
Cyclic jobshop problem and (max,plus)
algebra

Laurent Houssin
∗

∗ CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse,
France
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AbstractIn this paper, we focus on the cyclic job-shop problem. This problem consists in
determining the order of a set of generic tasks on machines in order to minimize the cycle
time of the sequence. We propose an exact method to solve this problem. For each solution,
a linear max-plus model (possibly non causal) is obtained. To evaluate the performance of a
considered schedule, we build the causal max-plus representation and compute the eigenvalue
of the evolution matrix. A branch and bound procedure is presented.
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1. INTRODUCTION

The main idea of cyclic (or periodical) scheduling is to
perform a set of generic tasks infinitely often (or with
a infinite time horizon). The schedule has no end and
the production is specified by cycle periodically repeated
one behind the other. This kind of problems arises in
many contexts such as robotics (Kats and Levner [1997]),
manufacturing systems (Pinedo [2005], Hillion and Proth
[1989]) or multiprocessor computing (Hanen and Munier
[1995b]). Up to now, periodic scheduling problems have
been studied from several points of view. Most of them
consider graph based approaches, integer linear program-
ming, Petri nets. Although these approaches are different,
these tools usually leads to the same results. An overview
of the cyclic scheduling problem is available in Hanen and
Munier [1995a] and Brucker and Kampmeyer [2008].

In this paper, we tackle the problem of cyclic jobshop
scheduling which is proven to be NP-hard by Hanen [1994].
More precisely, we propose a max-plus linear model (pos-
sibly non causal) for each schedule. This paper presents
a method to obtain a simple (and causal) recurrence of
the form x(k) = Ax(k − 1) for the date of each task.
The cycle time of the schedule is given by computing
the eigenvalue of the evolution matrix. More precisely,
decision variables correspond to an order of tasks on each
machine (or dedicated processor). For each assignement
of these decison variables, we associate a max-plus linear
model. A branch and bound procedure is then presented
to obtain the schedule characterized by the minimum cycle
time. The remainder of this paper is as follows. In section
2, we introduce algebraic tools used throughout the pa-
per and (max, +)-linear systems. In section 3, the cyclic
scheduling problem problem is stated. We first describe the
basic scheduling problem and then we propose an optimal
solution for the cyclic scheduling problem with resource

constraints. A simple numerical example is also developed
during all of the paper.

2. MAX-PLUS MODEL FOR DISCRETE EVENTS
SYSTEMS

Max-plus algebra enables to model discrete events systems
that involve synchronization and delay phenomena. Appli-
cations of this theory have essentially concerned manufac-
turing systems Menguy et al. [2000], Lahaye et al. [2003],
communication networks Boudec and P. [2001] and trans-
portation networks Houssin et al. [2007], de Vries et al.
[1998]. Few works on scheduling can be found however
we can mention Gaubert and Mairesse [1999] and more
recently Bouquard et al. [2006].

2.1 Max-plus algebra and discrete event systems

We first recall some algebraic tools. An exhaustive pre-
sentation of this theory can be found in Baccelli et al.
[1992]. The (max, +) semiring is the set R∪{−∞} endowed
with the max operator, written a ⊕ b = max(a, b), and
the usual sum written a ⊗ b = a + b. The sum (resp.
product) admits a neutral element denoted ε = −∞ (resp.
e = 0), it leads to a ⊕ ε = a and a ⊗ e = a. For matrices,
additions and products give (A ⊕ B)ij = Aij ⊕ Bij and
(A ⊗ B)ij =

⊕n

k=1
Aik ⊗ Bkj .

The behavior of such systems can be represented by some
discrete functions called dater functions. More precisely,
a discrete variable x(·) is associated to an event labeled
x. This variable represents the occurring dates of event
x. The numbering conventionally begins at 0: x(0) cor-
responds to the date of the first occurrence of x. In this
way, autonomous DEDS can be modeled by a linear state
representation

x(k) = Ax(k − 1), (1)
where x is a vector and A is the evolution matrix. More-
over, to each square matrix A, a graph G = (N, E) can



be associated. Indeed, there is no arc (i, j) if Aji = ε, and
(i, j) is labelled with Aji otherwise. In the same way, a
dedicated (max, +) matrix is associated to each graph.

We now recall the classical spectral theorem of an irre-
ducible square matrix.

Theorem 1. Any irreducible matrix A of size n × n with
entries in R ∪ {−∞} has a unique eigenvalue which is the
maximal cycle mean of the graph associated to A.

Several algorithms for computing the eigenvalue are pos-
sible. We can mention the Karp’s algorithm in O(|n|3)
(Karp [1978], Dasdan and Gupta [1998]) and the Howard’s
algorithm (Cochet-Terrasson et al. [1998]) of unproved
complexity but showing excellent performance.

2.2 Max-plus model for non causal systems

We now focus on non causal (max, +)-systems and we
establish conditions on the existence of a causal represen-
tation of these systems.

The general form of an autonomous (max, +)-system can
be written as

x(k) =
⊕

Aqx(k − q), q ∈ Z.

By means of an extension of the state vector, last equation
leads to this compact form

x(k) = A1x(k − 1) ⊕ A0x(k) ⊕ A−1x(k + 1). (2)

We are confronted to a fixed point equation (see [Baccelli
et al., 1992, Th. 4.70]) and the least solution (that corre-
sponds to the earliest functionning) is given by

x(k) = A′

1
x(k − 1) ⊕ A′

−1
x(k + 1), (3)

with A′

1
= A∗

0
A1 and A′

−1
= A∗

0
A−1 considering X∗ =

⊕

i∈N
X i.

Proposition 1. If the matrix A−1 contains only one ele-
ment i, j such that A−1ij

6= ε and i 6= j, the causal
representation of the system is given by

x(k) = (A′

−1A
′

1)
∗A′

1x(k − 1). (4)

Proof : First, we state that if A′

1 has also only one element
different from ε and if it is not a digonal element, it involves
that (A′

−1
)2 = ε. If it is a diagonal element, the system

can not admit a causal representation since it leads to
xi(k) � Aiixi(k + 1). From (3), we deduce

x(k) = A′

1x(k − 1) ⊕ A′

−1x(k + 1)
= A′

1x(k − 1) ⊕ A′

−1(A
′

1x(k) ⊕ A′

−1x(k + 2))
= A′

1x(k − 1) ⊕ A′

−1A
′

1x(k) ⊕ (A′

−1)
2x(k + 2))

Last equality leads to

x(k) = A′

1
x(k − 1) ⊕ A′

−1
A′

1
x(k),

since (A′

−1)
2 = ε. In accordance with the earliest function-

ning rule (an event occurs as soon as possible), we select
the least solution of last equality which is given by

x(k) = (A′

−1A
′

1)
∗A′

1x(k − 1).
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Remark 1. For the meantime, we didn’t prove neatly the
general case, i.e. no restrictions on the number of elements
of A−1 different from ε.

3. CYCLIC SCHEDULING PROBLEMS

This section is devoted to cyclic scheduling problems. A
schedule is called periodic (or cyclic) with cycle time ω if
xi(k) = ω + xi(k− 1) = k×ω + xi(0) where xi(k) denotes
the k-th occurrence of task i. We describe these problems
from a (max, +) point of view. In (max, +)-algebra the
last equation becomes xi(k) = ω ⊗ xi(k − 1) = ωk ⊗ xi(0).

We first recall the basic periodic scheduling problem and
then we tackle the problem of the jobshop cyclic scheduling
problem.

3.1 The basic cyclic scheduling problem

We recall the basic cyclic scheduling problem. In this
framework, there is no resource constraints since each task
is performed without preemption on a dedicated machine.
In this problem we have:

• operations (or tasks) i = 1, . . . , n and the associated
processing times p1, . . . , pn,

• generalized precedence constraints (or conjunctive
constraints) between the k-th occurrence of task i and
the k + Hji-th occurrence of task j given by

xi(k + Hij) ≥ pjxj(k).

The event shift function H is called the height. We denote
T the set of operations. A uniform graph Gu(T, U) can
be associated to the generalized precedence constraints
in which a node is a task and an arc corresponds to a
constraints. Each arc (i, j) ∈ U is supplied by two values
pi and Hji.

A cyclic scheduling problem is said to be consistent, if and
only if every circuit of Gu has a positive height (Hanen
and Munier [1995a], Brucker and Kampmeyer [2008]). Let
us define a matrix H ′ such that H ′

ij = −Hij if (i, j) ∈ U

and H ′

ij = ε, otherwise.

Proposition 2. The basic scheduling problem is consistent
if and only if the largest eigenvalue of H ′ is negative.

Proof : It also means that the problem is consistent if
and only if the minimum cycle mean of Gu is positive.
We can build a conjugate graph G′

u(T, U) in which every
(i, j) ∈ U is labeled with −Hji. Consequently, the problem
is consistent if and only if the maximum cycle mean of
G′

u is negative. Then, the matrix associated to G′

u is H ′.
Hence, the consistency of the problem can easily checked
by means of Karp’s algorithm or Howard algorithm.
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Of course, the k+1-occurrence of a task i can not start be-
fore the end of the k-occurrence of a task i. Consequently,
we get the following non-reentrance constraints

xi(k + 1) ≥ pixi(k) ∀i ∈ T



Such systems, if it is consistent, can easily be expressed
as a causal (max, +)-linear system and the average cycle
time is given by the largest (max, +)-eigenvalue.

Example 1. Let us consider the following basic scheduling
problem

task 1 2 3 4 5
processing time 2 3 1 2 2

and the following uniform constraints :

x1(k) ≥ 2x4(k − 1)
x2(k) ≥ 2x1(k)
x3(k) ≥ 3x2(k)
x3(k) ≥ 2x5(k − 1)
x4(k) ≥ 3x2(k)
x4(k) ≥ 2x5(k − 1)
x5(k) ≥ 2x1(k + 1).

We first check the consistency of the problem. There is a
solution since the eigenvalue of the matrix H ′ (in which
non-reentrance constraints are included) associated to the
constraints is equal to − 1

3
. The (max, +) formulation leads

to a non causal system of the form (2). Nonetheless,
a causal representation of the earliest schedule can be
obtained as shown in §2.2. The new associated model is

x(k) =











2 ε ε 2 ε
4 3 ε 4 ε
7 6 1 7 2
7 6 ε 7 2
11 10 ε 11 6











x(k − 1).

The eigenvalue of the evolution matrix leads to 7. It cor-
responds to the optimal cycle time of this basic scheduling
problem. The solution of the schedule is depicted in figure
1.

Figure 1. Optimal solution of the basic cyclic scheduling
problem.

Remark 2. Notice that the number of work-in-process is
not limited to one. For instance, the solution of example 1
presents two work-in-process for t ∈ [7, 11].

3.2 The jobshop cyclic scheduling problem

In a jobshop cyclic scheduling problem, tasks are mapped
onto m machines. Naturally, we have m < n. It means that
the number of machine is lower than the number of tasks
(n = |T |). A presentation of this problem is proposed by
Hanen and Munier [1995a].

We denote M(i) ∈ {1, . . . , m} the machine dedicated to
the task i. Occurrences of operations to be processed on
the same machine can not overlap. Indeed, new constraints
have to be took in account to consider this allocation. Let
us consider two tasks i, j performed on the same machine
such that the next occurrence of j to be performed after

the l-th task i is the k-th occurrence. Therefore, we can
consider xj(k) ≥ pi + xi(l). Since the schedule is periodic,
last equation is equivalent to xj(0)+ kω ≥ pi +xi(0)+ lω.
It is also equivalent to xj(0) ≥ pi + xi(0) + (l − k)ω and
we can state

xj(s) ≥ pi + xi(s + l − k) ∀s ∈ N. (5)

Moreover, the next occurrence of i to be performed after
the k-th task j is the l + 1-th occurrence. So, we have
xi(l + 1) ≥ pj + xj(k). In the same manner of (5), we
obtain

xi(s) ≥ pj + xj(s + k − l − 1) ∀s ∈ N. (6)

Constraints (5) and (6) can be rewritten as follows : for all
different tasks i, j ∈ T such that M(i) = M(j), we have

∃Kij ∈ Z xi(s) ≥ pj + xj(s − Kij) ∀s ∈ N (7)

and Kij + Kji = 1. The event shifts Kij and Kji can be
interpreted as the ordering on machine M(i). For instance,
the selection Kij = 0 and Kji = 1 means that the first
occurrence if task i starts after the first occurrence of task
j and, since the schedule is periodic, we can state that the
k-occurrence if task i starts after the k-occurrence of task
j. A solution of the jobshop cyclic scheduling problem is a
complete selection of all Kij . These selection constraints,
also called disjunctive constraints, defines a selection graph
Gs(T, S). This graph is non connected and there is one non
connected component per machine.

Thus, the jobshop cyclic scheduling problem leads to two
graphs Gs(T, S) corresponding to selection constraints and
Gu(T, U) that characterizes the conjunctive constraints
as in the basic cyclic problem. The total graph, denoted
Gt(T, U∪S) of the problem can be obtain through merging
Gs(T, S) and Gu(T, U). If (i, j) ∈ U and (i, j) ∈ S, arc
(i, j) is supplied by pi and min(Hij , Kij) (by selecting the
minimum value of Hij and Kij , both constraints are met).
As for the basic cyclic scheduling problem, we introduce
the matrix H ′

t defined such that H ′

tij
= min(Hij , Kij) if

(i, j) ∈ U ∪ S and H ′

tij
= ε otherwise. Nonetheless not

all values for each Kij are possible and we now propose a
consistency property.

Proposition 3. A selection is consistent if and only if the
largest eigenvalue of H ′

t is negative.

Proof : As for proposition 2, we can build the graph G′

t

and the problem is consistent if and only if the maximum
mean cycle of this graph is negative.
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Example 2. Let us consider the cyclic scheduling problem
of example 1. We now consider that tasks 1,4 and 5 are
performed by machine 1 and tasks 2 and 3 are performed
by machine 2. The selection graph (resp. uniform graph) of
this problem is depicted in dashed lines (resp. solid line)
of figure 2. For more clarity, we don’t report in figure 2
arcs from non reentrance constraints). The merge of these
two graphs leads to the total graph.



Figure 2. Total graph of the cyclic jobshop problem.

After a complete selection, i.e. a choice for each Kij , the
functionning of the system is described by an equation
of the form (2). Therefore, a causal representation of the
form (4) can be obtained. As in the basic cyclic scheduling
problem, the optimal period of the schedule is given by the
largest eigenvalue of the system. Therefore the problem
can be summarized as follows : find a complete selection
that minimizes the largest eigenvalue of the evolution
matrix. Let us denote Au the matrix of conjunctive con-
straints such that x(k) ≥ Aux(k−1) and As the evolution
matrix of selection constraints such that x(k) ≥ Asx(k−1).
We now introduce the following property that bounds the
optimal period of this problem.

Proposition 4. The largest eigenvalue of Au and the
largest eigenvalue of As are lower bounds of the optimal
cycle time of the periodic jobshop problem.

Proof : Considering the conjunctive constraints, this
lower bound is the optimal solution of the basic cyclic
scheduling problem, i.e. without resource constraints. The
optimal schedule of a complete selection is given by the
largest eigenvalue of matrix A = Au ⊕As. Hence, we have
x(k) ≥ Aux(k−1) and consequently x(k) ≥ λ(Au)x(k−1)
where λ(Au) denotes the largest eigenvalue of Au. The
same reasoning holds for As. However, the computation
of λ(As) is not so easy because As is not defined while
a complete selection has not been realized. We propose a
simple way to compute it. Let us consider the set of tasks
{i1, i2, . . . , il} performed on a machine. It corresponds
to a strongly connected part of As. The functionning of
a sequence on this machine is obviously limited by the
overall time of processing of all the tasks {i1, i2, . . . , il},
so the cycle time of this machine cannot exceed the sum
pi1 +pi2 +. . .+pil

that is the eigenvalue of this component.
Thus, the largest eigenvalue of As is given by maximum
of the overall processing times of each machine. It also
could be proven that every circuit of As is of height 1
and the sum of all processing times is an eigenvalue of the
component.
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Example 3. Considering the example 2, we get λ(Au) = 7
(already computed in example 1). For machine 1 (resp. 2),

the overall processing time is 6 (resp.4). So we can state
that 7 is a lower bound of the optimal cycle time for this
cyclic jobshop problem.

As seen previously, every Kij ∈ Z, so we now propose some
bounds on this event shift.

If the basic scheduling problem (i.e. without constraints)
of the jobshop scheduling problem is consistent, then H ′∗

can be computed (the computation of H ′∗ converges since
the largest eigenvalue is negative, see Baccelli et al. [1992]).
Therefore, (−H ′∗)ij , if it is not equal to ε, is the minimum
shift event between task i and task j induced by the
uniform constraints. More precisely, we have xi(k) ≥ Pij +
xj(k −−H ′∗

ij ) and so

xi(k) ≥ Pij + xj(k + H ′∗

ij ), (8)

in which Pij is a sum of several processing times (at least
pj).

Let us consider two tasks i and j such that M(i) = M(j)
and suppose that (−H ′∗)ij 6= ε, consequently we get (8)
and since

xj(k) ≥ pi + xi(k − Kji),

we can state

xi(k − H ′∗

ij ) ≥ Pij + xj(k),
⇒ xi(k − H ′∗

ij ) ≥ Pij + pi + xi(k − Kji),
⇒ xi(k − H ′∗

ij ) > xi(k − Kji).

As x(k) is monotone, it requires Kji > H ′∗

ij and for
integrity reason we obtain the following bound

Kji ≥ H ′∗

ij + 1.

Consequently, we also have a bound for Kij since Kij +
Kji = 1.

Example 4. Let us consider tasks 1 and 5 of example 2.
We have H ′∗

15
= −2. It leads to K51 ≥ −1 and K15 ≤ 2.

Moreover H ′∗

51
= 1, and we get K15 ≥ 2 and K51 ≤ −1. We

can conclude that K51 = −1 and K15 = 2. Generally, we
only obtain upper bounds and lower bounds for the Kij .

3.3 A branch and bound procedure for the jobshop cyclic
scheduling problem

In previous section, we have seen that the definition
domain of the variables Kij can be reduced by using
the uniform constraints. Besides, a lower bound of the
optimal cycle time has been computed. A branch and
bound procedure (not detailed here) can be realized to
solve this kind of problem. The branching is realized on
variables Kij . Since, there is no need to branch Kji if
Kij is already branched, the depth of the exploration tree
is equal to the half of the number of selection variables.
For each node, the consistency is checked. If the solution
is consistent, we build the causal (max, +)-representation
of the system and compute the largest eigenvalue of the
evolution matrix.

Example 5. For our example, we obtain the following
results : K14 = 1, K41 = 0, K15 = 2, K51 = −1, K32 = 0,
K23 = 1, K45 = 1 and K54 = 0. The lower bounds is
reached and we obtain an optimal cycle time of 7. The
corresponding schedule can be found in figure 3.



Figure 3. Optimal solution of the jobshop cyclic scheduling
problem.

4. CONCLUDING REMARKS

We presented a general (max, +)-linear model for cyclic
scheduling problems. This class of systems leads frequently
to a non causal representation in (max, +)-algebra. In
light of those observations, we propose a way to obtain a
causal representation with recurrence of order 1. However,
this method involves strong constraints on the system
structure. We first apply it to the basic scheduling problem
and then we try to formalize the cyclic jobshop problem
with (max, +)-algebra. Bounds are proposed, both for the
optimal cycle time and for the selection variables Kij .
Future works should refine the method and compare it to
mixed integer linear programs of Hanen [1994] and Brucker
and Kampmeyer [2008] for larger instances of the problem.
We also plan to solve the general case of proposition 1.

One may note that this kind of approach suggests that
some performance evaluation could be performed (robust-
ness to delay for instance) and it is not necessary relevant
to schedule the minimum cycle time if the solution is not
robust. It might be interesting, in some cases, to minimize
the deviation of the cycle time when delays occurrs. It is
worthwhile to study this connection in more details.
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