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Abstract

Shape skeleton extraction is a fundamental pre-

processing task in shape-based pattern recognition.

This paper presents a new algorithm for fast and precise

extraction of kinematic skeletons of 3D dynamic surface

meshes. Unlike previous approaches, surface motions

are characterized by the mesh local length deviation in-

duced by its transformation through time. Then a static

skeleton extraction algorithm based on Reeb graphs ex-

ploits this latter information to extract the kinematic

skeleton. This hybrid static and dynamic shape analysis

enables the precise detection of objects’ articulations as

well as potentially-articulated immobile shape features.

Experiments show that the proposed algorithm is faster

than previous techniques and still achieves better accu-

racy.

1. Introduction

Shape skeleton extraction and segmentation are fun-

damental shape pre-processing tasks in computer vision

and shape-based pattern recognition. They provide an

intrinsic structural shape description, which is useful for

further applications dealing with shape understanding,

like shape recognition or retrieval. With the ongoing

development of 3D technologies, 3D dynamic shapes

(time-varying 3D data) are becoming a media of in-

creasing importance. Such data can be provided by sci-

entific simulations, animation softwares, video games

or security systems and are mostly modeled by constant

connectivity surface meshes with time-varying geome-

try. Like 3D static shapes, 3D dynamic shapes also need

to be pre-processed for their understanding and have re-

cently drawn shape analysis community’s interest [6, 3].

However, only few papers have addressed the 3D dy-

namic surface mesh segmentation [5, 4] or skeleton ex-

traction [1, 8, 2] specific problems.

While static 3D shape segmentation methods aim at

extracting a meaningful structural representation of the

shape by decomposing it into parts of uniform geome-

try, 3D dynamic shape segmentation methods propose

to exploit the temporal information to decompose the

shape into parts of uniform motion along the sequence.

Indeed, this approach is a faithful hypothesis for ex-

tracting the functional and thus meaningful structure of

an object, revealing its articulation points for example.

Consequently, existing techniques first try to character-

ize the motion uniformity over the surface mesh and

then use clustering techniques to decompose it.

As most of real life objects’ motions can be defined

in terms of local rigid transformations (translations and

local rotations), Mamou et al. [5], in the context of dy-

namic shape compression, propose to locally compute

the optimal rigid transformations along the sequence

frames for small surface neighborhoods using the least

square method. Then, surface neighborhoods affected

by the same rigid transformations are gathered using the

k-means algorithm to produce the final segmentation.

Lee et al. [4] adopt a similar strategy by first computing

the so-called deformation gradient to characterize the

rigid transformation prediction error over the surface

and then employ a clustering-based static mesh segmen-

tation algorithm on this error field. Skeleton-extraction

techniques for 3D dynamic surface meshes [1, 8, 2] also

characterize surface motion with rigid transformation

predictions combined with clustering algorithms.

However, predicting local rigid transformations

turns out to be computationally expensive and from

our experience the computation (especially using least

square methods) can suffer from numerical instabilities.

Moreover, most of the existing techniques only exploit

the temporal information and thus cannot extract immo-

bile shape features which still potentially correspond to

functional parts of the object.

In this paper, we present a novel hybrid technique for

the extraction of 3D dynamic surface mesh kinematic

skeletons, a shape representation that reveals the shape

kinematic characteristics over the time. This work

brings the following contributions. First, we propose

a simple, fast and efficient technique for surface motion

characterization which is not based on rigid transfor-

mation prediction. Then, we present a combined dy-
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Figure 1. Example frames of the horse dy-

namic surface mesh (1(a), 1(b), 1(c)) and

its local length deviation (1(d), 1(e)).

namic and static approach that precisely identifies the

articulations of the object through time and which also

distinguishes specifically immobile shape features that

contain potential articulated parts. The rest of the paper

is structured as follows: we present motion characteri-

zation in section 2, skeleton extraction in section 3, ex-

periments and results (with comparisons to other tech-

niques) in section 4 and finally demonstrate the preci-

sion and the applicative interest of our technique in the

context of animation reverse engineering (section 5).

2. Local length deviation analysis

Let M be a constant connectivity closed surface

mesh, whose vertices’ positions vary through time

pt(vi) = (xi, yi, zi)t, ∀vi ∈ M . Surface portions

that exhibit high rigid transformation prediction er-

ror through time correspond to the articulations of the

object (affected by elastic transformations) and thus

should match the boundaries of the final segmentation.

Considered transformations (translations and local

rotations) belong to the group of isometric maps (length

preserving isomorphisms). Thus, length preservation

is also an invariant of rigid transformations. Conse-

quently, we propose to detect surface portions that are

not motioned through rigid transformations by com-

puting the surface repartition of the edge-length devi-

ation along the frames. In particular, we introduce the

quadratic local length deviation Ld ∀vi ∈ M , where T
is the number of frames in the sequence, N(vi) is the

set of vertices sharing an edge with vi and d is the eu-

clidean distance:

Ld(vi) =

T−1∑

t=0

∑

vj∈N(vi)

1

|N(vi)|
× [d(pt(vi), pt(vj))

− d(pt+1(vi), pt+1(vj))]
2 (1)

Figure 1 shows a dynamic shape and its corresponding

local length deviation (reported on the first frame). No-

tice in figures 1(d) and 1(e) that light pink surface por-

tions (low local length deviation) have been affected by

local rotations in the sequence and correspond to rigid

portions of the object. Moreover, the articulations of the

legs exhibit a high local length deviation (dark red) as

they have been affected by elastic transformations.

(a) (b) (c)

Figure 2. Feature points (in green) and f
level lines for several meshes.

(a) (b) (c)

Figure 3. Motion boundaries: connected

components of f level lines locally maxi-
mizing the local length deviation Ld.

3. Surface mesh skeleton extraction

3.1. Segmentation boundary computation

The local length deviation provides an information

similar to the deformation gradient [4] or the rigid er-

ror function [8]. Thus, a clustering based segmenta-

tion technique can be applied at this stage. Instead,

we propose to adapt a static skeleton extraction tech-

nique based on Reeb graphs [9] in order to also dis-

tinguish immobile shape features that potentially corre-

spond to functional parts. This technique first computes

automatically the shape feature points (vertices located

at the extremity of prominent components, in green in

figure 2) by intersecting geodesic maps extrema [9].

Then, in order to have a pose-invariant shape represen-

tation, it computes the following function, where g is

the geodesic distance and vf is the geodesic-closest fea-

ture points from vi: f(vi) = g(vi, vf ) ∀vi ∈ M(t=0).

Then, for each vertex vi ∈ M , the algorithm extracts

an upper-value discrete approximation of f−1(f(vi)),
which follows the edges of M [9]. In particular, let

cf (vi) be the ”contour” of vi (the connected compo-

nent of f−1(f(vi)) approximation containing vi).

As f level lines follow the protrusions of the ob-

ject (see figure 2), their connected components are good

candidates for the definition of the segmentation bound-

aries. To select these boundaries among the collection

of contours, for each contour cf (vi), we compute its av-

erage local length deviation (averaging Ld(vj) / vj ∈
cf (vi)). Then, we identify the contours cf that locally

maximize this value (with regard to their adjacent con-

tours) as motion boundaries (see figure 3).

Finally, in order to extract immobile shape features
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Figure 4. 3D dynamic surface meshes and

their extracted kinematic skeletons.

corresponding to potentially functional parts, f criti-

cal points are extracted at the vertices where contours

merge, split or terminate as f evolves [9]. The con-

tours related to these vertices are denoted as topological

boundaries, which are the boundaries of the Reeb graph

[7] decomposition of M .

3.2. Skeleton embedding

To embed the kinematic skeleton in 3D, we first

place the nodes of the Reeb graph (f critical points,

in blue in figure 4) at the barycenter of the topological

boundaries. Then, the edges of the Reeb graph (linking

f critical points) are subdivided at motion boundaries

to produce the final kinematic skeleton. In particular,

motion nodes (in red in figure 4) have been placed at

the barycenters of the motion boundaries.

4. Experiments and results

Figure 4 shows 3D dynamic meshes and their ex-

tracted kinematic skeletons. Notice that the motion

nodes (in red) are precisely placed at the articulations

of the objects (see the next section for precision evalu-

ation). Moreover, the edges of the kinematic skeleton

(black lines) correspond to rigid parts of the objects.

Thus, motion nodes provides an information about the

object motion, revealing the reference points of rigid

part rotations. Moreover, the shape topology is effi-

ciently captured by the Reeb graph [7]. Thus, the kine-

matic skeletons preserves the object’s topology.

Figure 5 presents a visual comparison of our algo-

rithm with existing techniques. Notice that in figure

5(a) the hooves of the horse dynamic shape are not ex-

tracted as individual rigid parts, while their motion is

different from the rest of the leg. On the contrary, our

method precisely identifies articulations and is compat-

ible with de Aguiar’s algorithm’s decomposition (fig.

(a) (b) (c)

Figure 5. Visual comparison between

Lee’s segmentation [4] (5(a)), de Aguiar’s

skeleton [2] (5(b)) and our method (5(c)).

Dynamic mesh Faces Frames Extraction (s.)

Cat 14410 10 9.6

Dance 14118 201 21.2

Horse 16843 49 12.7

Lion 9996 10 6.0

Snake 18354 134 20.2

Table 1. Computation times of kinematic

skeleton extraction for several dynamic

surface meshes (P4 3GHz CPU).

5(b)). However, thanks to the Reeb graph and the fea-

ture point extractions, our algorithm can also extract

and decompose specifically immobile shape features (in

blue) like the hands of the dancer, or the mouth and the

ears of the horse, which are actually articulated parts of

these objects in reality.

As our motion analysis is not based on rigid trans-

formation prediction (which requires matrix inversion),

our algorithm runs faster than existing techniques (see

tables 1 and 2). Local length deviation computation

runs in linear time: O(n × T ) steps, with n the num-

ber of vertices in M and T the number of frames in

the dynamic shape. Reeb graph extraction (topologi-

cal boundaries) only requires O(n2) steps [9]: as M
has constant connectivity, its topology does not evolve;

thus, the Reeb graph is computed only once (for Mt=0).

5. Animation reverse engineering

To demonstrate the precision of our algorithm and its

applicative interest, in the following experiment, given

a skeleton-driven animation of a static shape (realized

with an animation software) we propose to retrieve the

kinematic model of the animation by kinematic skele-

ton extraction. Figures 6(a), 6(b), 6(c) and 6(d) show

the original designed skeleton and the resulting anima-

tion. Figure 6(e) shows the local length deviation of

this dynamic shape. Notice that the index and the mid-

dle fingers have been slightly articulated but still exhibit

length deviation (fig. 6(f)). Finally, figure 6(g) shows

the extracted kinematic skeleton. Notice that each artic-

ulation of the original skeleton has been extracted as a

motion node of the kinematic skeleton. Moreover, the
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Figure 6. Animation reverse engineering: a dynamic surface mesh (6(b), 6(c), 6(d)) is gener-

ated from a predefined skeleton of a static mesh (6(a)). Local length deviation (6(e), 6(e)) and

extracted kinematic skeleton (6(g)). Motion node location error: 0.44%.

Algorithms Skeleton extraction (s.)

Our algorithm 12.7

de Aguiar’s [2] 21

Lee’s [4] 806

Table 2. Computation times for the horse

dynamic surface mesh.

(a) (b) (c) (d) (e) (f)

Figure 7. New dynamic surface meshes

generated using the extracted kinematic

skeletons.

average height (y) difference between the original and

the extracted skeletons’ articulations is only 0.44% of

the height of the object bounding box, which is a sat-

isfactory precision (against 1.7% in the best case for

[2]). Finally, as skeleton extraction is achieved by seg-

menting the mesh at motion and topological bound-

aries, there is a full correspondence between the skele-

ton edges and the related surface segments. Thus, input

dynamic shapes can be re-edited from their kinematic

skeletons by applying local rotations on the edges of

the skeleton, as shown in figure 7.

6. Conclusion and future works

In this paper, we presented a new hybrid algorithm

for fast and precise kinematic skeleton extraction of 3D

dynamic surface meshes based on local length deviation

computation and Reeb graph extraction.

Experiments showed the rapidity of this method and

demonstrated its precision. Thanks to this representa-

tion which concisely encodes the dynamic shape mo-

tion characteristics, dynamic shapes can be efficiently

edited. As the edges of the skeleton represent rigid parts

of the object, their motion can be modeled by simple ro-

tations.

In the future, we would like to use this representation

for 3D dynamic shape comparison (for gesture recogni-

tion), by comparing the rotations affecting the edges of

the skeleton. Moreover, a limitation of the proposed al-

gorithm is the assumption that dynamic shapes evolve

through nearly rigid motions only. In the future, we

would also like to adapt the framework to efficiently

model surface elastic transformations.
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