
HAL Id: hal-00668044
https://hal.science/hal-00668044

Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a Multicore and Multiprocessor
Individual-Based Simulation Engine

Fabrice Harrouet

To cite this version:
Fabrice Harrouet. Designing a Multicore and Multiprocessor Individual-Based Simulation Engine.
IEEE Micro, 2012, 32 (1), pp. 54-65. �10.1109/MM.2011.80�. �hal-00668044�

https://hal.science/hal-00668044
https://hal.archives-ouvertes.fr

Designing a Multicore and Multiprocessor

Individual-based Simulation Engine

Fabrice Harrouet (harrouet@enib.fr)

LISyC-ENIB-UEB

Université Européenne de Bretagne, École Nationale d’Ingénieurs de Brest,
Laboratoire d’Informatique des Systèmes Complexes, Centre Européen de Réalité Virtuelle

Technopôle Brest-Iroise, CS 73862, 29238 Brest Cedex 3, France

Abstract

This article describes the design of an individual-
based simulation engine which aims to use modern
general purpose multicore and multiprocessor com-
puters to their fullest potential. It is dedicated to in-
teractive simulations of highly dynamic multiagent
systems where entities can move, change, appear,
disappear and interact with each other and the user
at any time. After studying some of the common
memory access issues associated with this kind of
computer, we list the main choices considered for
the design of our engine. Experiments with various
computers, operating systems and compilers yield
very satisfying results in terms of performance and
scalability relating to the number of CPUs used.

Keywords

Parallel simulation, multiagent systems, multi-
core, multiprocessor.

1 Introduction

In the LISyC, we consider virtual reality, inter-
active simulation and multiagent systems as tools
helping in the design and the tuning of models in-
volved in complex systems. We find individual-
based simulation appropriate when addressing prob-
lems in which limit conditions change according to
unpredictable influences such as the user’s actions.
As for example, it facilitates the interactive adjust-
ment of an ethological model producing patterns [1],
it makes the injection of a substance possible if a
peculiar situation is observed during a medical ex-
periment simulation [2] or it enables the study of

the measurement process impact in a molecular dy-
namic simulation [3]. Moreover, the interactive as-
pect is decisive when using virtual reality for learn-
ing or training. When simulating a whole system
with individual-based models, the higher the num-
ber of elements is, the more accurate the results are.
Thus, these simulations involve a huge amount of
individual entities interacting with each other in a
common environment and require a substantial com-
puting power to remain interactive.

Distribution on computing grids is a common way
to provide a massive computing power. However,
this approach mainly concerns batch processing and
suits only to problems static enough to be pre-
subdivided in many subproblems correctly balanced;
they should require a minimal inter-node commu-
nication compared to the amount of computation
done on each node. Although an asynchronous
approach to minimise the cost of synchronisation
between nodes is presented in [4], this only ap-
plies to convection-diffusion problems (homogeneous
cells, statically subdivided, well-defined and limited
inter-cell relations). Even if some specific conflict
resolution mechanisms allowing inaccuracies could
lower the inter-node communication frequency, this
is quite difficult to generalise and it hardly gives sat-
isfying speedups [5].

On the other hand, despite processor manufac-
turers can no longer raise the frequency of general
purpose processors, they promise ever more CPU
cores and larger cache memories for future proces-
sors. Moreover, when giant dies (the silicium piece a
processor is made of) cannot be produced, an alter-
native consists in wiring several of them in the same
package–the first Intel quad-core processors were ac-
tually made of two dual-core dies—and using several
of such packages in a shared memory architecture.

1

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

Today, mass production workstations dotted with
twelve CPU cores enable the simultaneous execution
of twice as many threads thanks to the simultaneous
multithreading technology. Such a computer is still
expensive for an individual but is affordable for pro-
fessional usage—very expensive servers dotted with
forty cores executing eighty threads are also already
available. For this reason, we drive our work to-
wards a computing approach that suits well to the
shared memory multicore and multiprocessor com-
puters many researchers and engineers could rea-
sonably expect to have on their desk in the next few
years.

This work aims at finding strategies to make an
individual-based simulation engine take as much
benefit as possible from multicore and multiproces-
sor computers. In addition to performance speedup
which is our immediate concern, we consider scala-
bility as decisive to the ability to use to their fullest
potential the future computers dotted with many
more cores. The preliminary study described in
section 2 highlights the guidelines for the technical
choices exposed in section 3. Section 4 reports the
results obtained with our simulation engine in terms
of performance and scalability.

2 Preliminary study

Because individual-based simulations rely on ac-
cessing many times a huge set of data, this sec-
tion explores common pitfalls with such accesses.
Although well-known parallelisation tools such as
OpenMP or the Threading Building Blocks [6] en-
courage the developers to design their applications
in a data-parallel way, we won’t use them. This kind
of high-level tools tends to subdivide every single it-
erative treatment in many parallel iterations but,
as related in [7], they do not offer sufficient control
when addressing non-“classic” numerical applica-
tions. Moreover, even the developers of the Thread-
ing Building Blocks report in their own book [6]
quite low speedups when it comes to real applica-
tions: the best reported speedups are 1.29 or 1.5
when switching from one to four cores. The simu-
lation of a huge amount of individual entities is a
fine-grained problem. Therefore, it can be naturally

spread across native threads. Operating systems ex-
pose hardware threads as distinct CPUs, were they
provided by multiprocessors, multicores, or simulta-
neous multithreading. In this paper, we accordingly
name them CPU and we use thread for software
threads. These latter generally provide a very ac-
curate control (number to launch, attachment to a
specific CPU, etc.) enabling us to experiment mem-
ory accesses from multiple CPUs.

For this purpose, we use a computer dotted with
two quad-core processors (Bi-Xeon E5405). Each
of them is made of two dual-core dies in a single
package. Each dual-core has a six megabyte level-2
common cache and two distinct level-1 data caches.
The total amount of level-2 cache is then twenty-four
megabytes but each core or dual-core can only use
up to its own six megabyte cache. This architecture
enables experiments on the impact of using distinct
or common caches and packages, by placing compu-
tations on specific CPUs. To do so, a multithreaded
program accesses an array to read or write its data
many times in order to observe how performances
(the total number of read or write accesses per sec-
ond) are affected, depending on several criteria such
as:

• the memory access pattern,

• whether the amount of data accessed fits or
not in the cache,

• how threads are placed according to shared
caches and packages.

This program uses the Gnu gcc compiler on a Linux-
32 operating system and is run many times to pro-
duce the average results reported in figure 1.

2.1 Effect of memory footprint

The top part of figure 1 shows that once caches
are overflowed we cannot expect any significant gain
from parallelisation since the limiting factor obvi-
ously lies in the global memory transfer rate. The
most noticeable result is that the block pattern en-
ables two processor packages to reasonably work
simultaneously—especially when reading—whereas

2

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

block memory access to an array intertwined memory access to an array

T
hr

ea
d

4

T
hr

ea
d

1

T
hr

ea
d

4

T
hr

ea
d

3

T
hr

ea
d

3

T
hr

ea
d

3

T
hr

ea
d

3

T
hr

ea
d

4

T
hr

ea
d

4

access loop of
a single thread

T
hr

ea
d

1

T
hr

ea
d

1

T
hr

ea
d

1

T
hr

ea
d

2

T
hr

ea
d

2

T
hr

ea
d

2

T
hr

ea
d

2

T
hr

ea
d

1

T
hr

ea
d

2

T
hr

ea
d

3

T
hr

ea
d

4
T

hr
ea

d
1

T
hr

ea
d

2

T
hr

ea
d

3

T
hr

ea
d

4

T
hr

ea
d

1

T
hr

ea
d

4

T
hr

ea
d

3

T
hr

ea
d

2

T
hr

ea
d

1

T
hr

ea
d

4

T
hr

ea
d

3

T
hr

ea
d

2

T
hr

ea
d

1

T
hr

ea
d

4

access loop of a single thread

a
rr
ay

(1
2
8
M
B
)
ov
er
fl
ow

in
g

th
e
L
2
ca
ch
e
(4

×
6
M
B
)

used CPUs read-only read-write
A. ×1 ×1

AB ×1.05 ×1.10

A. C. ×1.06 ×1.19

A. .. E. .. ×1.87 ×1.41

AB CD ×1.05 ×1.22

AB .. EF .. ×2.03 ×1.39

A. C. E. G. ×2.03 ×1.39

AB CD EF GH ×2.05 ×1.36

used CPUs read-only read-write
A. ×1 ×1

AB ×0.93 ×0.84

A. C. ×0.61 ×0.64

A. .. E. .. ×0.67 ×0.75

AB CD ×0.60 ×0.41

AB .. EF .. ×0.66 ×0.44

A. C. E. G. ×0.51 ×0.39

AB CD EF GH ×0.51 ×0.22

a
rr
ay

(4
M
B
)
fi
tt
in
g
in

th
e
L
2
ca
ch
e
(4

×
6
M
B
)

used CPUs read-only read-write
A. ×1 ×1

AB ×1.98 ×1.95

A. C. ×2.05 ×2.00

A. .. E. .. ×2.05 ×2.00

AB CD ×4.02 ×3.95

AB .. EF .. ×4.02 ×3.94

A. C. E. G. ×4.15 ×4.02

AB CD EF GH ×7.94 ×7.81

used CPUs read-only read-write
A. ×1 ×1

AB ×1.98 ×1.64

A. C. ×2.00 ×0.41

A. .. E. .. ×2.01 ×0.21

AB CD ×3.36 ×0.30

AB .. EF .. ×3.15 ×0.20

A. C. E. G. ×3.57 ×0.16

AB CD EF GH ×3.54 ×0.13

Figure 1: Speedups of various CPU usages and memory access patterns — Eight experiments showing the perfor-
mance of each multithreaded CPU combination compared to a single threaded one (time spent ratio, higher is better).
In each CPU combination, letters point out the used CPUs while dots relate unused ones. These CPUs are grouped
by common cache and package; many equivalent combinations are merged (AB ≡ CD, EF or GH; ABEF ≡ CDEF, ABGH or
CDGH etc.). Each CPU of a specific combination runs a thread which performs many loops reading or changing the
content of an array (8-byte elements) according to one of the above patterns.

performances collapse dramatically with the inter-
twined pattern—even when reading. Conversely, the
bottom part of figure 1 shows that, as soon as the
accessed data fit entirely in the available caches, the
results rank from an ideal speedup (N times faster
with N CPUs) to a catastrophic slowdown.

2.2 Effect of CPU/data placement

When a single CPU is the only one to access some
cachelines, it works without worrying about the oth-
ers (see the block pattern in the bottom part of

figure 1). The speedup is then ideal whether the
memory is accessed for reading or writing purpose.
The opposite situation occurs when many CPUs ac-
cess data so close to each other that they concern
the same cacheline (see the intertwined pattern in
the bottom part of figure 1). This is known as
false-sharing (well explained in [6]) and produces
the same effect as sharing exactly the same data:
repeated write accesses produce recurrent cacheline
invalidations and updates. Performances get worst
as the number of CPUs involved in this situation in-
creases. The situation is slightly less negative when

3

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

only two CPUs from the same cache are involved. In
this peculiar case, the level-2 cache is common and
cacheline invalidation occurs at this level; however
it still happens between level-1 caches and prevents
from obtaining an ideal speedup (1.64 instead of 2).
The results are not so bad but are still a bit dis-
appointing when performing read-only intertwined
accesses. Indeed, when a cacheline is accessed for
reading, it is locked just in case another CPU would
write into the same cacheline. Even if we know that
our program will not attempt any write access to
this shared cacheline, the cache coherency system is
not aware of that and must always prevent from any
potential inconsistency.

2.3 Superlinear speedup

Although some results give an ideal speedup,
one peculiar program could take much more ben-
efits from parallelisation if its memory footprint is
slightly larger than the cache capacities. As for ex-
ample, reading and writing a sixteen megabyte array
by contiguous blocks gives an amazing superlinear
speedup (more thanN times faster withN CPUs) of
thirty when switching from one to eight CPUs. This
is due to the fact that one single CPU cannot keep
the whole sixteen megabyte array in its six megabyte
level-2 cache; its data permanently go back and forth
between cache and main memory. When involving
the eight available CPUs on the same problem, each
one needs to access only a two megabyte subarray.
Therefore, each six megabyte cache can easily con-
tain the necessary four megabyte data accessed by
its two CPUs: there is no longer any transfer with
the main memory.

This section shows that multicore and multipro-
cessor computers offer much more than comput-
ing units. Their cache architecture can lead to
dramatic slowdowns when badly used but can also
bring very significant speedups when correctly un-
derstood. Even if modern processors provide a level-
3 cache which is common to many cores on a single
die, the lower level caches remain distinct and still
imply coherency penalties. Moreover, the same at-
tention is still required when using together many
of such common cache processors. Consequently,
thread assignment to CPUs and data placement will

take a central place in the design of our simulation
engine.

3 Design choices

This section firstly describes the simulation engine
from the user point of view, and then gives technical
details inspired from the experiments of section 2.

3.1 Main scheme

Our simulation engine, a software library written
in C99, aims at activating a set of autonomous en-
tities. As shown on the general shape of figure 2,
the main application instantiates the initial entities
(some user-defined data structures with their own
activation function) and runs a loop to make the
simulation engine activate them. Each entity’s ac-
tivation function is responsible for detecting its en-
vironment (other entities or global data structures)
and, according to its own rules, modifying its own
data structure and eventually its environment (ex-
plained in section 3.2).

The simulation engine does not make any differ-
ence between a CPU and a thread: it runs exactly
one thread per CPU—including the main program—
and prevents it from moving to another CPU. This
strict binding inhibits context switches and gives a
fine control on data assignment to CPUs without
worrying about cache trashing. The whole set of
entities is split across these threads so that each one
is in charge of activating only a subset (this splitting
is discussed in sections 3.3 and 3.4). Synchronisa-
tion barriers occur at each cycle, thus every entity
is activated exactly once per cycle; this ensures a
consistent clock in the simulation.

3.2 Synchronisation and sharing

Activating the entities on multiple threads leads
to a first drawback: some of them modify their own
state while consulted by others. Furthermore, global
data structures—such as a spatial index—could be
used to store these entities and help finding them.
Using synchronisation primitives or lock-free algo-

4

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

entity activations entity activationswork stealing

other threads loop

main program loop

cycle end barriercycle start signal

(phase)local(phase) global

main program endmain program start
(entity creations)

Figure 2: Outline of the simulation cycle — The main thread is responsible for the loop in charge of launching
every new simulation cycle. Time runs from left to right (except when looping back to a new cycle). Threads are
synchronised on the two thick vertical lines.

rithms [8, 9] to prevent concurrent access inconsis-
tencies would lead to a dramatic slowdown. Indeed,
they rely on many write accesses [10] to a specific
variable protecting the sensible operation and sec-
tion 2 clearly shows how cacheline coherency penal-
ties are damaging.

In order to bypass this situation, the simulation
cycle is split in two distinct phases separated by a
synchronisation barrier (see figure 2):

• a local phase permitting each entity to consult
everything it needs in the environment with-
out any synchronisation,

• a global phase allowing entities to appear, dis-
appear and modify their environment under
the strict control of synchronisation primi-
tives.

The local phase contains neither synchronisation nor
write access overhead, so it represents an ideal situ-
ation for parallelism; an entity should compute the
main part of its behaviour in this phase. How-
ever, the result of this computation cannot just stay
in local variables and is likely to induce changes
on the entity itself as well as on the environment.
Since an entity cannot change its current state dur-
ing the local phase, its own data structure is made
of two distinct states, current and next, swapped
after each simulation cycle. It corresponds ex-
actly to the classical synchronous simulation ap-
proach: each entity adjusts its next state according
to the immutable current state of its environment—
including itself. To avoid false-sharing, these two

states must fit in different cachelines by using ap-
propriate padding [11] or cacheline-aligned dynamic
allocation. Then, each entity modifies its own next
state without perturbing the read-only accesses per-
formed by other entities during the same local phase
(this situation is quite similar to the left part of fig-
ure 1).

Conversely, the global phase lets entities make
changes to anything but their own state. It mainly
concerns global modifications such as updating one’s
indexation inside a global data structure, creating
a new entity or destroying itself. Strict synchroni-
sation is required since these changes are made by
many threads at any time within this phase. This
is likely to misbehave regarding parallelisation effi-
ciency but we have no choice; global changes have
to be made soon or later. We ought to reduce the
global phase usage and ideally avoid it if no global
changes are required by some entities. Thus, ev-
ery entity’s local phase tells the simulation engine
whether it needs a global phase or not.

Beyond the activation strategy itself, synchro-
nisation and concurrent writing to shared data
are implied in several services commonly used in
individual-based simulations, such as memory al-
location [12], pseudo-random number generation or
data preparation for rendering. These services be-
have very badly when solicited by many threads,
even if system libraries make some of them reen-
trant. Duplicating these services in every thread,
and making then accessible through thread-local-
storage, dramatically improves performances since

5

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

each thread can reuse its own data structures with-
out interacting with others.

3.3 Dynamic load-balancing

Even if write access conflicts between the simula-
tion engine’s threads have been reduced, an impor-
tant issue remains: every CPU must be fully used.
Unfortunately, threads reaching a synchronisation
barrier have to stay idle until the last one arrives.
Ideally, the best situation occurs when every thread
is previously assigned an equivalent workload so that
they reach the synchronisation barrier at the same
time. Some problems execute the same computation
on every element the neighbourhood of which is pre-
determined. They are adapted to a distributed ap-
proach [4] and thus can consider such a precomputed
load-balancing. But the highly dynamic individual-
based simulations we are interested in hardly enables
this prediction and need a dynamic load-balancing.

We consider for this purpose the work-stealing
method. Every thread has a todo and a done en-
tity subset, respectively populated and empty at the
beginning of each cycle, and swapped at the end.
To activate an entity, a thread peeks from its own
todo subset and stores in its own done subset after-
wards. When one thread’s todo subset gets empty,
it “steals” entities to the most loaded thread’s todo
subset to help it end its work sooner. This tends
to keep all the threads busy until no more entities
need to be activated. Even if synchronisation be-
comes mandatory on every todo subset, it does not
alter so much cache behaviours. Indeed, most of
the time a todo subset is accessed only by its owner
thread; it just has to be present in one CPU’s cache.
Cache invalidation only happens when approaching
the synchronisation barrier (see the grey rectangle
in figure 2); only then, some threads begin to ac-
cess others’ todo subset. Furthermore, these invali-
dations occur less often when stealing a significant
amount of entities at once instead of one by one.

3.4 Affinity-based assignment

Another benefit arises from giving each thread its
own todo and done subsets: the main part of the
entities are very likely to be activated by the same

thread from cycles to cycles—except those which are
stolen. Thus, their data structures keep staying in
the same caches. In order to go further within this
idea, we take into account applicative relationships
between entities to assign them to the threads.

When an entity detects some other ones and inter-
acts with them, it loads their data structures in the
current CPU’s cache—whatever the detection means
and the details of these relations are. If these other
entities are activated by the same thread, their re-
spective data will already be present and up to date
in the same cache. Moreover, when these entities are
activated, they probably use a similar neighbour-
hood which shall already be present in this cache
(“most of my neighbours’ neighbours are probably
my neighbours”). Every entity knows the thread
it is assigned to, so it can poll its neighbours to find
which thread is the most represented within them.
It is then stored in this latter’s done subset in or-
der to be activated by this thread at the next cycle.
This simply leads to automatically and dynamically
placing entities data structures in caches according
to their applicative affinity.

If one thread is mostly represented among an en-
tity’s neighbourhood, then it is really gainful to
choose this one. Conversely, if the poll is quite neu-
tral this choice is not so important. Since the entity
subsets are actually queues, they are mainly tra-
versed from one end to the other. Entities at the
beginning of a todo queue are sure to be activated
by the owner thread, while entities at the other end
are more likely to be stolen by other threads. Thus,
when the poll gives a strong tendency, the entity is
placed at the beginning of the chosen thread’s done
subset, otherwise it is placed at the other end.

Many other functionalities are provided in our
simulation engine but are not described in this ar-
ticle since they go beyond the scope of the en-
gine’s internals (soon to be made accessible from
http://www.enib.fr/~harrouet/transprog.html).

4 Testing the engine

This section gives some experimental results con-
cerning our simulation engine. Despite performan-
ces are an important factor, we consider scalability

6

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 2 neighbours without affinity

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 10 neighbours without affinity

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 50 neighbours without affinity

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 2 neighbours with affinity

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

10x

11x

12x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 10 neighbours with affinity

 1x

 2x

 3x

 4x

 5x

 6x

 7x

 8x

 9x

10x

11x

12x

13x

1 2 3 4 5 6 7 8
Number of threads

Speedup for 50 neighbours with affinity

Figure 3: Neutral benchmark simulation — 50 000 entities detecting their neighbours while performing a random
walk on an octo-core computer. The density of entities is statically adjusted to obtain different average neighbour-
hood sizes. These results are means of simulation cycle frequency speedups obtained with various platforms. The
bottom row shows that entity assignment to threads according to their applicative affinities dramatically improves
the scalability.

to be even more crucial; it determines whether fu-
ture computers dotted with more CPUs would be
able to run ever bigger simulations. All the experi-
ments reported here consist in measuring the cycle
frequency of some simulations. We wait for it to
be stable and then compute its temporal mean dur-
ing several minutes. We finally report an arithmetic
mean of such results for many equivalent simula-
tions.

4.1 Neutral benchmark simulation

Potentially, any simulation scenario has peculiar-
ities that could drive entities in a situation just few
specific aspects of the simulation engine are relevant.

For example, inter-entity relationships are a perfor-
mance bottleneck for gregarious entities, whereas it
is irrelevant for entities ignoring each other. Then,
our first benchmark aims to implement an average
entity behaviour representative of various simula-
tions.

In this quite simple scenario, fifty thousand en-
tities take place in a limited three-dimensional
toroidal world none of them can escape from. They
all detect their respective neighbours within a given
range—using a global spatial index not described
in this article. They neither avoid nor pursue each
other but just go on their random walk as if no
detection occurred. We adjust the average size
of the detected neighbourhood by simply choosing

7

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

the limits of the world when launching the simu-
lation. Although trivial, this example uses many
features commonly involved in more relevant simula-
tions: inter-entity detection, dynamic memory man-
agement, pseudo-random number generation and in-
dexing in a global data structure.

We spent hundreds of hours to run this bench-
mark on octo-core computers similar to the one de-
scribed in section 2, under various operating systems
(both 32bit and 64bit versions of Linux, FreeBSD,
NetBSD, MacOsX and Windows Vista) and with
various compilers (Gnu gcc, Microsoft cl.exe, Intel
icc and Intel icl.exe). Running all the available CPU
combinations of our benchmark on these platforms
gives some simulation cycle frequencies varying from
1Hz to 135Hz. Although raw performances differ
from an operating system or a compiler to another,
the results show that our solution scales from one
to eight CPUs in a similar way: the speedup curves
have the same general shape whatever the platform
is. Thus, it makes sense to mix them and produce
the mean curves reported in figure 3. This prop-
erty implies that our design choices are not specific
neither to an operating system nor to a compiler;
they are likely to always be relevant for this kind of
general purpose multicore and multiprocessor com-
puter.

The top row of this figure shows that not using
inter-entity affinity tends to make the speedups be-
come asymptotic—more CPUs would be necessary
to confirm this latter feeling. On the other hand, the
bottom row shows that when using it (as described
in section 3.4), we can expect a great scalability with
the number of available CPUs. This difference is ob-
viously more sensible when the average neighbour-
hood is large. But, even when only few neighbours
are detected, this caution is not damaging; it just
provides an ideal speedup as if these computations
were using totally disjointed data.

To explain the superlinear speedups obtained
here, we focus on the fifty neighbour case running on
eight threads, and perform a simple reasoning on av-
erage values. In this scenario, the memory footprint
of an entity’s data structure is approximately four
hundred bytes; the total footprint for the whole set
of entities is then nineteen megabytes. Each thread
has to activate approximately 6 250 (50 000/8) en-

tities. When entities are arbitrarily assigned to
threads, and each of them detects fifty neighbours,
one thread has to deal with the total footprint of
nineteen megabytes (6 250×50=312 500 largely ex-
ceeds 50 000). Conversely, when taking into account
the affinity between entities to assign them to the
threads, we could ideally reach a situation where en-
tities only detect the ones which are activated by the
same thread. In this case, each thread has only to
embrace the 2.4 megabyte footprint of 6 250 entity
data structures. Each shared six megabyte level-2
cache can deal with the necessary 4.8 megabyte foot-
print while the total nineteen megabyte footprint
would imply cache exhaustion and memory trans-
fers as explained in section 2.3.

4.2 Realistic simulation

This second scenario involves more complicated
behaviours based on Reynolds’ flocking rules [13].
Fish form schools while avoiding each other as well
as obstacles. In order to make the simulation less
predictable, they accelerate to escape from sharks
pursuing them. Thus, the size of the neighbourhood
detected by each entity varies dramatically through-
out the simulation. The only autonomous entities
are fish and sharks; obstacles are passive objects of
the environment and schools are just the visible con-
sequence of the gregarious behaviour of fish. Run-
ning this simulation on two different computers, us-
ing the Gnu gcc compiler on a Linux-64 operating
system, gives the results reported in figure 4.

When dealing with only five thousand entities,
there are so few of them in each thread that the
cycle frequencies are very high. The synchronisa-
tion barriers occur so often that we cannot expect a
great performance increase with many more CPUs.

With an approximate individual memory foot-
print of seven hundred bytes, the same reasoning
as at the end of section 4.1 explains that thirty-six
thousand entities would give an optimal superlinear
speedup. This is due to a threshold in cache us-
age: the twenty-four megabyte total footprint fits in
the four (top computer) and two (bottom computer)
higher level caches. The measurements confirm this
expectation and show that the effect is more no-

8

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

Bi-Xeon X5472 (2×2 dual-cores, 6MB level-2 cache each) at 3.0GHz with 800MHz RAM

used CPUs 5 000 entities 36 000 entities 100 000 entities 1 000 000 entities
A. ×1 (40.40 Hz) ×1 (3.55 Hz) ×1 (1.02 Hz) ×1 (0.073 Hz)

AB ×1.98 (79.83 Hz) ×2.00 (7.09 Hz) ×1.92 (1.96 Hz) ×1.93 (0.141 Hz)

A. C. ×1.90 (76.73 Hz) ×2.41 (8.57 Hz) ×2.25 (2.29 Hz) ×2.03 (0.148 Hz)

A. .. D. .. ×1.93 (77.83 Hz) ×2.42 (8.59 Hz) ×2.24 (2.28 Hz) ×2.00 (0.146 Hz)

AB CD ×3.90 (157.50 Hz) ×4.74 (16.83 Hz) ×4.25 (4.34 Hz) ×3.47 (0.253 Hz)

AB .. EF .. ×3.81 (154.04 Hz) ×4.82 (17.10 Hz) ×4.40 (4.49 Hz) ×3.63 (0.265 Hz)

A. C. E. G. ×3.71 (149.84 Hz) ×5.54 (19.65 Hz) ×5.36 (5.47 Hz) ×3.79 (0.277 Hz)

AB CD EF GH ×6.87 (277.59 Hz) ×10.39 (36.87 Hz) ×10.12 (10.32 Hz) ×6.41 (0.468 Hz)

Bi-Xeon X5680 (2 hexa-cores with 2-way SMT, 12MB level-3 cache each) at 3.33GHz with 1333MHz RAM

used CPUs 5 000 entities 36 000 entities 100 000 entities 1 000 000 entities
A..... ×1 (50.82 Hz) ×1 (5.98 Hz) ×1 (1.69 Hz) ×1 (0.113 Hz)

A..... G..... ×1.85 (94.24 Hz) ×2.08 (12.46 Hz) ×2.07 (3.50 Hz) ×1.75 (0.198 Hz)

ABCDEF ×5.75 (292.26 Hz) ×5.77 (34.50 Hz) ×5.61 (9.48 Hz) ×4.81 (0.543 Hz)

ABC... GHI... ×5.43 (276.09 Hz) ×6.14 (36.74 Hz) ×6.03 (10.19 Hz) ×4.54 (0.513 Hz)

ABCDEF GHIJKL ×10.37 (527.02 Hz) ×12.24 (73.19 Hz) ×11.88 (20.07 Hz) ×8.27 (0.935 Hz)

using 2-way SMT
ABCDEF GHIJKL ×12.94 (657.94 Hz) ×15.60 (93.27 Hz) ×15.96 (26.98 Hz) ×11.12 (1.257 Hz)

Figure 4: Realistic simulation — Fish forming schools while avoiding obstacles and sharks pursuing them. These
simulation cycle frequency speedups are obtained for different numbers of entities and various CPU combinations on
two different computers. In each CPU combination, letters point out the used CPUs while dots relate unused ones.
These CPUs are grouped by common cache and package; many equivalent combinations are merged.

ticeable when quadrupling the cache capacity than
when doubling it.

One hundred thousand entities make the fre-
quency reach some values below which the simula-
tion is hardly interactive. Nevertheless, the previous
cache threshold still maintains a superlinear speedup
(top computer) or at least a nearly ideal one (bot-
tom computer).

When largely exceeding the cache capacities with
one million entities, the simulation is very slow but
still responsive. As seen in the top-left part of fig-
ure 1, the memory transfer rate does not scale with
the number of CPUs; the speedup is consequently
limited.

Although the 2-way SMT technology provided by
the bottom computer is not as efficient as adding
cores (along with their cache capacities), it brings

some substantial improvements and it is worth us-
ing it for the simulations.

This section shows that, as long as the cache ca-
pacities increase with the number of cores, we can
expect to run ever bigger individual-based interac-
tive simulations. Because the cache usage is central
to the design of our simulation engine, its perfor-
mance does not rely on the availability of a shared
cache; the superlinear speedups observed here show
that it can deal with multidie packages and multi-
processor computers as easily as with multicore dies.

5 Conclusion

Through the purpose of designing an individual-
based simulation engine, we studied common pitfalls
about data access by multicore and multiprocessor
computers. Since parallelisation does not provide

9

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

any sensible performance gain with memory foot-
prints largely exceeding the caches’ capacity, we fo-
cus on smaller footprints. Indeed, below and around
the caches’ capacity, memory access patterns exhibit
a decisive impact on performance and scalability re-
garding the number of CPUs used.

The design of our simulation engine tends to opti-
mise the cache usage in order to use modern general
purpose multicore and multiprocessor computers to
their fullest potential. A two-phase adaptation of
the classical synchronous simulation method signif-
icantly minimises the needs for synchronisation and
limits competition for memory during write accesses.
A careful work-stealing ensures a correct load bal-
ance between the multiple CPUs, in order to min-
imise their idle time, without implicating too much
concurrent write access. And finally, we let the ap-
plicative affinities between the entities of the sim-
ulation dynamically determine their assignment to
specific CPUs: this ensures a good data locality in
the caches.

When it comes to testing the simulation engine,
the results validate our design choices since it be-
haves as expected and gives good performances for
interactive simulations with many autonomous enti-
ties. Moreover, it scales well regarding the number
of CPUs used—even with multiple distinct caches—
and provides superlinear speedups when the memory
footprint is appropriate. Therefore, we predict that
running ever bigger simulations will be possible by
using computers doted with many more cores and
processors.

Of course, we are aware of the limits of our re-
sults. Our last assumption concerning scalability is
correct only if the cache capacities increase along
with the number of CPUs. These results are also
very specific to the cyclic and fine-grained character
of this kind of application. Problems which are sta-
ble enough to be easily parallelised and distributed
will not benefit greatly from our approach.

To go further with this work, we would like to ex-
periment a memory allocation strategy aware of the
NUMA architecture of the modern computers to im-
prove data locality even when caches are overflowed.
As computing power also dramatically increases in
Graphical Processing Units, it could be challeng-

ing to commit straightforward computations to this
kind of device while keeping the less predictable ones
on the CPUs.

References

[1] Gaubert, L., Redou, P., Harrouet, F., Tis-
seau, J.,
A first mathematical model of brood sorting
by ants: Functional self-organization without
swarm-intelligence.
Ecological Complexity, (Dec 2007)

[2] Desmeulles, G., Bonneaud, S., Redou, P.,
Rodin, V., Tisseau, J.,
In virtuo Experiments Based on the Multi-
Interaction System Framework: the RéISCOP
Meta-Model.
CMES, Computer Modeling in Engineering &
Sciences, (Oct 2009)

[3] Combes, M., Buin, B., Parenthoën, M., Tis-
seau, J.,
Multiscale multiagent architecture validation
by virtual instruments in molecular dynamics
experiments.
ICCS 2010, Procedia Computer Science (Jun
2010)

[4] Chau, M., El Baz, D., Guivarch, R., Spiteri, P.,
MPI implementation of parallel subdomain
methods for linear and nonlinear convection–
diffusion problems.
J. Parallel Distrib. Comput., 67, 581–591
(2007)

[5] Liu, J., Dillencourt, M.B., Bic, L.F., Gillen, D.,
Lander, D.,
Distributed Individual-Based Simulation,
Euro-Par 2009 Parallel Processing, 5704, 590–
601 (2009)

[6] Reinders, J.,
Intel Threading Building Blocks: Outfitting
C++ for Multi-Core Processor Parallelism.
O’Reilly, (2007)

[7] Massaioli, F., Castiglione, F., Bernaschi, M.,
OpenMP parallelization of agent-based models.
Parallel Comput., 31, 1066–1081 (2005)

10

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

[8] Gao, H., Hesselink, W.H.,
A general lock-free algorithm using compare-
and-swap.
Inf. Comput., 205, 225–241 (2007)

[9] Cong, G., Bader, D.A.,
Designing irregular parallel algorithms with
mutual exclusion and lock-free protocols.
J. Parallel Distrib. Comput., 66, 854–866
(2006)

[10] Chynoweth, M., Lee, M.R.,
Implementing Scalable Atomic Locks for Multi-
Core Intel EM64T and IA32 Architectures.
(Nov 2009)
http://isdlibrary.intel-dispatch.com/

isd/85/AtomicLocks_r2.pdf

[11] Raman, E., Hundt, R., Mannarswamy, S.,
Structure Layout Optimization for Multi-
threaded Programs.
CGO ’07: International Symposium on Code
Generation and Optimization, 271–282 (2007)

[12] Tiwari, D., Lee, S., Tuck, J., Solihin, Y.,
MMT: Exploiting Fine-Grained Parallelism in
Dynamic Memory Management.
IEEE International Parallel and Distributed
Processing Symposium (Apr 2010)

[13] Reynolds, C.W.,
Flocks, Herds, and Schools: A Distributed Be-
havioral Model.
Computer Graphics, 25–34 (1987)

Biography

Fabrice Harrouet was born in Nantes, France,
went to the ENIB engeneering school in Brest, where
he studied computer science, and obtained his PhD
in 2000. He works as a lecturer in this school and
does his research at the Computer Sciences for Com-
plex Systems Laboratory and in the European Center
for Virtual Reality in Brest. His research focuses on
interactive multiagent simulations; this mainly con-
cerns parallel computing and 3D rendering.

11

Digital Object Indentifier 10.1109/MM.2011.80 0272-1732/$26.00 2011 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

