
HAL Id: hal-00668047
https://hal.science/hal-00668047

Submitted on 20 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From biological to urban cells: lessons from three
multilevel agent-based models

Javier Gil-Quijano, Thomas Louail, Guillaume Hutzler

To cite this version:
Javier Gil-Quijano, Thomas Louail, Guillaume Hutzler. From biological to urban cells: lessons from
three multilevel agent-based models. PRIMA 2010 - 13th International Conference on Principles and
Practice of Multi-Agent Systems, Nov 2010, Kolkata, India. pp.620-635, �10.1007/978-3-642-25920-
3_45�. �hal-00668047�

https://hal.science/hal-00668047
https://hal.archives-ouvertes.fr


From Biological to Urban Cells: Lessons

from Three Multilevel Agent-Based Models

Javier Gil-Quijano1, Thomas Louail2,3, and Guillaume Hutzler2

1 CEA, LIST, LIMA, 91191 Gif-sur-Yvette CEDEX, France
2 IBISC Laboratory, Evry-Val d’Essonne University, Evry, France

3 Geographie-Cités Laboratory, CNRS, Paris 1-Paris 7 Universities, Paris, France

Abstract. Modeling complex systems often implies to consider entities
at several levels of organization and levels of scales. Taking into account
these levels, their mutual interactions, and the organizational dynam-
ics at the interface between levels, is a difficult problem, for which the
proposed solutions are often related to a specific disciplinary field or a
particular case study. In order to develop a broader methodology for
designing multilevel models, we propose an analytical framework of ex-
isting approaches, drawn in particular from the study of three examples
in biology and geography.

1 Introduction

Natural and social complex systems are often characterized by many different
entities, heterogeneous in nature and dimensions, at various levels of organi-
zation. The interaction between these entities are intricated, and act at very
different time and spatial scales. Addressing questions about these systems re-
quires to consider simultaneously multiple levels of organization. Paradoxically,
in this context, most of the “multiscale” or “multilevel” models implement a so-
lution where the description of the thematic knowledge occur at one level only.
The choice of this level of description determines the selection of the entities of
the real system that are reified as agents in the model. The simulated system
can then be analyzed at two organizational levels: at the agents’ level on the
one hand, through the analysis of their trajectories; at the system’s level on
the other hand, through a set of measures used to characterize the structures
produced during the simulation. It should be noted that such systems can also
be measured at intermediary levels that appear to be relevant to the modeler.
These levels can for example correspond to groups of agents that share common
characteristics. In practice, however, this refinement is rarely implemented.

In that case, it seems problematic to talk about truly multilevel modeling
since only the “lower” level is present in the model and specified as such by
the modeler. The “higher” levels are in this case the ones that can be observed
by the experimenter who “looks at” and analyzes the simulations, but these
levels are not reified in the model. This emergentist approach, which is single-
level regarding the design of the model, and bi-level regarding the analysis of
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results, is by far the most commonly used in agent-based simulation. However,
this approach can not always be satisfactorily applied when modeling real sys-
tems. Indeed, a number of complex systems dynamics can not be understood
without integrating multiple levels of organization, and multiple processes that
can not be reduced to a purely emergentist approach. In particular, social sys-
tems inherently include a structuring role of higher levels on lower levels. Thus,
the corresponding domain theories are rarely single-level, either because there
is a lack of knowledge at a given level or because the domain’s ontologies mix
entities and actors of different levels of organization. It is for example difficult to
imagine modeling the evolution of a whole city over several years, on the basis
of the sole specification of the behavior of its inhabitants. Moreover, it would be
too expensive from a computational point of view to simulate a large system as
a whole at the most detailed level. For example, simulating a cell consisting in
more than 4.1013 molecules (e.g. a cell of a rat’s liver) at the atomic level, or
even at the molecular level, is indeed completely unrealistic.

In the end, the question that is addressed by the model requires considering
entities at different levels (for example the molecular and cellular levels, or the
individual, neighborhood and city levels) which, as Servat et al. recall in [16],
is part of the scientist’s “intellectual gymnastics”: to make different points of
views and different descriptions of the same system co-exist, and to coherently
articulate them. And indeed, we perceive the world at several scale levels. They
also underline two additional reasons that justify the integration of multiple
levels. The first reason is computational, the collective behavior of many dis-
tributed systems changing remarkably when the number of their components
reaches a critically large value. It is thus important to enable the simulation
of such large numbers of components, which makes it impossible to model sys-
tems at the smallest possible scale. To circumvent this difficulty, we can imagine
dynamically replacing some groups of agents by “super-agents”. These would
embed behavioral rules that would be equivalent to the measured result of the
accumulated actions of the individual agents. That would allow to enhance the
performance, and the modeler could then take advantage of the saved computa-
tional power to “zoom in” other parts of the system that he/she would like to
model in more details. The second reason is “thematical”. If an agent is able to
realize that it belongs to (or is categorized as belonging to) a group of higher or-
ganizational level, like a social class, it might conscientiously affect his behavior
in order to reinforce (or oppositely to diverge) his belonging to this group. In a
general manner, integrating entities and rules of multiple levels of organization
is an important issue. It should allow to tackle original questions, as compared
to the possibilities offered by classical bi-level, micro-macro modeling.

Additionally, rather than representing all components and their relations, the
key point should be to consider simultaneously the level of the system’s com-
ponents and the level of their emergent properties, as Lesne expressed in [9].
It implies that our efforts should worth be made in accurately describing how
the different levels articulate and influence each other, rather than solely jux-
taposing many levels in a single model. Articulating levels implies to explicitly
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represent each of them into the model, and explicitly define how they are cou-
pled. In agent-based modeling, this means that the model should incorporate
some rules that specify how the agents associated to a given level would impact
and modify agents at other levels. This is presently a central question in the
agent-based modeling community and several projects focus on developing sim-
ulation platforms that allow to take into account simultaneously several levels
within a single model (as for example the 3Worlds project [6] in ecology, or
more generally in the GAMA platform [17]).

Before illustrating these different aspects by the presentation of three recent
applications of multilevel simulation in section 3, we start in section 2 by a
work of definition necessary to clarify the manipulated concepts. In the examples
section, we concentrate on isolating the different organizational levels represented
in each model and the mechanisms that support their coupling. In section 4, we
generalize their underlying multi-agent organizations and we throw light upon
their similarities and differences. From that discussion we propose a classification
of multilevel agent-based architectures, based upon the criteria identified in this
comparison. Finally, we conclude by discussing the research perspectives opened
by this comparative study.

2 Multiscale or Multilevel ?

Scale or level, multiscale or multilevel ? The concepts of scale and level are fre-
quently used to model complex systems and to characterize the manipulated
abstractions, their granularity and their position in a hierarchy that structures
and organizes the system. These two terms are often used interchangeably, more-
over they are used in diverse manners depending on the disciplines, which is
potentially very confusing.

The concept of scale is frequently characterized by an adjective that relates it
to space or time: spatial scale, temporal scale. The term level is often associated
with terms such as micro, macro or meso that situate the described system or
phenomenon in respect to its size, its characteristic evolution time or an inclusion
relation with other systems or subsystems. At first sight, we consider that the
concept of scale refers to a dimension of analysis on which the phenomenon
of interest can be measured. This dimension can be spatial or temporal, but
also quantitative. The spatial and temporal dimensions refer respectively to the
size of the entities involved in the phenomenon (typically from nanometers to
thousands of miles throughout all the intermediate sizes), and the characteristic
time associated with the behaviors of these entities and their interactions (from
nanoseconds to centuries). The quantitative dimension refers to the number of
entities involved in the phenomenon (typically from 2 to some billions).

Compared to that definition of scale, the concept of level is used to situate the
studied phenomenon and/or the entities that compose it, along the considered
dimension of analysis. A level usually corresponds to all the entities whose size
and/or characteristic evolution time have the same or comparable orders of mag-
nitude. If one sticks to this use of the scale and level concepts and being strict,
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one should not use the “multiscale ” term to describe models. Indeed, most of
the times “multiscale” means that the model considers entities at different levels
along the spatial scale. Later in this article we will not use the multiscale adjec-
tive anymore to characterize models, prefering the use of the multilevel adjective
instead.

It should be immediately noted that the concept of level is both relative and
bounded to a modeling choice. With relative, we mean that an entity, which is
considered in a given phenomenon, can not be totally described as belonging to
a given level. For example, from the perspective of molecular biology, molecules
are related to the micro level while the cell is associated to the macro level;
from the standpoint of physiology, the cells are associated to the micro level and
the macro level corresponds to the tissue. Moreover, the association of an entity
with a given level is not exclusively related to the entity’s characteristics along a
given scale but it is the result of the analysis and modeling choices. Indeed, the
decision of combining diverse entities within a given level often involves the fact
that the entities belong to a structure or a relevant organization in terms of the
system’s description. It is indeed common to speak of “level of organization” or
“level of abstraction”.

Let us finally present two additional concepts that are useful in our analysis:
hierarchy and structure. The concept of hierarchy, because systems are often de-
scribed as a hierarchical interlocking of levels (molecules, cells, tissues, organs,
individuals, group, society). The concept of structure, as it is often the recogni-
tion of a structuring set of entities at one level that allows the definition of entities
at a higher level. In [5] the concept of hierarchy is defined as “A conceptually
or causally linked system of grouping objects or processes along an analytical
scale”, and three types of hierarchies are distinguished: exclusive, inclusive and
constitutive. An exclusive hierarchy is a hierarchy in which there is no inclusion
relationship between entities in a level and higher level entities. For example,
this is the case of military ranking systems or food chains in which individuals
of a certain trophic level feed on lower-level individuals. Conversely, in inclusive
or constitutive hierarchies the entities of a given level are included in a top-level
entity. The objects in an inclusive hierarchies exhibit a categorical relationship
similar to that present in hierarchies of classes in a object-oriented programming
language or in taxonomical hierarchies (domain, kingdom, phylum, class, order,
family, genus, species). In the case of constitutive hierarchies, entities of one level
are grouped into new entities of the next level, the latter being characterized by
new organizations, functions and emergent properties (molecules, cells, tissues,
organs, individuals). To determine the levels where entities must be placed, more
than their sizes, the important point is to consider the group they form, that is,
how the entities organize within their group.

3 The Models

Now that the context has been clarified, we will focus on three proposed agent-
based simulation models in which multilevel modeling issues have been addressed
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explicitly. The first example deals with the growth of a cancerous tumor, ad-
dressed at the molecular and cellular levels. The second deals with housing
choices of households in Bogota, treated individually at the level of households
and housings but also at the level of groups of housings and households. Finally,
the third presents a model of urban morphogenesis, considered at inter- and
intra-urban levels.

The objective is not to make an in-depth presentation either of the models
or of their results, but rather to focus on how they implement the concept of
multilevel modeling. To do this, and to facilitate the comparison between these
different models, we will answer the following questions:

1. Specification of the levels : what are the different identified levels, what are the
types of objects and/or agents defined at these levels, and how are these types
defined (are they specified beforehand or are they dynamically discovered)?

2. Instanciation of the objects : how is the instanciation of the objects and/or
agents done (is it done statically by explicitly defining the agents of the
model or are they created dynamically in the simulation depending on the
context)?

3. Coupling between the levels : how are the different levels coupled with one
another (what is the nature of the interactions between agents of different
levels)?

3.1 Cancer Cells Migration

Context and objective. When speaking about cancer, one of the major factors
of bad prognosis is associated with the appearance of secondary tumors, called
metastases. These secondary tumors can develop when a cell of the primary
tumor switches from a proliferating to a migrating state, thus escaping towards
other organs elsewhere in the body. When the micro-environmental conditions
permit, the cell stops its migration and returns to a proliferating state, which
leads to the development of a secondary tumor. We are interested in the micro-
environmental conditions around the tumor which could lead to the metastatic
escape of a cell. We study more precisely the role of a protein, which is suspected
to have a role both in triggering the morphologic transformations of the cells and
in providing loose adhesion contacts that enable the escape [11].

The model. We developed a first agent-based model in which both cells and
proteins are modeled as individual entities. The growth of the tumor is mod-
eled by implementing a cellular division behavior, which depends mainly, for the
cell, on its capacity to feed itself from surrounding nutrients. This proliferat-
ing behavior is coupled to an inter-cellular repulsion behavior. The model also
takes into account the dynamics of production and internalization of proteins
by the cells. The differential access to nutrients leads to three distinct states
for the cells inside the tumor: a cell that has a satisfactory access to nutrients
(external layer) is active and has both the proliferating and the protein produc-
tion/internalization behaviors; a cell that receives too few nutrients dies (core);
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cells in-between receive enough nutrients to produce and internalize the proteins
but too few to proliferate, thus becoming quiescent (intermediate region).

The main trouble is that when tumors reach a size of several thousands of cells,
the number of proteins reaches several hundreds of thousands. We get therefore
quickly limited by the size of the tumors that can reasonably be simulated. The
proposed solution consists in abstracting some details of the model in regions
where they are not necessary, thus allowing to simulate bigger tumors or to add
details in the most interesting regions. Given that the main interesting area is
at the interface between the external layer of the tumor and the environment,
we proposed to replace the internal region of the tumor by an aggregated model,
abstracting the set of cells and proteins in the core region as a global model
of ingoing and outgoing flows. From a spatial point of view, this model is de-
limited by the entire set of necrosed and quiescent cells, and all the proteins in
the so-defined area. Since these cells are static, or have a very limited mobility,
this permits to neglect the repulsive movements of the cells (mainly due to the
cellular-division behavior of the cells in the external proliferating layer). It is
then a matter of calculating the interactions between the aggregated model and
the external cells or proteins. It is straightforward to determine the cells or pro-
teins that have to be integrated in the aggregated model: these are the quiescent
cells, and the proteins in the corresponding area or the ones that, during their
random diffusion movement, collide with the aggregated model. Symmetrically,
in order to determine how many proteins will be released by this model, it is
necessary to evaluate the relative proportion of necrosed and quiescent cells, so
as to evaluate the number of cells that produce and internalize these proteins
(the quiescent ones). It is then possible to update the concentration of proteins
inside the aggregated model. By assimilating the proteins diffusing inside the
model to a perfect gas, we can then calculate the “pressure” inside the model,
thus determining the statistical quantity of proteins that leave the aggregated
model. These proteins are finally stochastically distributed around the aggre-
gated model, at the immediate vicinity of the frontier.

Agents and levels. In this model, objects of very different sizes (cells and
proteins) coexist. The levels correspond to two types of objects both types being
defined beforehand. The instantiation is done by creating an initial cell, which
itself creates other cells by successive division steps. The cellular and molecular
levels are coupled thanks to the activity of the cells: the latter produce and
internalize proteins. By simulating these agents together, a cluster of cells is
produced. That cluster is observed and identified as the tumor. Up to this point,
there is no scale crossing, but only the interaction, in a common environment, of
objects of different levels in the spatial scale. The tumor’s level is only observed
and does not perform any active role in simulation.

On the contrary, when the aggregated model is introduced (see figure 1),
we identify at run time an intermediate level (between the cellular and tumor
levels) entity, which is reified during the simulation. This corresponds to the
introduction of the additional modeling level of a multicellular tissue at the
heart of the tumor. This kind of object is specified beforehand: we know for
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Fig. 1. Introduction of an aggregated model to account for the core of the tumour

sure that the simulation will lead to the development of a tumor and we can
therefore anticipate the appearance of this object. However, its instantiation will
depend on the time at which such an object is observed in the simulation. The
coupling of this structure with the other objects (cells and proteins) depends on
if they are inside or outside the aggregated model. The coupling with the internal
objects is implemented thanks to a set of very simple differential equations, which
describe the evolution of the relative quantities of necrosed and quiescent cells,
the evolution of the concentration of proteins inside the model and the amount of
externalized proteins. The coupling with the external objects is implemented by
describing both the conditions that lead the external objects to be integrated into
the aggregated model and the rules defining the externalization of proteins. The
dynamics of the aggregated object can then be seen as the numerical integration
of very simple differential equations.

The multilevel character of this model can be seen in two complementary
ways. The first one consists in noticing that the model, which is composed of
both cells and proteins, integrates objects of very different sizes. The second one
consists in proposing that objects corresponding to abstractions of higher levels
of organization be introduced dynamically in the simulation.

3.2 SimulBogota : Households and Housings in Bogota City

Context and objective. The objective of the SimulBogota model [7] is
to reproduce the evolution of the spatial distribution of the population of the
city of Bogota throughout several decades. This evolution depends on both the
internal and external migrations as well as on the evolution of the population
and of the housing-stock. The evolution of the population of households is the
result of individual events (marriage, divorce, emancipation, death, etc.) that
produce socio-economical changes as well as the creation and destruction of
households. The evolution of the housing-stock depends mainly on both the
housing-renewal and the aging-of-buildings processes. In the case of Bogota,
these processes are the result of very complex dynamics that not only involve
the construction controlled by planning policies, but also informal mechanisms
such as self-construction and illegal occupation of housing estates.
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The model. To implement our model, the only available data were the socio-
economical descriptions of households and housings as well as their spatial dis-
tribution for the years 1973 and 1993. In the absence of sufficient data, a model
centered on the explicit representation of the decision and evolution mechanisms
at the individual’s level is inadequate or even impossible. Under these conditions,
we proposed to consider groups of households and groups of housings as main
modeling entities. This reduces the complexity of simulations by taking an ag-
gregate level into account, in which the decision process that leads households to
move is placed. However, it is necessary to consider the populations of households
and housings in order to model the evolution of groups.

In this model we explicitly consider two levels of modeling, the microscopic
level that contains data that describe the populations of households and housings
and the mesoscopic level that contains the groups of households and the groups
of housings. The model is mainly composed of three mechanisms executed in
sequence at each step of simulation:

1. Formation of groups: this allows to go from the microscopic level (households
and housings) to the mesoscopic level (groups of households and groups of
housings). It is an automated clustering mechanism [7] performed on the
data that represent households and housings.

2. Interaction between groups: this allows to rehouse the households in the city.
It is an auction-based mechanism that is used to exchange housing-units be-
tween groups of households. These interactions are governed both by a set of
lists of housing-preferences, which are built dynamically1 and a static matrix
of costs of moving between urban areas. In this mechanism, we assume that
households seek to move closer to households of their social group and to oc-
cupy the same group of housings. It is therefore a self-reinforced mechanism
of spatial segregation.

3. Evolution of the population: this is a mechanism based on the execution
of global rules of evolution of the populations of households and housings.
These rules allow the creation or deletion of entities at the microscopic level
(households or housings). Each rule associates an entity profile with a num-
ber of entities to be treated. These rules do not represent individual events
(which are very difficult to be considered and very data-consuming) but
global trends of evolution.

In order to trace the evolution of groups, a last mechanism is implemented, which
allows to relate the groups found in two successive steps of simulation.

Agents and levels. In this model, in order to reduce the complexity of simula-
tions and the amount of data required to represent the dynamics of intra-urban
migrations, we introduced an intermediate level composed of “artificial” struc-
tures: groups composed of similar microscopic entities. These structures have no
“physical” equivalent and they are the result of the analysis of households data

1 Preferences evolve according to the changes in the spatial distribution of the groups.
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Fig. 2. Diagram of interactions between levels in the simulation of the evolution of the
spatial distribution of population in SimulBogota

and housings data (microscopic level). Thus, physical objects, at the microscopic
level, coexist with artificial objects, at the mesoscopic level, that are dynami-
cally reified by clustering the objects of the microscopic level into homogeneous
groups (see figure 2). Compared to models of physical phenomena, an additional
question arises: it is necessary to define the number of groups to be considered,
knowing that a small number can produce an oversimplification of the model,
while a high number may get groups extremely closer to the microscopic level
and cause a loss of the model’s synthesis ability. Even if the level of groups has
been specified beforehand, the number of considered groups is determined at run
time and the groups are dynamically instantiated from the results of clustering
the data of households and housings at every simulation’s step.

From the evolution’s perspective, general rules were constructed from descrip-
tive data of households and housings. The core of the evolution mechanism is
therefore located at the microscopic level and its effects are propagated to the
level of groups by the clustering mechanism (bottom-up coupling). However,
there is no direct interaction between microscopic entities. The microscopic level
is used as an anchor with reality while the level of groups provides a synthetic
vision of reality, which facilitates the formulation and the assessment of hypothe-
ses about the behavior of the system, thus leading to a better understanding of
the modeled phenomenon.

The “artificiality” of groups conditions the design of both the inter-groups
interaction mechanisms and the interlevel interaction mechanisms. When simu-
lating groups of micro-entities, one has to deal with abstract entities, that have
no “physical” counterpart. Since the modeler can not rely on well established
rules (or that can be easily deduced) that describe the behavior of the groups,
he is therefore free in defining the interaction mechanisms. Since we know very
little about the functioning of groups, the mechanism chosen to represent the in-
teraction between groups is as artificial as the groups themselves. The proposed
mechanism, based on auctions of housings, has no physical ground, it is simply
an artifact that allows the dynamic multi-criteria matching between groups of
households and groups of housings. The design of this mechanism has therefore
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more to do with modelers’ intuition than with inspiration from “real” mech-
anisms. This mechanism, which is used to rehouse households, establishes the
top-down coupling between the level of groups and the microscopic level.

3.3 Simpop3 : Exploring Urban Dynamics at Three Geographical
Scales Simultaneously

Context and objective. The Simpop models are agent-based models dedi-
cated to the understanding and reproduction of urban growth over periods of
several centuries. Those models are used to study the different geographical pa-
rameters that lead to the differences that exist at different geographical levels
(city, region, nation, continent) between the systems of cities in Europe and
in United States. The first of these models, Simpop1 [2] has been one of the
very first applications of MAS systems in geography. In this section, we briefly
present two independent models, Simpop2 and SimpopNano. We then discuss
their coupling, which results in a new multilevel model, Simpop3. The latter
allows to tackle new geographical questions, regarding the multilevel processes
that take part in the growth of urban systems.

The Simpop2 model is based on the urban evolutionary theory [14] and focus
on the modeling of systems of cities considered as self-organized complex systems.
In that model, some generic and universal properties of the systems of cities are
identified and separated from specific processes related to the history of each
system. Thanks to that dissociation, Simpop2 allows to reproduce the differences
that exist between global properties (for example hierarchical distribution of
cities’ sizes) of different systems of cities. simpopNano [10] is an attempt to
reproduce the emergence of typical patterns of organization inside the city and
their long-time evolution (200 years), under the dependence of both the topology
of the street networks, and the performance of the transports networks. The
objective is twofold: to compare the morphogenesis of cities in Europe and United
States and to isolate the minimal set of factors that allow to reproduce the
observed differences between the cities of the two continents in terms of densities,
prices and activities repartitions [1].

The Simpop2 model. Cities are the model’s main agents. They interact
through the exchange of goods associated to the urban functions that they own.
An urban function characterizes a role played by the city that owns that func-
tion (heavy industry, car industry, regional capital, etc.) in the system of cities.
Each function has a specific period during which it is active. The spatial inter-
actions between cities are of several types. They depend on the urban function
that mediates the “communication”: spatial proximity, administrative frontier or
specialized large scale network. In parallel to these exchanges, cities compete for
the acquisition of new innovations, which are represented by the dynamic arrival
of new urban functions in the system during the simulation. At run time, the
interaction network generate progressive specialization of the cities and differen-
tiation between them. At the global level, the consequence is the emergence of a
system of cities, whose properties can be determined by measuring key indicators
as the total population, primacy indexes, etc.
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The SimpopNano model. In this model, agents are of two types: neighbor-
hood agents, which represent autonomous portions of the city space, and urban
functions agents (the same as in Simpop2), which represent the main families
of socio-economical activities owned by the city. Functions have employees to
localize. They also have a budget to do so. Neighborhoods are linked to a dynam-
ical network and differ by their accessibility and their functional composition.
The combination of these two indicators make them more or less attractive for
functions, and equally more or less expensive. Functions differentiate by their
economic power and by their localization strategies. At each time step the model
simulates the competition for space of these urban functions inside the neigh-
borhoods. As a consequence of that competition one can observe at run time
the structuration of the emerging city. Several measures are used to characterize
the structures dynamically produced: densities and prices gradients, activities
repartition maps, or functional specialization indexes of the neighborhood, etc.

The Simpop3 model. Simpop3 includes agents at two levels: at the micro
level, the urban functions and neighborhoods agents of simpopNano are con-
sidered. At the intermediate (meso) level, the urban functions and the cities
agents of Simpop2 are considered. The link between levels is performed by the
exchange of urban functions.

Simpop3’s execution relies on the alternate execution of a Simpop2 iteration
followed by a SimpopNano iteration:

– at each time step Simpop2 computes the cities spatial interactions and the
next state of each of them, i.e. the new functions they acquire, and the
number of employees and budget of each of their functions;

– the Simpop2’s outputs are used as input data of SimpopNano, which ven-
tilates these functions staff among the city’s neighborhood. Urban functions
pay their implantations with the money they have generated at the city level
by the sell of goods produced by the function to other cities. SimpopNano
outputs an indicator of the spatial “performance” of the functions, which
qualify the quality of the functions’ repartition inside the city.

– This indicator is considered by the newly arriving urban functions agents to
decide in which cities of the system of cities they will implant.

Agents and levels. In Simpop2, the spatial specification level, i.e. the level at
which the thematic knowledge on the system is formalized as agents and inter-
action rules, is the level of cities. The cities are primary (micro level) entities,
these are the agents of the model. The system of cities is then the emergent level
(macro level). SimpopNano “works” at a more nested level: the spatial specifi-
cation level is the level of neighborhoods, in which the urban functions (the same
that are acquired by the city in Simpop2) must localize their employees. In this
case, the city level is the emergent level. The “city” emerging from SimpopNano
is not the same as the one that is specified as an agent in Simpop2. The city of
SimpopNano is an entity that only exists at runtime, through a combination of



From Biological to Urban Cells 631

Fig. 3. Simpop3: a multilevel MAS to test urban theories at the crossing of scales

measures that let the geographer decide whether the spatial structure emerging
of the model “looks like” a real city or not. For Simpop3, we have faced the need
to build a bridge between these two representations of the same city: the agent
specified in Simpop2, and the structure emerging from SimpopNano. This is
summarized by figure 3.

To implement this articulation between the two models, we have choosen to
identify an entity that would be common to the two levels. This entity should
represent the mutual influence between an individual city and the system of
cities. The concept of urban function has been instantiated in the model as
a somewhat “multilevel” agent. Urban function is an abstract concept defined
by geographers to qualify the role played by a city in the system of cities it
belongs to. This concept is relevant at the inter-urban scale. To implement the
coupling, the concept has been generalized, and we have made the hypothesis
that this concept could be used to qualify the various kinds of socio-economical
activities that interact inside the city, and whose behavior shapes its spatial
organization. In fact, this is the transfer of this inter-urban concept to the intra-
urban level that allowed us to design a bridge that links these three spatial levels
all together. The urban function agent is like a buffer: it encapsulates variables
that are affected by the dynamics at each level.

4 Towards Multilevel Multi-agent Organizations

Elaborating from the three preceding examples, and from other models taken
from the literature, one can try to categorize multilevel models around three
aspects:

1. Multimodels : we consider here models originally independent, placed at dif-
ferent levels, interacting with each other. The outputs of the upper level
models are used to define global parameters of the lower level models; the
outputs of the lower level models are considered as ingoing flows in upper
level models. We can distinguish between two sub-categories:
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(a) the different models are executed alternatively (it is the case for example
in Simpop3). In that case, the coupling between the models is generally
weak but difficulties may appear if the different models share objects that
each of them may modify (the “urban function” entity in Simpop3).

(b) a multi-agent model is encapsulated inside a higher-level agent. In the
model of tumor growth, this would correspond to the fact that we model
the internal dynamics of cells, rather than considering a fixed rate pro-
duction of proteins. This would allow to take into account the genetic
regulation networks controlling the production of these proteins. One
has to be careful, in that case, to the scheduling of the agents of the
different levels, which doesn’t necessarily occur at the same time scale.

2. Models with multilevel specification: we consider here models where there
exist interactions between entities placed at different levels along the spatial,
temporal or quantitative scales. One can achieve this through two distinct
approaches:
(a) through the static specification of the simulated entities (e.g. cells in-

teracting with proteins in the tumor growth model; Simpop3). Again,
problems arise with the scheduling of agents. In the specific case of cells
and proteins, the characteristic timescales are indeed very different. This
imposes to focus on discrete-events simulation approaches, or to handle
several schedulers in parallel for the different types of simulated objects.

(b) through the dynamic specification of the simulated entities: implemen-
tation of mechanisms such as a “dynamic magnifier” that allow to focus
on critical areas by raising the spatial resolution and the level of details
(e.g. the fractal model of the environment proposed by [12]). The main
difficulty in that case lies in the continuous adaptation that is required
to retain the higher possible level of details on the areas of interest, for
example the ones where agents are situated.

3. Multilevel models with dynamic reification: we deal here with models that
produce higher-level agents by automatic “observation” of the simulation,
characterization of higher-level structures and reification of the structures
as objects. We can again distinguish between two distinct cases:

(a) the agents of the two levels do not directly interact with one another (e.g.
simulBogota) because the entities of the two levels are not in the same
modeling space. In some way, this case reminds the (1a) case, because
we also have an alternating execution of models of the micro and macro
levels: indeed, the simulator repeatedly computes the evolution of the
model at the micro level, then dynamically reifies the macro level, and
computes the evolution of the model at this macro level.

(b) the agents of the two levels can interact with one another and with the
agents of the other level: the entities of the two levels are in the same
modeling space (e.g. tumor growth model with the aggregated model,
RIVAGE [16], or [4] that develops hierarchical holonic approaches). This
approach however induces a greater complexity since it requires to be
able to detect the emergence of a structure and to characterize its dy-
namics and its interactions with the other agents, so as to be able to reify
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it. Moreover, it is necessary to control that the conditions required for
the structure to be maintained hold, and if it is not the case, to dissolve
the structure as such and to transform it back into individual agents.

In the examples that we have presented, only constitutive hierarchies are mod-
eled. In these cases, levels can be either pre-specified beforehand or automatically
discovered. When modeling exclusive hierarchies however, the entities and lev-
els are usually specified beforehand. The modeling of exclusive hierarchies can
be addressed by the methodologies dealing with the design of organizations. In
that case, the modeling process focuses on the specification of roles, norms, func-
tions that define the agents’ behaviors and their interactions. Several method-
ologies have been developed to address organizations modeling, among which
are MOISE [8] or AGR [3]. As the effort is done on specification of the entities
and their interactions, we consider that these types of models can be included
into the second category.

With respect to the modeling of constitutive hierarchies, in our knowledge
no general methodology exists. However there exists methodologies that can be
used to tackle the design of models of some of the described categories. The cat-
egories 1 and 2 can be addressed by multimodeling methodologies. Some of these
methodologies are based on the DEVS approach [18]. The Virtual Laboratory
Environment (VLE) proposed by [15] implements that approach. VLE provides
modules for developing Petri nets, differential equations and spatialized agent
based models among others. It also provides the capability to integrate existing
models. The modular (every model is considered as an atomic and independent
module) approach of VLE and the light coupling between models (based on the
input/output events triggering) gives to VLE the flexibility needed to adapt to a
large number of multilevel problems where levels can be specified beforehand as
independent models. The design of constitutive hierarchies has also been tack-
led by simulation platforms such as SWARM2 that proposes the possibility of
designing hierarchies as recursive groups of agents.

Nevertheless, these approaches are not well fitted to the case of automatic dis-
covery and analysis of levels (category 3). A significant effort in that direction is
currently being done in the development of the GAMA platform (related to the
3Worlds project [6]), which includes the use of statistical tools for the auto-
matic discovering and tracking of emergent structures in simulations of ecological
systems.

5 Conclusion

We have presented three agent-based models that can all, one way or another, be
qualified as “multilevel”. These models are but very different with one another,
by their application domains, the scales of the modeled entities, or the approaches
implemented to handle the complexity associated to the coexistence of different
levels of organization. We proposed an analytical framework, which still needs to

2 http://www.swarm.org

http://www.swarm.org
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be completed and refined by integrating other works from the community, but
which already enables the classification of multilevel models, and against which
we positioned our models.

By so doing, we do not pretend proposing a step-by-step methodology for the
design of new multilevel models. Instead, our aim is on the one hand to show
that different modeling problematics can lead to very different solutions, and on
the other hand to help the modeler identify the difficulties peculiar to each of
the approaches. The identification of these difficulties also leads us to propose
some directions for the implementation of agent-based inter-level coupling. We
illustrated the pertinence of such couplings on the three presented examples, as
well as on other examples drawn from the literature.

When existing models have demonstrated their “quality”, it is both useful and
important to reuse them, which implies to be able to couple models at different
scales or based on heterogeneous formalisms (discrete/continuous for example).
To this end, on the one hand microscopic models can be encapsulated as higher-
level agents, on the other hand continuous models (e.g. differential equations)
can be used in the definition of global variables and dynamics that can feed
lower-level models.

Because lots of complex systems have a dynamical structure, it is also impor-
tant that the reification of entities of the system as agents could itself evolve
dynamically. To achieve this, it is necessary to enable the automatic detection
[13] and reification of emergent properties. Reciprocally, it is necessary to enable
the splitting of agents into underlying organizations, interactively. By adapting
the levels of description upon the system, the aim is not so much to gain in terms
of computational efficiency, as to gain in terms of expressiveness and intelligibil-
ity. By selecting the most pertinent levels of organization and description, the
aim is indeed to gain the deeper possible understanding of the mechanisms at
work in the modeled system.
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134 (1997)

15. Quesnel, G., Duboz, R., Ramat, E.: The Virtual Laboratory Environment An op-
erational framework for multi-modelling, simulation and analysis of complex dy-
namical systems. Sim. Model. Pract. and Th. 17(4), 641–653 (2009)

16. Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When Agents Emerge From
Agents: Introducing Multi-Scale Viewpoints In Multi-agent simulations. In: Sich-
man, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp.
183–198. Springer, Heidelberg (1998)

17. Vo, D.-A., Drogoul, A., Zucker, J.-D.: A Modelling Language to Represent and
Specify Emerging Structures in Agent-Based Model. In: Desai, N., Liu, A.,
Winikoff, M. (eds.) PRIMA 2010. LNCS(LNAI), vol. 7057, pp. 212–227. Springer,
Heidelberg (2012)

18. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex Dynamic Systems, vol. 1. Aca-
demic Press (2000)


	From Biological to Urban Cells: Lessons from Three Multilevel Agent-Based Models
	Introduction
	Multiscale or Multilevel ?
	The Models
	Cancer Cells Migration
	SimulBogota : Households and Housings in Bogota City 
	Simpop3 : Exploring Urban Dynamics at Three Geographical Scales Simultaneously

	Towards Multilevel Multi-agent Organizations
	Conclusion
	References




