) (20)

with (~ei)
M
i=1 the canonical basis of RM and ps (~α), the projection of ~α on the

vectorial space generated by (~ei)i|mi∈s.

Proof: see Appendix A

One first remark is that the derivatives are always negative because the cal-
culation of κS (~α− αi~ei) involves the same bbas as κS\{mi}

(

pS\{mi} (~α)
)

plus
mi and adding a bba to the combination can only increase the degree of conflict.
This is also linked to the fact that κS decreases as one of the discounting rate
increases.
In addition, a rather surprising result is that ∂κS

∂αi
(~α) is a constant function with

respect to variable αi and
∂2κS

∂α2
i

(~α) = 0.

Furthermore the most conflicting bbas among S at point ~α yield the steepest
slope. Indeed, the same remark as for the degree of falsity can be made : if mi is
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the only bba advocating for a particular solution, there will be a huge drop from

κS (~α− αi~ei) to κS\{mi}

(

pS\{mi} (~α)
)

and consequently the value of
∣

∣

∣

∂κS

∂αi
(~α)
∣

∣

∣

will be high. Note that the numerator of the degree of falsity ci is
∂κS

∂αi

(

~0
)

.

Looking at these remarks, ∂κS

∂αi
(~α) appears to be a relevant measure to assess a

bba’s contribution to the conflict. Yet, it suffers from the same criticisms as the
degree of falsity measure and the conflict measures as it is not a homogeneous
criterion. Notably, the response it provides on bba sets like Sspe is dependent
on the number M of bbas.
Another question that may be raised when investigated the global conflict κS

produced by a set S of M bbas is its links with other conflicts produced by
subsets of S. Indeed, if one intends to estimate the impact of mi on the com-
bination, it may be interesting to compute κ{mi}∪s with s a subset of bbas in
conflict mi.
In the rest of this article, we define as sub-degree of conflict or sub-conflict
a quantity κs such that s ( S. A mathematical link between the sub-degrees
of conflict and the global degree of conflict is expressed through the following
proposition :

Proposition 2. ∀S = {mi}Mi=1 ⊂ B
Ω, |S| = M > 1, ∀~α ∈ [0, 1]

M
,

κS (~α) =
∑

s⊆S,s6=∅

κs

M
∏

i=1

fs (αi) (21)

with fs (αi) =

{

αi if mi /∈ s
1− αi if mi ∈ s

.

Proof: see Appendix A

At first sight, this proposition might not seem very interesting in the sense
that the right term is a weighted sum of sub-degrees whose expression makes
it hard to understand the meaning behind it. However, it is simply noteworthy
that such a mathematical link between the sub-degrees of conflict and the global
degree of conflict exists. More interestingly, one may apply this formula for a
very specific vector of discounting rates : ~α = 1

2~u, with ~u = (1, ..., 1). We thus
derive the following corollary:

Corollary 1. ∀S ⊂ B
Ω, |S| = M > 1,

κS

(

1

2
~u

)

=
1

2M

∑

s⊆S,s6=∅

κs (22)

.

Proof: using proposition 2 with ∀i, αi =
1
2 , one gets ∀s, ∀i, fs (αi) = 1

2 . The

result is then immediately obtained.
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This result shows that the sum of all sub-conflicts normalized by 2M is
equivalent to the global conflict when all bbas are discounted by 1

2 . If we
differentiate equation (22), we deduce the following proposition:

Proposition 3. ∀S = {mi}Mi=1 ⊂ B
Ω, |S| = M > 1,

∂κS

∂αi

(

1

2
~u

)

=
1

2M−1

∑

s⊆S,s6=∅,mi∈s

[

κs\{mi} − κs

]

. (23)

Proof: From corollary 1 we have ∀~α ∈ [0, 1]
M
, κS

(

1
2~u ◦ ~α

)

= 1
2M

∑

s⊆S,s6=∅ κs (~α).

Now by differentiating, we obtain:

∂

∂αi
κS

(

1

2
~u ◦ ~α

)

=
1

2M

∑

s⊆S,s6=∅

∂

∂αi
κs (~α) (24)

Using proposition 1, we have

1

2

∂κS

∂αi

(

1

2
~u ◦ ~α

)

=
1

2M

∑

s⊆S,s6=∅,mi∈s

κs\{mi}

(

ps\{mi} (~α)
)

− κs (~α− αi~ei)(25)

If we use the equation above with ~α = ~0, the proposition result is obtained.

This result appears to be more interesting to achieve our goal of determining

how much a bba contributes to the conflict. Indeed
∣

∣

∣

∂κS

∂αi

(

1
2~u
)

∣

∣

∣ is understood

as the average drop of sub-conflicts when removing mi from the com-

bination. As compared to ∂κS

∂αi
(~α), this criterion can better detect singular

bbas when their number is large. Yet it is still a non-homogeneous criterion,
hence the idea to further discount all bbas with 1

2 . Discounting n times by 1
2 is

equivalent to discount one time by
[

1−
(

1
2

)n]
, see equation (13). This leads to

proposition 4:

Proposition 4. ∀S = {mi}Mi=1 ⊂ B
Ω, |S| = M > 1, ∀n ∈ N∗

κS

([

1−
(

1

2

)n]

~u

)

=
∑

s⊆S,s6=∅

γM
n (|s|)κs (26)

with γM
n (|s|) = (2n−1)M−|s|

2nM .

Proof: see Appendix A.

This result is a particular case of proposition 2 where the actual values of
the weights can be expressed using γM

n (|s|). Again, we may differentiate this
result and obtain the following proposition:
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Proposition 5. ∀S = {mi}Mi=1 ⊂ B
Ω, |S| = M > 1, ∀n ∈ N∗

1

2n
∂κS

∂αi

([

1−
(

1

2

)n]

~u

)

=
∑

s⊆S,mi∈s

γM
n (|s|)

[

κs\{mi} − κs

]

. (27)

.

Proof: Similar proof as proposition 3, using proposition 4 and 1.

As compared to proposition 3, it is now possible to obtain easily a weighted
sum of drops of sub-conflicts when removing mi from the combination. By
examining these weights γM

n (|s|), one may note that they are dependent on
the cardinal of the subset of bbas whose sub-conflict is evaluated. If bbas are
normalized, the most prominent weights are obtained for pairwise sub-conflicts,
i.e. when |s| = 2. Indeed, we have

γM
n (2)

γM
n (q)

= (2n − 1)
q−2

. (28)

with q > 2 an integer number. So the smallest ratio is obtained for q = 3
and this ratio is (2n − 1), therefore when n is large, weights for sub-conflicts
involving more than 2 bbas are negligible as compared to the weights for pairwise
sub-conflicts. Given that when n is large γM

n (2) ≈ 1
4n , we have for any set

S = {mi}Mi=1 of M normalized bbas such that ∃mj ,mk ∈ S with κ{mj ,mk} > 0,

2n
∣

∣

∣

∣

∂κS

∂αi

([

1−
(

1

2

)n]

~u

)∣

∣

∣

∣

≈
∑

mj∈S\{mi}

κ{mi,mj} when n >> 1. (29)

In practice, bba sets without any pairwise conflict but a positive global conflict
are rarely found (see Appendix B for an example of such a situation). However,
in this general case, given that when n is large γM

n (q) ≈ 1
2qn , we have for any

set S = {mi}Mi=1 of M normalized bbas

2n(q−1)

∣

∣

∣

∣

∂κS

∂αi

([

1−
(

1

2

)n]

~u

)∣

∣

∣

∣

≈
∑

s ⊆ S,mi ∈ s
|s| = q

[

κs\{mi} − κs

]

when n >> 1. (30)

with q = min {|s| , s ∈ S such that κs > 0} the size of the smallest subset
with a positive sub-conflict. We thus introduce criterion ξi:

ξi =
1

Cq−1
M

∑

s⊆S,mi∈s,|s|=q

[

κs\{mi} − κs

]

(31)

with Cq−1
M the binomial coefficient. When one processes a bba set such as Sspe,

we have q = 2. It can be shown that under such circumstances if mi ∈ sj
we obtain ξi = rj (1− x)

2
. So not only ξ is a homogeneous criterion, but its

function h is linear with respect to the proportion of singular bbas.
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3.3. Implementation details and parameter tuning for criterion ξi

This subsection gives an algorithmic solution to compute criterion ξi and
discusses the influence of the parameters needed for its computation.
Indeed, two parameters arise from equation (30): n and q. Parameter n is re-
lated to the precision of the estimation of ξi, but the exact precision cannot be
determined beforehand. Indeed, suppose the bba set is such that q = 2, the risk
is that the chosen value of n is not enough to prevent a sub-conflict κs with
|s| = 3 from polluting the estimation. To obtain a reliable estimation, n must
be incremented until the absolute difference between two subsequent estima-
tions of ξi becomes smaller than the desired precision ǫ. The initial value of n,
denoted as ninit, should be such that 1

2n−1 << ǫ, so that only two successive
computations are likely to be enough. In addition, ninit should also be chosen

so that the machine precision is not reached and a bba m
1− 1

2
n

i turn into the
vacuous bba.
Note that there remains a slight possibility that after convergence of the loop,
the estimation obtained may be 1

Cp−1
M

∑

s∈S,mi∈s,|s|=p

[

κs\{mi} − κs

]

with p > q,

but this would mean that sub-conflicts κs with |s| < r are negligible as compared
to sub-conflicts κs with |s| = r. Consequently, ξi remains a fair and relevant
estimation of the conflict induced by bba mi.
Concerning parameter q, it can be estimated easily using two subsequent esti-
mations of ξi. Using equation (30), we can write:

1 ≈
2(n+1)(q−1)

∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n+1
]

~u
)∣

∣

∣

2n(q−1)
∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n]
~u
)

∣

∣

∣

(32)

2q−1 ≈

∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n]
~u
)

∣

∣

∣

∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n+1
]

~u
)∣

∣

∣

(33)

q ≈ 1 + log2





∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n]
~u
)

∣

∣

∣

∣

∣

∣

∂κS

∂αi

([

1−
(

1
2

)n+1
]

~u
)∣

∣

∣



 (34)

with log2 the logarithm to base 2. The procedure to obtain criteria {ξi}Mi=1 from
a set S of M normalized bbas is given by the algorithm 1.

In addition to these comments, it is alo worth mentioning that criterion ξi
can be used as an input of a function g (r) corresponding to a specific desired
behaviour with respect to r the proportion of singular bbas. Indeed since ξi is
homogeneous and that its h function is linear, one can simply directly use g (ξi)
as an adapted criterion. In other words, one can easily derive a new criterion
with any shape as a function of r. Examples of possible g functions are evoked
in the experiments presented in the following section.
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Algorithm 1 Computation of criterion ξi

entries : ninit, ǫ, S, M
n← ninit
repeat
for i=1 to M do
Compute Kn

i ← ∂κS

∂αi

([

1−
(

1
2

)n]
~u
)

using equation (20)

Compute Kn+1
i ← ∂κS

∂αi

([

1−
(

1
2

)n+1
]

~u
)

using equation (20)

Compute q using equation (34)
n← n+ 1

end for
until maxi

∣

∣2n(q−1)Kn
i − 2(n+1)(q−1)Kn+1

i

∣

∣ < ǫ
for i=1 to M do

ξi ← 2n(q−1)

M Kn
i

end for
return {ξi}Mi=1 and q.
End

4. Experiments on synthetic sets of bbas

In this section several criteria evaluating the contribution to the conflict of
bbas are compared using synthetic sets of bbas. We compare :

• the degree of falsity ci,

• the conflict measure Confi with m∗ the mean of bbas (m∗ is involved in
the computation of Confi, see equation (17)),

• the criterion ξi with ninit = 20 and ǫ = 0.001.

The two first experiments are meant to outline that ξi is homogeneous and
why this property makes it easier to use than other criteria. The third experi-
ment evaluate the performances of the 3 examined criteria in terms of conflict
contribution evaluation. The fourth experiment describe the behaviour of the
3 examined criteria in a more general context and finally the last subsection
presents a use case of the criteria.

4.1. Sets of sbbas with a varying proportion of singular bbas

In this experiment, we use the three criteria for the set Sspe presented in
subsection 3.1. This set is the union of two subsets s1 and s2 that are respectively
made of bbas Ax and Bx with A ∩ B = ∅. We choose M = 20 bbas. For a
given value of x, all bbas in Sspe are identically committed. Figure 1 shows the

linearity of criterion ξi with respect to r1 = |s1|
M for several values of x. The

same curves are obtained for the set s2. Figure 2 shows the non-linearity of
criterion Confi with respect to r1 for several values of x. The same curves are
obtained for the set s2. It can be shown that Conf2

i is linear with respect to
r1. Consequently, if one chooses g (r) =

√
r, g (ξi) is an adapted criterion whose

behaviour is close to Confi. Figure 3 shows the non-linearity of criterion ci

13
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Figure 1: Behaviour of criterion ξi when the proportion of singular bbas varies.
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Figure 2: Behaviour of criterion Confi when the proportion of singular bbas varies.

with respect to r1 for several values of x. The same curves are obtained for the
set s2. Regarding this experiment, criterion ci is the one whose behaviour is
the most difficult to predict because an expression relating r1 to ci is hard to
obtain. The value it takes appears to be rather binary depending on the fact
that |s1| < |s2| or |s1| > |s2|. Note that if one chooses a sigmoid function for
g (r), g (ξi) is an adapted criterion whose behaviour is likely to be close to ci.
In addition, as explained in subsection 3.1, the criterion ci fails when x = 0 i.e.

when bbas are categorical.
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Figure 3: Behaviour of criterion ci when the proportion of singular bbas varies.

4.2. Sets of bbas with varying number of bbas

One of the most interesting aspect of the homogeneity property is that on
simple bba sets like Sspe the criterion value does not depend on M but only on
the proportion of singular bbas. This is a very important property when the
number of bbas varies with time like in the case of ad hoc networks or dynamic
sensor networks. Both the conflict measure and the degree of falsity fail to
possess such a property as it can be seen in Table 1.

Note that the dependency of Confi decreases as M increases. Again, there
is a computational limit for ci when M is large.

4.3. Sets of bbas with random masses

The two aspects highlighted in the previous subsections are only valid for
a particular kind of bba sets. In broader cases, these properties are no longer
valid, however, it can be expected from criterion ξi to maintain a satisfying
behaviour in the general case thanks to the homogeneity property. To compare
the three criteria on a more general basis, random sets of sbbas were generated.
A randomly chosen sbba mi = Ax is obtained as follows:

• a focal set A is randomly chosen in
{

2Ω \ Ω, ∅
}

(with equal probability for
each subset),

• the mass assigned to this set is 1−x with x randomly chosen in [0, 1] using
a uniform distribution.

We first present a worked out example on a particular sbba set S with M = 20
in Table 2. We note that this bba set contains a majority of bbas in favour of
hypothesis b. This is pointed out by the bba combination using the conjunctive
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Table 1: Values of ci, Confi and ξi for several bba sets of type Sspe with a varying size M .
The proportion of singular bbas is r = 0.25. All bbas are identically committed and |Ω| = 3.
– means that the criterion could not be computed because the machine precision was reached.
bba set of type Sspe with |Sspe| = M bba type degree of falsity ci conflict measure Confi criterion ξi

M=4
bba mi ∈ s1, s1 =

{

1×m0.1
{a}

}

0.79 0.89 0.48

bba mi ∈ s2, s1 =
{

3×m0.1
{b}

}

0.11 0.52 0.16

M=8
bba mi ∈ s1, s1 =

{

2×m0.1
{a}

}

0.80 0.83 0.48

bba mi ∈ s2, s1 =
{

6×m0.1
{b}

}

6.10e-3 0.48 0.16

M=16
bba mi ∈ s1, s1 =

{

4×m0.1
{a}

}

0.80 0.80 0.48

bba mi ∈ s2, s1 =
{

12×m0.1
{b}

}

1.00e-5 0.46 0.16

M=32
bba mi ∈ s1, s1 =

{

8×m0.1
{a}

}

0.80 0.79 0.48

bba mi ∈ s2, s1 =
{

24×m0.1
{b}

}

≈0 0.45 0.16

M=64
bba mi ∈ s1, s1 =

{

16×m0.1
{a}

}

– 0.78 0.48

bba mi ∈ s2, s1 =
{

48×m0.1
{b}

}

– 0.45 0.16

M=128
bba mi ∈ s1, s1 =

{

32×m0.1
{a}

}

– 0.78 0.48

bba mi ∈ s2, s1 =
{

96×m0.1
{b}

}

– 0.45 0.16

M=256
bba mi ∈ s1, s1 =

{

64×m0.1
{a}

}

– 0.78 0.48

bba mi ∈ s2, s1 =
{

192×m0.1
{b}

}

– 0.45 0.16

M=512
bba mi ∈ s1, s1 =

{

128×m0.1
{a}

}

– 0.78 0.48

bba mi ∈ s2, s1 =
{

384×m0.1
{b}

}

– 0.45 0.16

M=1024
bba mi ∈ s1, s1 =

{

256×m0.1
{a}

}

– 0.77 0.48

bba mi ∈ s2, s1 =
{

768×m0.1
{b}

}

– 0.45 0.16

Table 2: Results of criterion ξi, degree of falsity and conflict measure on a particular set
S = {m1, ...,m20} of randomly chosen sbbas with |Ω| = 3.
sbba ∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω = {a, b, c} ci Confi ξi
m1 0 0.67 0 0 0 0 0 0.33 0.62 0.69 0.22
m2 0 0 0.53 0 0 0 0 0.47 0.17 0.50 0.12
m3 0 0 0.59 0 0 0 0 0.41 0.21 0.54 0.13
m4 0 0 0.6 0 0 0 0 0.40 0.21 0.54 0.13
m5 0 0 0.66 0 0 0 0 0.34 0.26 0.58 0.14
m6 0 0 0.84 0 0 0 0 0.16 0.49 0.69 0.18
m7 0 0 0.92 0 0 0 0 0.08 0.67 0.74 0.20
m8 0 0 0 0.24 0 0 0 0.76 0.00 0.49 0.01
m9 0 0 0 0.78 0 0 0 0.22 2.00e-3 0.60 0.05
m10 0 0 0 0.92 0 0 0 0.08 5.00e-3 0.66 0.06
m11 0 0 0 0.99 0 0 0 0.01 0.03 0.68 0.06
m12 0 0 0 0 0.12 0 0 0.88 0.12 0.51 0.05
m13 0 0 0 0 0.57 0 0 0.43 0.57 0.65 0.22
m14 0 0 0 0 0.51 0 0 0.49 0.50 0.61 0.20
m15 0 0 0 0 0 0.08 0 0.92 0.06 0.54 0.02
m16 0 0 0 0 0 0.57 0 0.43 0.51 0.60 0.12
m17 0 0 0 0 0 0.80 0 0.20 0.76 0.68 0.17
m18 0 0 0 0 0 0.99 0 0.01 0.99 0.75 0.21
m19 0 0 0 0 0 0 0.47 0.53 0.14 0.54 0.02
m20 0 0 0 0 0 0 0.76 0.24 0.37 0.63 0.03

m ∩© 0.99 8.00e-6 3.50e-5 0 0 0 0 0

m⊕ 0 0.18 0.81 0 4.00e-4 0 0 0

rule or Dempster’s rule. Let us discuss the results of each criterion individually
:

• the degree of falsity is the sharpest criterion. It assigns large values to
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bbas in direct conflict with b like m1 and m13 to m18. However a large
value c7 (ranking 3) is also found for m7 = m0.08

{b} because of its strong
commitment. c7 exceeds c1 whereas m7 supports b.

• In its raw form, Confi is the criterion with the smallest variability and
appears consequently less discriminative. The two bbas with the highest
conflict value are m7 = m0.08

{b} and m18 = m0.01
{a,c}. As m7 is in accordance

with the majority opinion, this can be seen as a dangerous behaviour.
Again, m7 is considered more conflicting than m1.

• Concerning criterion ξi, the smallest values are found for bbas m8 to m12,
m19 and m20. These bbas have a focal element of cardinal 2 that contains
b. Like the two other criteria, m7 is assigned a rather high value but it
ranks 4th and we have ξ7 < ξ1.

More or less, the behaviour of each criteria can be justified on this example,
but one cannot draw conclusions only on a single example. To allow a fair
comparison, the following experiment is proposed: for each randomly generated
set S of sbbas and for each criterion, the bba ranking first is removed until
κs⊂S = 0. These experiments were repeated 100 times and the average results
are displayed in Table 3. The more efficient a criterion is, the less removals it

Table 3: Number of singular bba removals from set a S of randomly chosen sbbas until conflict
is null. – means that the criterion could not be computed because the machine precision was
reached.
|S| = M ci Confi ξi
M = 10 3.80 6.46 3.86
M = 20 8.29 16.04 8.97
M = 40 17.91 35.63 19.89
M = 80 – 76.07 42.00

needs to obtain κs⊂S = 0. To this regard, the sharpest criterion is the degree
of falsity ci followed by ξi whereas Confi produces results significantly worse.
It is important to stress that Confi is the only criterion that is not defined
based on the degree of conflict and that this may have an influence on its
performances in this experiment. Moreover, if m1 = Ax, m2 = Ax′

with x 6= x′,
we have Conf1 > 0 and κ{m1,m2} = 0. Confi comprises other information
than conflict-related one which may impair its capability to identify the bba
to remove in priority. The major drawback of ci remains its computational
limitations when M is large. Looking at these conclusions, our criterion better
distinguishes singular bbas than Confi and is more robust than ci. Note that ξi
primarily removes sbbas with a singleton as a focal element as shown in Table 2.
Consequently, after several removals, the remaining bbas may well be conflicting
but without any pairwise conflict. q is thus unknown in this experiment.
Finally, one may wonder what are the computation times necessary for each of
these approaches. Figure 4 shows that ξi computation is approximately twice
that of ci whereas Confi is slower on small bba sets but faster on large bba sets.
Note that in these experiments ξi is obtained in one loop (see algorithm 1).
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4.4. Sets of non-consonant bbas

The criteria discussed in this paper have been tested on sets of sbbas so far.
There are two reasons accounting for this choice:

• Carrying experiments on general bbas often lead to subjective interpreta-
tions of the results because the information enclosed in a general bba is
more difficult to interpret than that of a sbba.

• Conflict evaluation criteria are meant to be used on bbas that are direct
output of sources of information in order to detect and post-process sin-
gular pieces of evidence. Most of the time, bba models [17, 18] produce
sbbas so this type of bbas is the most widely used.

Nonetheless, it is interesting to observe the behaviour of the criteria when pro-
cessing general bbas and to examine if their performances may degrade. Among
non-simple bbas, we will only focus on a special kind of bbas that are non-
consonant bbas. This type of bbas is the only one likely to provoke unforeseen
issues. Indeed, a non-consonant bba is such that it has two focal elements A
and B with A ∩ B = ∅. In other words, there is some conflict encoded within
the bba.
To understand the impact of a non-consonant bba on the criteria, let us carry
this simple experiment: let us consider a set S of 20 sbbas. Suppose 5 of them
are equal to {a}0.5 and the 15 remaining one are equal to {b}0.5. We already
know how the three criteria respond to this situation. Now, let us process an-
other bba set S ′ that contains 19 bbas. 4 of them are equal to {a}0.5 and 14 of

them are equal to {b}0.5 and the 19th one is equal to {a}0.5 ∩© {b}0.5.
Formally, the two sets contain the same pieces of evidence, but these pieces are
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Table 4: Impact of a non-consonant bba on conflict analysis criteria
Conflict analysis in S Conflict analysis in S ′

if mi = {a}0.5 if mi = {b}0.5 if mi = {a}0.5 if mi = {b}0.5 if mi = {a}0.5 ∩© {b}0.5
raw value percent raw value percent raw value percent raw value percent raw value percent

ξi 7.49e-3 10.00% 2.50e-3 3.33% 7.65e-6 1.30% 2.51e-6 0.40% 5.35e-4 89.00%
Confi 0.28 7.30% 0.16 4.20% 0.28 7.90% 0.16 4.40% 0.25 8.00%
ci 7.17-2 12.70% 1.37e-2 2.40% 7.17e-2 12.80% 1.37e-2 2.40% 8.16e-2 14.60%

not distributed the same way. The results for the three criteria are presented in
Table 4.

In this experiment, it can be argued that each criteria produces a satisfactory
response in its way. Indeed, for both the degree of falsity and the conflict
measure, the raw values remain nearly unchanged and this can be regarded
as normal since the same pieces of evidence are considered in both cases. In
addition, the non-consonant bba is given a degree of falsity or conflict measure
that is slightly higher than the singular bbas (i.e. when mi = {a}0.5). The
criterion ξi has a dramatically different behaviour in the sense that the non-
consonant bba drags 89% of the conflict. This is perfectly well understood when
one looks at equation (29). The non-consonant bba is the only one that has a
positive pairwise conflict with all other bba of S ′ and its value is a lot higher.
This can be also regarded as an interesting result because non-consonant bba
can be viewed as contradictory bba that deserves a to be processed in priority.

4.5. An example of practical use

In this subsection, we propose an example of practical use of conflict anal-
ysis criteria. This example is inspired from a weather forecast application pre-
sented in [19]. Suppose one has to choose between two hypotheses about to-
morrow’s weather: {rain} or {sunshine}. This frame of discernment Ωt =
{rain, sunshine} is time-dependent and it is understood that the truth also
evolves with time since the weather is not always rainy of sunny.
Now, let us further suppose that one has collected a sequence of bbas S =
{mt−w+1, ...,mt} in order to make a decision on tomorrow’s weather. The w
past bbas are combined using the conjunctive rule with the present bba mt.
This approach works well when bbas belonging to the temporal window agree
on the forecast but when it is not the case, the degree of conflict will rapidly be
high valued, thus, tending to show that a safe decision is hard to be made.
To get a better picture of this phenomenon, let us examine the following simple
case: one has collected w bbas that all equals to {rain}x followed by w that now
equals to {sunshine}x. Figure 5 is an illustration of this situation when w = 3.
When the temporal window moves from past observations to new ones, the de-
gree of conflict raises high and then decreases until the window comprises the w
latest bbas that all support the {sunshine} hypothesis. The degree of conflict
appears to be insufficiently accurate in this situation as it cannot distinguish
between these two cases:

• there is only one conflicting bba and this bba is the most recent one.
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Figure 5: Example of a bba sequence with three bbas supporting the rain hypothesis followed
by three more recent ones supporting the sunshine hypothesis with a temporal window size
w = 3.

• there is only one conflicting bba and this bba is the oldest one.

In the first case the decision to be made is riskier than in the second case and
consequently different processings are needed. This difficulty can be overcome
by evaluating the contribution to the conflict of the most recent bbamt. Figure 6
presents such evaluation using ξt, Conft and ct as well as the degree of conflict
for two different window sizes and bba commitments. The values of ξt, Conft
and ct are high when mt brings some novelty and by thresholding these values
it is possible to trigger and ad hoc post-processing. In this experiment, ξt is
used with the following g function : g (ξt) =

ξt
(1−xmin)

2 with xmin the smallest xi

value among the set of w sbbas combined {mi = Axi

i }
t
i=t−h. This allows g (ξt)

to be independent of the commitment if all sbbas are identically committed, i.e.
∀i, xi = x as in this experiment. Consequently, g (ξt) is the only criterion that
has the same value for the same proportion of singular bbas whatever w or x.
It is thus easier to find a threshold for g (ξt) that does not depend on w or on
bba commitment.
Note that on real data, sbbas are very rarely identically committed. However,
it is desirable to perfectly control the criterion behaviour in the identically
committed case so as to analyse its values and extrapolate in the general case.

4.6. Concluding remarks on the experiments

Throughout this section, the proposed conflict analysis criterion ξi has been
compared to two state-of-the-art approaches: the degree of falsity ci and the con-
flict measure Confi. The experiments in subsections 4.1 and 4.2 have pointed
out that ξi offers some possibilities beyond reach of the two other criteria. These
possibilities are expressed via the homogeneity property and a situation where
this property is useful is presented in subsection 4.5.
In terms of performances, it cannot be concluded that one of the criteria out-
performs the other ones in all situations. Looking at the experiments in subsec-
tions 4.3, ξi should be preferred when the number of bbas is large but when it is
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Figure 6: Evolution of the conflict evaluation criteria as the truth switches from a hypothesis
to another one.

small, ci obtains slightly better performances. Confi appears to be less efficient
when one intends to get rid of the most conflicting bbas but if another goal is
sought, it may reveal itself as efficient as the two other ones. Moreover, ξi turns
out to be useful when it is intended to mine non-consonant bbas in priority as
shown in subsection 4.4.
The collection of the remarks and considerations above justify the practical
interest of our contribution.

5. Conclusion

In this article, the way bbas conflict with one another has been studied under
a new perspective. Viewing the degree of conflict as a function of discounting
rates has led to new developments and the introduction of a new criterion as-
sessing a bba contribution to the conflict. As compared to existing approaches,
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this criterion appears to be more robust to parameters like the proportion of
conflicting bbas and the number of bbas with a better or equivalent efficiency.
In addition the interpretation and the justification of this criterion are easily
understood.
Various perspectives arise from this contribution on both theoretical and practi-
cal grounds. Concerning theoretical aspects, we would like to further investigate
the relationship between sub-conflicts in connection with recent works on the
discounting operation [12]. We would like also to investigate how this criterion
could be re-injected inside a combination rule, Liu et al. [20] have recently pro-
posed an approach following this idea but using another criterion.
We also intend to demonstrate the interest of this criterion through real-world
problems. Detecting conflicting bbas allows to identify singular sources of in-
formation. These kind of sources correspond to deficient sources or to sources
that collected a piece of information that cannot be perceived by the others.
Concerning outlier detection, the criterion could be used to analyse datasets
and mine data points of particular interest. Outlier detection is also essential
in sensor networks. Some sensors may indeed be faulty or used in some con-
ditions for which they are not calibrated, thus yielding unreliable information.
Our criterion would be particularly useful in networks with a varying number
of information sources.

Appendix A. Proofs of propositions

This appendix contains the proofs of the propositions presented in this arti-
cle.

Appendix A.1. Proof of proposition 1

∀S ⊂ B
Ω, |S| = M , ∀~α ∈ [0, 1]

M
, we have

∂κS

∂αi
(~α) =

∂

∂αi

(

∩©M
j=1m

αj

j

)

(∅) (A.1)

Following the definition of the conjunctive rule, the expression becomes

∂κS

∂αi
(~α) =

∂

∂αi

∑

∀j, Bj ⊆ Ω,
∩Mj=1Bj = ∅

mα1
1 (B1)× ...×mαM

M (BM )

(A.2)
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Using the definition of the discounting operation on bba mi, we get

∂κS

∂αi
(~α) =

∂

∂αi











































∑

∀j, Bj ⊆ Ω,
∩Mj=1Bj = ∅
Bi 6= Ω

mα1
1 (B1)× ...× (1− αi)mi (Bi)× ...×mαM

M (BM )

+
∑

∀j, Bj ⊆ Ω,
∩Mj=1Bj = ∅
Bi = Ω

mα1
1 (B1)× ...× ((1− αi)mi (Ω) + αi)× ...×mαM

M (BM )











































These sums can be re-organized as follows:

∂κS

∂αi
(~α) =

∂

∂αi



























(1− αi)
∑

∀i, Bi ⊆ Ω,
∩Mi=jBj = ∅

mα1
1 (B1)× ...×mi (Bi)× ...×mαM

M (BM )

+αi

∑

∀j 6= i, Bj ⊆ Ω,
∩Mj=1,j 6=iBj = ∅

mα1
1 (B1)× ...×mαM

M (BM )



























=
∂

∂αi

{

(1− αi) κS (~α− αi~ei) + αiκS\{mi}

(

pS\{mi} (~α)
)}

(A.3)

Since κS (~α− αi~ei) and κS\{mi}

(

pS\{mi} (~α)
)

are both independent from the
variable αi, using derivation rules, we obtain

∂κS

∂αi
(~α) = −κS (~α− αi~ei) + κS\{mi}

(

pS\{mi} (~α)
)

(A.4)

Appendix A.2. Proof of proposition 2

Proof by recurrence on the number M of bbas:

• Lets us first examine proposition 2 for M = 2: S = {m1,m2}. In this
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case, the degree of conflict writes as:

κS (α1, α2) =
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

mα1
1 (B1)m

α2
2 (B2) (A.5)

Using the definition of the discounting operation on bba m1, we get

κS (α1, α2) =
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

B1 6= Ω

(1− α1)m1 (B1)m
α2
2 (B2)

+
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

B1 = Ω

[(1− α1)m1 (Ω) + α1]m
α2
2 (B2)

These sums can be re-organized as follows:

κS (α1, α2) = (1− α1)
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

m1 (B1)m
α2
2 (B2)

+α1

∑

B2 ⊆ Ω,
Ω ∩B2 = ∅

mα2
2 (B2)

The second sum reduces to a single term as the only subset B2 of Ω such
that B2 ∩ Ω = ∅ is B2 = ∅:

κS (α1, α2) = (1− α1)
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

m1 (B1)m
α2
2 (B2) + α1m

α2
2 (∅)

= (1− α1)
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

m1 (B1)m
α2
2 (B2) + α1 (1− α2)m2 (∅)

For the remaining sum, one can apply the same process as above on bba
m2, and we thus have:

κS (α1, α2) = (1− α1)















(1− α2)
∑

B1, B2 ⊆ Ω,
B1 ∩B2 = ∅

m1 (B1)m2 (B2) + α2m2 (∅)















+ α1 (1− α2)m2 (∅)
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By definition of function κs, this expression writes as:

κS (α1, α2) = (1− α1) (1− α2)κS + (1− α1)α2κ{m1} + α1 (1− α2)κ{m2}

Finally, following the definition of function fs, we get

κS (α1, α2) = fS (α1) fS (α2)κS + f{m1} (α1) f{m1} (α2)κ{m1} + f{m2} (α1) f{m2} (α2)κ{m2}

The proposition is thus verified for M = 2.

• Let us now investigate proposition 2 at rank M + 1 supposing that the it
is verified at rank M (i.e. for any set s of bbas in S = {m1, ...,mM+1}
such that |s| = M). We have

κS (~α) =
(

∩©M+1
j=1 m

αj

j

)

(∅) (A.6)

=
∑

∀j, Bj ⊆ Ω,

∩M+1
j=1 Bj = ∅

mα1
1 (B1)× ...×m

αM+1

M+1 (BM+1)

with ~α = (α1, ..., αM+1). Using the same idea as in the case of M = 2,
the expression can be expanded using the definition of the discounting
operation on bba mM+1 :

κS (~α) =
∑

∀j, Bj ⊆ Ω,

∩M+1
j=1 Bj = ∅
BM+1 6= Ω

mα1
1 (B1)× ...× (1− αM+1)mM+1 (BM+1)

+
∑

∀j, Bj ⊆ Ω,

∩M+1
j=1 Bj = ∅
BM+1 = Ω

mα1
1 (B1)× ...× [(1− αM+1)mM+1 (Ω) + αM+1]

= (1− αM+1)
∑

∀j, Bj ⊆ Ω,

∩M+1
j=1 Bj = ∅

mα1
1 (B1)× ...×mM+1 (BM+1)

+αM+1

∑

∀j, Bj ⊆ Ω,
∩Mj=1Bj = ∅

mα1
1 (B1)× ...×mαM

M (BM )

= (1− αM+1)κS (α1, ..., αM , 0) + αM+1κS\{mM+1} (α1, ..., αM ) (A.7)

In the expression above, the problem comes from the term κS (α1, ..., αM , 0)
which remains a function of the M + 1 variables. However, the same ex-
pansion can be applied to this term using the discounting operation def-
inition for bba mM and because the result obtained by equation A.7 is
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true ∀~α ∈ [0, 1]
M+1

. We can thus write

κS (α1, ..., αM , 0) = (1− αM )κS (α1, ..., αM−1, 0, 0) (A.8)

+αMκS\{mM} (α1, ..., αM−1, 0) (A.9)

One may note that the term κS\{mM} (α1, ..., αM−1, 0) is a function of the
following M variables: {α1, ..., αM−1, αM=1} (the value of αM=1 being 0
in this case).
Now expression A.9 can be inserted within expression A.7 and we have

κS (~α) = (1− αM+1) (1− αM )κS (α1, ..., αM−1, 0, 0)

+ (1− αM+1)αMκS\{mM} (α1, ..., αM−1, 0)

+αM+1κS\{mM+1} (α1, ..., αM ) (A.10)

The principle used to obtain expression A.10 can be iterated M times so
as to obtain:

κS (~α) =

M+1
∏

i=1

(1− αi)κS

(

~0
)

+α1

M+1
∏

i=2

(1− αi)κS\{m1} (0, ..., 0) + ...

+αj

M+1
∏

i=j

(1− αi)κS\{mj} (α1, ..., αj−1, 0, ..., 0) + ...

+αM+1κS\{mM+1} (α1, ..., αM ) (A.11)

which can be written in a more condensed form as

κS (~α) =

M+1
∏

i=1

(1− αi)κS

(

~0
)

+

M+1
∑

j=1

αj

M+1
∏

i=j

(1− αi)κS\{mj} (α1, ..., αj−1, 0, ..., 0)(A.12)

Now we can use the hypothesis of recurrence at rank M for all the terms
of the type κS\{mj} (α1, ..., αj−1, 0, ..., 0). Indeed, we have

κS\{mj} (α1, ..., αj−1, 0, ..., 0) =
∑

s⊆S\{mj},s6=∅

κs

j−1
∏

i=1

fs (αi)
M+1
∏

i=j+1

fs (0)(A.13)

Considering that fs (0) =

{

0 if i /∈ s
1 if i ∈ s

, all sets s that do not include

{mj+1, ...,mM+1} can be discarded. We thus have

κS\{mj} (α1, ..., αj−1, 0, ..., 0) =
∑

s⊆{m1,...,mj−1},s6=∅

κs∪{mj+1,...,mM+1}

j−1
∏

i=1

fs∪{mj+1,...,mM+1} (αi)(A.14)
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Expression A.14 can be inserted in equation A.12:

κS (~α) =
M+1
∏

i=1

(1− αi)κS

(

~0
)

+

M+1
∑

j=1

αj

M+1
∏

i=j

(1− αi)
∑

s⊆{m1,...,mj−1},s6=∅

κs∪{mj+1,...,mM+1}

j−1
∏

i=1

fs∪{mj+1,...,mM+1} (αi)

By defintion of function fs, fs∪{mj+1,...,mM+1} (αj) = αj because mj /∈
s ∪ {mj+1, ...,mM+1}. Similarly, ∀i > j fs∪{mj+1,...,mM+1} (αi) = 1 − αi,
because i ∈ s∪{mj+1, ...,mM+1} and ∀i fS (αi) = 1−αi because mi ∈ S.
Consequently, we obtain

κS (~α) = κS

M+1
∏

i=1

fS (αi)

+

M+1
∑

j=1

∑

s⊆{m1,...,mj−1},s6=∅

κs∪{mj+1,...,mM+1}

M+1
∏

i=1

fs∪{mj+1,...,mM+1} (αi)

Let us now investigate the sets indexed as s ∪ {mj+1, ...,mM+1} in the
double-sum in the expression above so as to determine if they can be
re-organized. Let A be the set of all subsets of S except S itself:

A = {s ( S} . (A.15)

Let B the set that contains all sets of type s ∪ {mj+1, ...,mM+1} indexed
in the double-sum:

B = ∪M+1
j=1 {s ∪ {mj+1, ...,mM+1} with s ⊆ {m1, ...,mj−1}} . (A.16)

Now let us compare A with B:

– A is the set of all subsets of S except S itself. B is composed of such
subsets, therefore, clearly we have B ⊆ A.

– Looking at the double sum for j = M + 1, we note that, we have
AM+1 = {s ⊆ {m1, ...,mM}} ⊆ B. This result is independent from
the order with which the bbas are processed, so if one switches bba
mM+1 with bba mi using a permutation, the double sum remains
identical and we have Ai ⊆ B. Consequently, ∀i, Ai ⊆ B, which
implies ∪M+1

i=1 Ai ⊆ B which by definition of A is equivalent to A ⊆ B

– Finally, since B ⊆ A and A ⊆ B, we conclude A = B.
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We thus obtain

κS (~α) = κS

M+1
∏

i=1

fS (αi)

+
∑

s(S,s6=∅

κs

M+1
∏

i=1

fs (αi)

=
∑

s⊆S,s6=∅

κs

M+1
∏

i=1

fs (αi) (A.17)

The hypothesis is thus verified at rank M + 1 which concludes the proof of
proposition 2.

Appendix A.3. Proof of proposition 4

Proof by recurrence on the number n of discounting operations with rates
1
2~u:

• Lets us first examine proposition 4 for n = 1: we have

γM
1 (x) =

(2− 1)
M−x

2M
(A.18)

=
1

2M

This case reduces to corollary 1, it is thus verified.

• Let us now investigate proposition 4 at rank n+1 supposing that the it is

verified at rank n. The result at rank 1 can be used on κS

([

1−
(

1
2

)n+1
]

~u
)

to obtain

κS

([

1−
(

1

2

)n+1
]

~u

)

=
∑

s⊆S,s6=∅

γM
1 (|s|)κs

([

1−
(

1

2

)n]

~u

)

.

Using the hypothesis at rank n, we can write

κS

([

1−
(

1

2

)n+1
]

~u

)

=
∑

s⊆S,s6=∅

γM
1 (|s|)

∑

s′⊆s,s′ 6=∅

γM
n (|s′|)κs′ .(A.19)

The expression above is a weighed sum of sub-conflicts, it can thus be re-
written as

∑

s⊆S γM
n+1 (|s|)κs where γM

n+1 (|s|) are weights to determine.
The values of weights can be found by analysing expression A.19. Let us
separate this analysis for different values of |s′| and count how many times
each term κs′ occurs:
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– when |s′| = M , there is only one possible choice: s′ = s = S. We
conclude

γM
n+1 (M) = γM

1 (M)γM
n (M)

=
1

2M
× 1

2nM

=
1

2(n+1)M
. (A.20)

– when |s′| = M − 1, there are two possible choice for s. The term κs′

is found behind the coefficient:

∗ γM
1 (M)γM

n (M − 1) one time (case s = S),
∗ γM

1 (M − 1)γM−1
n (M − 1) one time (case s = s′).

We conclude

γM
n+1 (M − 1) = γM

1 (M) γM
n (M − 1) + γM

1 (M − 1) γM−1
n (M − 1)

=
1

2M
× 2n − 1

2nM
+

1

2M
× 1

2n(M−1)

=
2n+1 − 1

2(n+1)M
. (A.21)

– when |s′| = M − i with 0 < i < M − 1 (general case), the term κs′ is
found Cj

i times behind the coefficient γM
1 (M − j) γM−j

n (M − i) with

j such that |s| = M − j and Cj
i the binomial coefficient (number of

choices if j items among i). This statement is true for j varying from
0 to i. We can thus write

γM
n+1 (M − i) =

i
∑

j=0

Cj
i γ

M
1 (M − j) γM−j

n (M − i)

=
i
∑

j=0

Cj
i

1

2M
(2n − 1)

M−j−(M−i)

2n(M−j)

=
1

2M(n+1)

i
∑

j=0

Cj
i (2

n − 1)
i−j

(2n)
j

=
1

2M(n+1)
(2n − 1 + 2n)

i

=

(

2n+1 − 1
)i

2M(n+1)
. (A.22)

The result above is equivalent to γM
n+1 (|s|) =

(2n+1−1)M−|s|

2M(n+1) . Conse-
quently, the hypothesis is verified at rank n+1, which concludes the
proof of proposition 4.
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Appendix B. Example of a bba set with global conflict but without

pairwise conflict

Let Ω = {a, b, c} be a frame of discernment. Suppose one has obtained the
following bba set: S = {m1,m2,m3} with:

• m1 = {a, b}x

• m2 = {a, c}x

• m3 = {b, c}x

• x ∈]0, 1]

We have κS > 0 but κ{m1,m2} = κ{m1,m3} = κ{m2,m3} = 0.
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of evidence, Information Fusion 2 (2001) 91–101.

[17] A. Appriou, Probabilités et incertitude en fusion de données multi-senseurs,
Revue scientifique de la defense 11 (1991) 27–40.

[18] T. Denoeux, A k-nearest neighbour classification rule based on Dempster-
Shafer theory, IEEE trans. on Systems Man and Cybernetics 25 (5) (1995)
804–813.

[19] G. Powell, M. Roberts, D. Marshall, Pitfalls for recursive iteration in set
based fusion, in: Proceedings of the Workshop on the theory of belief func-
tions, Brest, France, 2010, pp. 1–6 (paper 216).

[20] Z.-G. Liu, Q. Pan, Y.-M. Cheng, J. Dezert, Sequential adaptive combina-
tion of unreliable sources of evidence, in: Proceedings of the Workshop on
the theory of belief functions, Brest, France, 2010, pp. 1–6 (paper 89).

31


