
HAL Id: hal-00667816
https://hal.science/hal-00667816v1

Preprint submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Higher-order Interpretations and Program Complexity
(Long Version)

Patrick Baillot, Ugo Dal Lago

To cite this version:
Patrick Baillot, Ugo Dal Lago. Higher-order Interpretations and Program Complexity (Long Version).
2012. �hal-00667816�

https://hal.science/hal-00667816v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Higher-order Interpretations

and Program Complexity (Long Version)

Patrick Baillot∗ Ugo Dal Lago†

Abstract

Polynomial interpretations and their generalizations like quasi-interpretations have been
used in the setting of first-order functional languages to design criteria ensuring statically
some complexity bounds on programs [1]. This fits in the area of implicit computational
complexity, which aims at giving machine-free characterizations of complexity classes. Here
we extend this approach to the higher-order setting. For that we consider the notion of simply
typed term rewriting systems [2], we define higher-order polynomial interpretations (HOPI)
for them and give a criterion based on HOPIs to ensure that a program can be executed
in polynomial time. In order to obtain a criterion which is flexible enough to validate some
interesting programs using higher-order primitives, we introduce a notion of polynomial quasi-
interpretations, coupled with a simple termination criterion based on linear types and path-like
orders.

1 Introduction

The problem of statically analyzing the performance of programs can be attacked in many different
ways. One of them consists in inferring complexity properties of programs early in development
cycle, when the latter are still expressed in high-level programming languages, like functional or
object oriented idioms. And in this scenario, results from an area known as implicit computational
complexity (ICC in the following) can be useful: they consist in characterizations of complexity
classes in terms of paradigmatic programming languages (λ-calculus, term rewriting systems, etc.)
or logical systems (proof-nets, natural deduction, etc.), from which static analysis methodologies
can be distilled. Examples are type systems, path-orderings and variations on the interpreta-
tion method. The challenge here is defining ICC systems which are not only simple, but also
intensionally powerful: many natural programs among those with bounded complexity, should be
recognized as such by the ICC system, i.e., are actually programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs are term rewriting
systems (TRS in the following) [1, 3], whose complexity can be kept under control by way of vari-
ations of the powerful techniques developed to check termination of TRS, namely path orderings
[4, 5], dependency pairs and the interpretation method [6]. Many different complexity classes have
been characterized this way, from polynomial time to polynomial space, to exponential time to
logarithmic space. And remarkably, many of the introduced characterizations are intensionally
very powerful, in particular when the interpretation method is relaxed and coupled with recursive
path orderings, like in quasi-interpretations [3].

The results cited above are very interesting and indeed represent the state-of-the art in resource
analysis when programs are first-order functional programs, i.e. when functions are not first-
class citizens. If the class of programs of interest includes higher-order functional programs, the
techniques above can only be applied if programs are either defunctionalized or somehow put
in first-order form, for example by applying a translation scheme due to the second author and

∗CNRS & ENS-Lyon, patrick.baillot@ens-lyon.fr
†Università di Bologna & INRIA, dallago@cs.unibo.it

1

Simone Martini [7]. There is strong evidence, however, that first-order programs obtained as
results of one of this translations schemes are difficult to prove to have bounded complexity with
traditional TRS techniques.

Another possibility consists in generalizing TRS techniques to systems of higher-order rewrit-
ing, which come in many different flavours [8, 9, 2]. The majority of the introduced higher-order
generalization of rewriting are quite powerful but also complex from a computational point of
view, being conceived to model not only programs but also proofs involving quantifiers. As an
example, even computing the reduct of a term modulo a reduction rule can in some cases be
undecidable. Higher-order generalizations of TRS techniques [10], in turn, reflect the complexity
of the languages on top of which they are defined. Summing up, devising ICC systems this way
seems quite hard.

In this paper, we consider one of the simplest higher-order generalizations of TRSs, namely
Yamada’s simply-typed term rewriting systems (STTRSs in the following), we define a system
of higher-order polynomial interpretations for them and prove that, following [1], this allows to
exactly characterize, among others, the class of polynomial time computable functions. We show,
however, that this way the class of (higher-order) programs which can be given a polynomial inter-
pretation does not include interesting and natural examples, like foldl, and that this problem can
be overcome by switching to another technique, designed along the lines of quasi-interpretations [3].
This is the subject of sections 4 and 5 below.

Another problem we address in this paper is related to the expressive power of simply-typed
term rewriting systems. Despite their simplicity, simply-typed term rewriting systems subsume
the simply typed lambda calculus and extensions of it with full recursion, like PCF. This can be
proved following [7] and is the subject of Section 3.

2 Simply-Typed Term Rewriting Systems

2.1 Definitions and Notations

We recall here the definition of a STTRS, following [2, 11]. We will actually consider as programs
a subclass of STTRSs, basically those where rules only deal with the particular case of a function
symbol applied to a sequence of patterns. For first-order rewrite systems this corresponds to the
notion of constructor rewrite system.

We consider a denumerable set of base types, which we call data-types and we shall denote as
D,E, Types are defined by the following grammar:

A,B ::= D | A1 × · · · ×An → A.

A functional type is a type which contains an occurrence of →. Some examples of base types are
the type NAT of tally integers, and the type W2 of binary words.

We denote by F the set of function symbols (or just functions), C that of constructors and X
that of variables. Constructors c ∈ C have a type of the form D1 × · · · × Dn → D. Functions
f ∈ F , on the other hand, can have any functional type. Variables x ∈ X can have any type.
Terms are typed and defined by the following grammar:

t, ti := xA | cA | fA | (tA1×···×An→A tA1

1 . . . tAn
n)A

where xA ∈ X , cA ∈ C, fA ∈ F . We denote by T the set of terms. Observe how application
is primitive and is in general treated differently from other function symbols. This is what make
STTRSs different from ordinary TRSs.

We define the size |t| of a term t as the number of symbols (elements of F ∪C ∪X) it contains.
To simplify the writing of terms we will often elide their type. We will also write (t s) for

(t s1 . . . sn). Therefore any term t is of the form (. . . ((α s1) s2) . . . sk) where k ≥ 0, α ∈ X ∪C ∪F .
To simplify notation we will use the following convention: any term t is of the form (. . . ((s s1) s2) . . . sk)

will be written ((s s1 . . . sk)). Observe however that, e.g., if t has type A1×A2 → (B1×B2 → B),

2

ti type Ai for i = 1, 2, si type Bi for i = 1, 2, then both (t t1 t2) and ((t t1 t2) s1 s2) are well-typed
(with type B1 ×B2 → B and B, respectively), but (t t1) and (t t1 t2 s1) are not well-typed.

A crucial class of terms are patterns, which in particular are used in defining rewriting rules.
Formally, a pattern is a term generated by the following grammar:

p, pi := xA | (cD1×...×Dn→D pD1

1 . . . pDn
n).

P is the set of all patterns. Observe that if a pattern has a functional type then it must be
a variable. We consider rewriting rules in the form t → s satisfying the following two con-
straints:
1. t and s are terms of the same type A, FV (s) ⊆ FV (t), and any variable appears at most once

in t.
2. t must have the form ((f p1 . . . pk)) where each pi for i ∈ 1, . . . , k consists of patterns only. The

rule is said to be a rule defining f, while the total number of patterns in p1, . . . , pk is the arity
of the rule.

Now, a simply-typed term rewriting system is a set R of orthogonal rewriting rules such that for
every function symbol f, every rule defining f has the same arity, which is said to be the arity of
f. A program P = (f, R) is given by a STTRS R and a chosen function symbol f ∈ F .

In the next section, a notion of reduction will be given which crucially relies on the concept of
a value. More specifically, only values will be passed as arguments to functions. Formally, we say
that a term is a value if either:
1. it has a type D and it has the form (c v1 . . . vn), where v1, . . . , vn are themselves values.
2. it has functional type A and is of the form ((f, v1 . . . vn)), where the terms in v1, . . . vn are

themselves values and the total number of terms in v1, . . . , vn is strictly smaller than the arity
of f.

We denote values as v, u and their set by V.

2.2 STTRSs: Dynamics

The dynamical process underlying a program is formalized through a rewriting relation. Prelim-
inary to that are proper notions of unification and substitution, which are the subject of this
section.

A substitution σ is a mapping from variables to values with a finite domain, and such that
σ(xA) has type A. A substitution σ is extended in the natural way to a function from V to T ,
that we shall also write σ. The image of a term t will be denoted tσ. Contexts are defined as
terms but with the proviso that they must contain exactly one occurrence of a special constant
•A (hole), for a type A. They are denoted as C, D . . . If C is a context with hole •A , and t is a
term of type A, then C{t} is the term obtained from C by replacing the occurrence of •A by t.

Consider a STTRS R. We say that s reduces to t, denoted as s →R t, if there exists a rule
l → r of R, a context C and a substitution σ such that s = C{lσ} and t = C{rσ}. When there is
no ambiguity on R we will simply write → instead of →R.

Please notice that one of the advantages of STTRSs over similar formalisms (like [8]) is precisely
the simplicity of the underlying unification mechanism, which does not involve any notion of
binding and is thus computationally simpler than higher-order matching. There is a price to
pay in terms of expressivity, obviously. In the next section, however, we show how STTRSs are
expressive enough to capture standard typed λ-calculi.

3 Typed λ-calculi as STTRSs

The goal of this Section is to illustrate the fact that the choice of the STTRS framework as higher-
order calculus is not too restrictive: indeed we will show that we can simulate in it PCF equipped
with weak reduction (i.e. where one does not reduce in the scope of abstractions). This is achieved
using ideas developed for encodings of the λ-calculus into first-order rewrite systems [7].

3

3.1 A Few Words About PCF

We assume a total order ≤ on X . PCF types are defined as follows:

A,B ::= NAT | A → A.

PCF terms, on the other hand, are defined as follows:

M,N ::=xA | (λxA.MB)A→B | (MA→BNA)B | fix((A→B)→A→B)→A→B | nNAT |

succNAT→NAT | predNAT→NAT | (ifz MA NA)NAT→A

where n ranges over the natural numbers. We omit types in terms whenever this does not cause
ambiguity. A PCF value is any term different from an application. PCF values are indicated with
metavariables like V and W . A call-by-value operational semantics for PCF can be expressed by
way of some standard reduction rules:

(λx.M)V −→ M{V/x}

fix V −→ V (λx.(fix V)x)

succ n −→ n+ 1

pred 0 −→ 0

pred n+ 1 −→ n

(ifz M N) 0 −→ M

(ifz M N) n+ 1 −→ N

The reduction rules above can be propagated to any applicative context by the rules below

M −→ N
ML −→ NL

M −→ N
LM −→ LN

3.2 PCF as a STTRS

PCF can be turned into a STTRS RPCF with infinitely many function symbols. First, for each
term M of type B, with free variables x1 ≤ x2 ≤ . . . ≤ xn of types A1, . . . , An, and x of type A,
we introduce a function absM,x of F , with type A1 × · · · × An → (A → B). Then, for each pair
of terms M,N of type B, both with free variables among x1 ≤ x2 ≤ . . . ≤ xn of types A1, . . . , An,
and x of type A, we introduce a function ifzM,N of F , with type A1 × · · · ×An → (NAT → B).
We also need function symbols for succ, pred and fix. Now, the translation 〈M〉 is defined by
induction on M :

〈x〉 = x;

〈M N〉 = (〈M〉 〈N〉);

〈λx.M〉 = (absM,x x1 . . . xn), if FV (M) = x1 ≤ . . . ≤ xn;

〈fix((A→B)→A→B)→A→B〉 = fix((A→B)→A→B)→A→B ;

〈n〉 = s(s(. . . (s
︸ ︷︷ ︸

n times

(0)) . . .))

〈succ〉 = succ;

〈pred〉 = pred;

〈ifz M N〉 = (ifzM,N x1 . . . xn), if FV (M) ∪ FV (N) = x1 ≤ . . . ≤ xn.

A converse translation [·] can be easily defined.

4

Lemma 1 If M is a PCF term of type A, then 〈M〉 is a well-typed term, of type A.

The rules of RPCF are the following:

((absM,x x1 . . . xn) x) → 〈M〉;

(fix x) → (x (absyz,z (fix x)));

(succ x) → (s x);

(pred 0) → 0;

(pred (s x)) → x;

((ifzM,N x1 . . . xn) 0) → 〈M〉;

((ifzM,N x1 . . . xn) (s x)) → 〈N〉.

A term is said to be canonical if either it is a value or it is in the form ((f t1 . . . tns1 . . . sm)),
where n is the arity of f, t1, . . . , tn are values and and s1, . . . , sm are themselves canonical. The
following are technical intermediate results towards Theorem 7

Lemma 2 For every PCF term M , [〈M〉] = M .

Proof : By induction on the structure of M . �

Lemma 3 For every closed PCF term M , 〈M〉 is canonical. Moreover, if t is canonical and t → s,
then s is canonical.

Proof : The fact 〈M〉 is always canonical can be proved by induction on the structure of M . The
fact canonicity is preserved by reduction is a consequence of the adoption of a call-by-value notion
of reduction. �

Lemma 4 A canonical term t is a normal form iff [t] is a normal form.

Proof : Again, a simple induction of t. �

Lemma 5 If t is canonical and t → s, then [t] → [s].

Lemma 6 If M −→ N , t is canonical and [t] = M , then t → s, where [s] = N .

Theorem 7 (Term Reducibility) Let M be a closed PCF term. The following two conditions
are equivalent:
1. M −→∗ N where N is in normal form;
2. 〈M〉 →∗ t where [t] = N and t is in normal form.

Proof : Suppose M −→n N , where N is in normal form. Then, by applying Lemma 6, we obtain
a term t such that 〈M〉 →n t and [t] = N . By Lemma 3, t is canonical and, by Lemma 4, it is
in normal form. Now, suppose 〈M〉 →n t where [t] = N and t is in normal form. By applying n
times Lemma 5, we obtain [〈M〉] −→n [t] = N . But [〈M〉] = M by Lemma 2 and N is a normal
form by Lemma 4, since 〈M〉 and t are canonical by Lemma 3. �

Even if the STTRS we have just defined is infinite and involves infinitely many function sym-
bols, one can prove that any closed PCF program M of type NAT → NAT only needs a finite set
of function symbols to be simulated, namely those function symbols corresponding to subterms of
M .

In the following it will also be instructive to consider a source language which is less expressive
than PCF: Gödel’s T, equipped with weak reduction. For that, remove in the source language the
constant fix, and replace it with a constant rec with type scheme A → (NAT → A → A) →
NAT → A and the following reduction rules:

rec x f 0 −→ x;

rec x f n+ 1 −→ (f n (rec x f n)).

5

We translate it to a STTRSRT similar toRPCF: one adds a function symbol recA→(NAT→A→A)→NAT→A

and the following new STTRS rules:

(((rec x) f) 0) → x;

(((rec x) f) (s y)) → ((f y) (((rec x) f) y)).

This encoding of system T then enjoys properties similar to the encoding of PCF.

4 Higher-Order Polynomial Interpretations

We want to demonstrate how first-order rewriting-based techniques for ICC can be adapted to
the higher-order setting. Our goal is to devise criteria ensuring a complexity bound on programs
of first-order types but using subprograms of higher-order types. A typical application will be to
find out under which conditions a higher-order functional program such as e.g. map, iteration
or foldl, fed with a (first-order) polynomial time program produces a polynomial time program.

As a first illustrative step we consider the approach based on polynomial interpretations
from [1], which offers the advantage of simplicity. We thus build a theory of higher-order poly-
nomial interpretations for STTRSs. It can be seen as a particular concrete instantiation of the
methodology proposed in [2] for proving termination by interpretation.

Higher-order polynomials (HOPs) take the form of terms in a typed λ-calculus whose only base
type is that of natural numbers. To each of those terms can be assigned a strictly monotonic func-
tion in a category FSPOS with products and functions. So, the whole process can be summarized
by the following diagram:

STTRSs
[·]

// HOPs
J·K

// FSPOS

4.1 Higher-Order Polynomials

Let us consider types built over a single base type N:

A,B ::= N | A → A.

An → B stands for the type
A → . . . → A
︸ ︷︷ ︸

n times

→ B.

Let CP be the following set of constants:

CP = {+ : N2 → N,× : N2 → N} ∪ {n : N | n ∈ N
⋆}.

Observe that in CP we have constants of type N only for strictly positive integers. We consider
the following grammar of Church-typed terms

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B

where cA ∈ CP and in (λxA.MB) we require that x occurs free in M . A higher-order polynomial
(HOP) is a term of this grammar, which is in β-normal form. We use an infix notation for + and
×. HOP contexts (or simply contexts) are defined as HOPs but with the proviso that they must
contain exactly one occurrence of a special constant •A (hole), for a type A. They are denoted as
C, D . . . If C is a HOP context with hole •A , and M is a HOP of type A, then C{M} is the HOP
obtained from C by replacing the occurrence of •A by M and reducing to the β normal form. We
assume given the usual set-theoretic interpretation of types and terms, denoted as JAK and JMK:
if M has type A and FV (M) = {xA1

1 , . . . , xAn
n }, then JMK is a map from JA1K× . . .× JAnK to JAK.

We denote by ≡ the equivalence relation which identifies terms which denote the same function,
e.g. we have: λx.(2× ((3 + x) + y)) ≡ λx.(6 + (2× x+ 2× y)).

Noticeably, even if HOPs can be built using higher-order functions, the first order fragment
only contains polynomials:

6

Lemma 8 If M is a HOP of type Nn → N and such that FV (M) = {y1 : N, . . . , yk : N}, then
the function JMK is a polynomial function.

Proof : We proceed by induction on M :
• if M = x or M = +,× or n: the result is trivial;
• if M = λxA.MB

1 : then we have A = N and the type B is of the form N, . . . , N → N , so by
i.h. on M1 the property is true for M1, hence for M ;

• otherwise M is an application. As M is in β-normal form, there exists n ≥ 0 such that:
• M is of the form M = (N M1 . . .Mn),
• and N = xA,+,× or n.
Now, if N = + or ×, then for any 1 ≤ i ≤ n we have that Mi is of type N , so by i.h. on
Mi it satisfies the property, therefore M represents a polynomial function. If N = xA, then as
xA is free in M , by assumption we know that A = N , thus n = 0 and the property is valid.
Similarly if N = n.

This concludes the proof. �

A HOP substitution θ is a map from variables to HOPs, with finite domain. We will simply
speak of substitution if there is no ambiguity. For any HOP M and HOP substitution θ, Mθ is
the HOP defined in the expected way.

4.2 Semantic Interpretation.

Now, we consider a subcategory FSPOS of the category SPOS of strict partial orders as objects
and strictly monotonic total functions as morphisms. Objects of FSPOS are the following:
• N is the domain of strictly positive integers, equiped with the natural strict order ≺N ,
• 1 is the trivial order with one point;
• if σ, τ are objects, then σ × τ is obtained by the product ordering,
• σ → τ is the set of strictly monotonic total functions from σ to τ , equipped with the following
strict order:

f ≺σ→τ g if for any a of σ we have f(a) ≺τ g(a).

We denote by �τ the reflexive closure of ≺τ . FSPOS is a subcategory of SET with all the necessary
structure to interpret types. JAK≺ denotes the semantics of A as an object of FSPOS. We choose
to set JNK≺ = N . Notice that any element of e ∈ JAK≺ can be easily mapped onto an element e↓
of JAK. What about terms? Actually, FSPOS can again be shown to be sufficiently rich:

Proposition 9 Let M be a HOP of type A with free variables xA1

1 , . . . , xAn
n . Then for every

e ∈ JA1 × . . . × AnK≺, there is exactly one f ∈ JAK≺ such that f ↓= JMK(e ↓). Moreover, this
correspondence is strictly monotone and thus defines an element of JA1 × . . .× An → AK≺ which
we denote as JMK≺.

Proof : We proceed by induction on the construction of M :
• M = xA: trivial;
• M = cA ∈ CP : this holds because as we have interpreted N as N

⋆ the terms + and ×
denote strictly monotonic functions (note that it would not have been the case for × if we had
interpreted N as N);

• M = λx.M ′: by definition we know that x is free in M ′. Let us denote by xA1

1 , . . . , xAn
n the free

variables of M ′ and w.l.o.g. assume x = xn. By i.h. we have JM ′K≺ ∈ JA1 × . . .×An → AK≺.
For (e1, . . . , en−1) in JA1×. . .×An−1K≺ we then consider the map f from JAnK≺ to JAK≺ defined
by f(en) = JM ′K≺(e1, . . . , en). As JM ′K≺ ∈ JA1×. . .×An → AK≺ we have that f ∈ JAn → AK≺
and satisfies the property. Suppose now that f ′ ∈ JAn → AK≺ is defined in a similar way from
(e′1, . . . , e

′
n−1) ∈ JA1 × . . . × An−1K≺ such that (e1, . . . , en−1) ≺ (e′1, . . . , e

′
n−1). Then we have

that if en ∈ JAnK≺, then (e1, . . . , en−1, en) ≺ (e′1, . . . , e
′
n−1, en), thus JM ′K≺(e1, . . . , en−1, en) ≺

JM ′K≺(e
′
1, . . . , e

′
n−1, en). This shows that f ≺ f ′. Therefore we have obtained a strictly

monotonic correspondence from JA1 × . . . × An−1K≺ to JAn → AK≺, which completes the
claim.

7

• M = MA→B
1 MA

2 : this is the crucial case. By i.h. JM1K≺ and JM2K≺ have been defined. Denote
by xA1

1 , . . . , xAn
n the free variables of M . Take e = (e1, . . . , en) ∈ JA1× . . .×AnK≺. By abuse of

notation we will simply write JM1K≺(e) instead of JM1K≺(ei1 , . . . , eik) where xi1 , . . . , xik are the
free variables of M1. Similarly for JM2K≺(e). Now we define f as f = JM1K≺(e)(JM2K≺(e)).
We have that f ∈ JBK≺ and f ↓= JMK(e ↓). Now let us show that this correspondence is
strictly monotone. If n = 0 it is trivial, so let us assume n ≥ 1. Take e, e′ two elements of
JA1 × . . . × AnK≺ with e ≺ e′. Let f = JM1K≺(e)(JM2K≺(e)) and f ′ = JM1K≺(e

′)(JM2K≺(e
′)).

Let us distinguish two subcases:
• if there exists i in {1, . . . , n} such that ei ≺ e′i and xi ∈ FV (M1):

then by i.h. on M1 we have JM1K≺(e) ≺A→B JM1K≺(e
′);

moreover by h.i. we have:
JM2K≺(e) �A JM2K≺(e

′) (note the non-strict ordering).
From these two inequalities, by definition of ≺A→B we can deduce:
JM1K≺(e)(JM2K≺(e)) ≺B JM1K≺(e

′)(JM2K≺(e
′)).

• Otherwise: we know that there exists i in {1, . . . , n} such that ei ≺ e′i, and xi is free in M
so it must be free in M2. So by i.h. on M2 we have JM2K≺(e) ≺A JM2K≺(e

′); besides we
know that JM1K≺(e) = JM1K≺(e

′).
We know that JM1K≺(e) belongs to JA → BK≺ so it is strictly monotonic, so we deduce
that:
JM1K≺(e)(JM2K≺(e)) ≺B JM1K≺(e

′)(JM2K≺(e
′)).

So in both subcases we have concluded that f ≺ f ′, which completes the proof of the claim.
This concludes the proof. �

Lemma 10 Let M be a HOP and θ a HOP substitution with FV (M) = {xA1

1 , . . . , xAn
n } and

FV (Mθ) = {yB1

1 , . . . , yBm
m }. Then, for every i ∈ {1, . . . ,m} the function fi = Jθ(xi)K≺ is a

strictly monotonic map. Moreover, we have JMθK≺ = JMK≺ ◦ (f1, . . . , fn).

Proof : For i ∈ {1, . . . ,m} we have fi = Jθ(xi)K≺. We know that θ(xi) is a HOP, and FV (θ(xi)) ⊆

FV (Mθ). Let = {y
Bk1

k1
, . . . , y

Bki

ki
} be the free variables of θ(xi). Then fi belongs to JBk1

K≺× . . .×
JBki

K≺ → JAiK≺. We can then prove the second statement by induction on M . As an illustration
let us just examine here the base cases:
• The case where M = cA is trivial because n = 0 and Mθ = M .
• In the case where M is a variable we have n = 1 and M = xA1

1 . Then JMθK≺ = Jθ(x1)K≺ =
f1 = idA1

◦ f1.
This concludes the proof. �

Applying the same substitution to two HOPs having the same type preserve the properties of
the underlying interpretation:

Lemma 11 If MA, NA are HOPs such that FV (M) ⊆ FV (N), θ is a HOP substitution and if
JMK≺ ≺ JNK≺, then JMθK≺ ≺ JNθK≺.

4.3 Assignments and Polynomial Interpretations

We consider X , C and F as in Sect. 2. To each variable xA we associate a variable xA where A is
obtained from A by replacing each occurrence of base type by the base typeN and by curryfication.
We will sometimes write x (resp. A) instead of x (resp. A) when it is clear from the context.

An assignement [·] is a map from C ∪F to HOPs such that if f ∈ C ∪F , [f] is a closed HOP,
of type A1, . . . , An → A. Now, for t ∈ T we define [t] by induction on t:
• if t ∈ X , then [t] is f ;
• if t ∈ C ∪ F , [t] is already defined;
• otherwise, if t = (t0 t1 . . . tn) then [t] ≡ (. . . ([t0][t1]) . . . [tn]).
Observe that in practice, computing [t] will in general require to do some β-reduction steps.

Lemma 12 Let t ∈ T of type A and FV (t) = {y1 : A1, . . . , yn : An}, then: [t] is a HOP, of type
A, and FV ([t]) = {y1 : A1, . . . , yn : An}.

8

Proof : This follows from the definition of [t], by induction on t. �

We extend the notion of assignments to contexts by setting: [•A] = •A. So if C is a context
then [C] is a HOP context, and we have:

Lemma 13 If C is a context and t a term, then [C{t}] = [C]{[t]}.

Now, if σ is a substitution, [σ] is the HOP substitution defined as follows: for any variable x,
[σ](x) = [σ(x)]. We have:

Lemma 14 If t is a term and σ a substitution, then: [tσ] = [t]θ, where θ = [σ].

Let us now consider the semantic interpretation. If t ∈ T of type A and FV (t) = {y1 : A1, . . . , yn :
An}, we will simply denote by JtK≺ the element J[t]K≺ of JA1 × . . .×An → AK≺.

Lemma 15 Let M , N be HOPs such that JMK≺ ≺ JNK≺ and C be a HOP context such that
C{M} and C{N} are well-defined. Then we have that JC{M}K≺ ≺ JC{N}K≺. The same statement
holds if we replace HOPs M , N by terms t, s and the HOP context by a context.

Now, we say that an assignment [·] is a higher polynomial interpretation (HOPI) or simply a
polynomial interpretation for R iff for any l → r ∈ R, we have that JrK≺ ≺ JlK≺. Note that in the
particular case where the program only contains first-order functions, this notion of higher-order
polynomial interpretation coincides with the classical one for first-order rewrite systems. In the
following we assume that [·] is a polynomial interpretation for the program P. A key property is
the following, which tells you that the intepretation of terms strictly decreases along any reduction
step:

Lemma 16 If s → t, then JtK≺ ≺ JsK≺.

Proof : Suppose s → t, then by definition there exists a rule l → r of R, a context C and a
substitution σ such that s = C{lσ} and t = C{rσ}. As [·] is a polynomial interpretation we have
JrK≺ ≺ JlK≺. We then get:

JrσK≺ = J[rσ]K≺, by definition,

= J[r][σ]K≺, by Lemma 14,

≺ J[l][σ]K≺, by Lemma 11,

= J[lσ]K≺, by Lemma 14 again,

= JlσK≺.

Then by Lemma 15 (second statement) we get:

JC{rσ}K≺ ≺ JC{lσ}K≺,

which ends the proof. �

As a consequence, the interpretation of terms (of base type) is itself a bound on the length of
reduction sequences:

Proposition 17 Let t be a closed term of base type D. Then [t] has type N and any reduction
sequence of t has length bounded by JtK≺.

Proof : It is sufficient to observe that by Lemma 16 any reduction step on t makes JtK≺ decrease
for ≺, and that as t is closed and of type N the order ≺ here is ≺N , which is the ordinary (strict)
order on integers. �

9

4.4 A Complexity Criterion

Proving a STTRS to have an interpretation is not enough to guarantee its time complexity to
be polynomial. To ensure that, we need to impose some constraints on the way constructors are
interpreted.

We say that the assignment [·] is additive if any constructor c of type D1 × · · · ×Dn → D0,
where n ≥ 0, is interpreted by a HOP Mc whose semantic interpretation JMcK≺ is a polynomial
function of the form:

P (y1, . . . , yn) =

n∑

i=1

yi + γc, with γc ≥ 1.

Additivity ensures that the interpretation of first-order values is proportional to their size:

Lemma 18 Let [·] be an additive assignment. Then there exists γ ≥ 1 such that for any value
v of type D, where D is a data type, we have JvK≺ ≤ γ · |v|.

The base type Wn denotes the data-type of n-ary words, whose constructors are empty and
c1, . . . , cn. A function f : ({0, 1}∗)m → {0, 1} is said to be representable by a STTRS R if there
is a function symbol f of type Wm

2 → W2 in R which computes f in the obvious way.
We are now ready to prove the main result about polyomial interpretations, namely that they

enforce reduction lengths to be bounded in an appropriate way:

Theorem 19 Let R be a STTRS with an additive polynomial interpretation [·]. Consider g a
function symbol of type W2×· · ·×W2 → W2. We have: there exists a polynomial P such that, for
any w1, . . . , wn ∈ {0, 1}⋆, any reduction of (g w1 . . . wn) has length bounded by P (|w1|, . . . , |wn|).
This holds more generally for g of type D1, . . . , Dn → D.

Proof : By Prop. 17 we know that any reduction sequence has length bounded by: J(g w1 . . . wn)K≺ =
JgK≺ (Jw1K≺, . . . , JwnK≺). By Lemma 8 there exists a polynomial function Q such that JgK≺ com-
putes Q. Moreover by Lemma 18 there exists γ ≥ 1 such that: JwiK≺ ≤ γ|wi|. So by defining P
as the polynomial function such that P (y1, . . . , yn) = Q(γy1, . . . , γyn), we have that the length of
the reduction sequence is bounded by P (|w1|, . . . , |wn|). �

Corollary 20 The functions on binary words representable by STTRSs admitting an additive
polynomial interpretation are exactly the polytime functions.

Proof : We have two inclusions to prove: from left to right (complexity soundness), and from
right to left (completeness):
• Complexity soundness. Assume F is represented by a program g with type W2×· · ·×W2 →
W2 admitting an additive polynomial interpretation. Then by Theorem 19 we know that for
any w1, . . . , wn ∈ {0, 1}⋆, any reduction of (g w1 . . . wn) has a polynomial number of steps.
By a result in [12], derivational complexity is an invariant cost model for TRSs, via graph
rewriting. This result can be easily generalized to STTRSs.

• Completeness. Let F be a polytime function on binary words. It has been shown in [1]
(Theorem 4, Sect. 4.2) that there exists a first-order rewrite system with an additive polynomial
interpretation which computes F . Actually the rewrite systems considered in this paper are
not assumed to be typed, but it can be checked that the rewrite systems used to simulate
polynomial time Turing machines are typable and can be seen as simply typed term rewrite
systems in our sense. Moreover when restricting to first-order typed rewrite systems, our
notions of polynomial interpretation and of additive polynomial interpretation coincide with
the notions they consider. Therefore F can be represented by a simply typed term rewriting
system program with an additive polynomial interpretation.

This concludes the proof. �

10

4.5 Examples

Consider the STTRS defined by the following rules:

(1) (map f nil) → nil
(2) (map f (cons x xs)) → (cons (f x) (map f xs))

with the following types:

f : D1 → D2, map : (D1 → D2)× L(D1) → L(D2),
nil : L(Di), cons : Di × L(Di) → L(Di) for i = 1, 2.

Here Di and L(Di) for i = 1, 2 are base types. For simplicity we use just one cons and one nil
notation for both types D1, D2.

The interpretation below was given in [2] for proving termination, but here we show that it also
gives a polynomial time bound. To simplify the reading of HOPs we use infix notations for +,
omit some brackets (because anyway we have associativity and commutativity for the denotations)
and the symbol ×, write F (n) for the application of a function and k instead of k. Now, we choose
the following assignment of HOPs:

[nil] = 2 : N
[cons] = λn.λm.(n+m+ 1) : N → N → N
[map] = λF.λn.nF (n) : (N → N) → N → N

Instead of the last line we will often write [map](F, n) = nF (n).
We use as notations [f] = F , [x] = n, [xs] = m. We then get the following interpretations of

terms:
[map f nil] = 2F (2)
[map f cons(x, xs)]] = (n+m+ 1)F (n+m+ 1)
[cons(f(x), (map f xs))] = 1 + F (n) +mF (m)

One can check that the condition JrK≺ ≺ JlK≺ holds for (1) and (2). We thus have an additive
polynomial interpretation for map, therefore Corollary 20 applies and we can conclude that for any
f also satisfying the criterion, (map f) computes a polynomial time function.

Now, one might want to apply the same method to an iterator iter, of type (D → D)×D →
NAT → D, which when fed with arguments f , d, n iterates f for n times starting from d. However
there is no additive polynomial interpretation for this program . . . which is normal because iter

can produce an exponential-size function when it is fed with a polynomial time function, e.g. a
function double : NAT → NAT .

One way to overcome this issue could be to show that iter does admit a valid polynomial
interpretation, provided its domain is restricted to some particular functions, admitting a small
polynomial interpretation, of the form λn.(n+ c), for some constant c.

This could be enforced by considering a refined type systems for HOPs. But the trouble is that
there are very few programs which admit a polynomial interpretation of this form! Intuitively the
problem is that polynomial interpretations need to bound simultaneously the execution time and
the size of the intermediate values obtained. In the sequel we will see how to overcome this issue.

5 Beyond Interpretations: Quasi-Interpretations

The previous section has illustrated our approach. However we have seen that the intensional
expressivity of higher-order polynomial interpretations is too limited. In the first-order setting
this problem has been overcome by decomposing into two distinct conditions the rôle played by
polynomial interpretations [13, 3]: (i) a termination condition, (ii) a condition enforcing a bound
on the size of values occurring during the computation. In [3], this has been implemented by
using: for (i) some specific recursive path orderings, and for (ii) a notion of quasi-interpretation.
We will examine how this methodology can be extended to the higher-order setting.

11

fA ∈ NF
Γ | ∆ ⊢ f : A

cA ∈ C
Γ | ∆ ⊢ c : A Γ | x : A,∆ ⊢ x : A x : D,Γ | ∆ ⊢ x : D

fA1,...,An→B ∈ RF ,with arity n
Γ | ∅ ⊢ si : Ai

Γ | ∆ ⊢ ((f s1 . . . sn)) : B

Γ | ∆ ⊢ t : A1 × . . .×An → B
Γ | ∆i ⊢ si : Ai

Γ | ∆,∆1, . . . ,∆n ⊢ (t s1 . . . sn) : B

Figure 1: A Linear Type System for STTRS terms.

The first step will take the form of a termination criterion defined by a linear type system for
STTRSs together with a path-like order, to be described in Section 5.1 below. The second step
consists in shifting from a semantic world of strictly monotonic functions to one of monotonic
functions. This corresponds to a picture like the following, and is the subject of sections 5.2
and 5.3.

STTRSs
[·]

// HOMPs
J·K

// FPOS

5.1 The Termination Criterion

The termination criterion has two ingredients: a typing ingredient and a syntactic ingredient,
expressed using the order ⊏. Is it restrictive for expressivity? Let us comment first on the
syntactic ingredient:
• First consider the embedding of simply typed λ-calculus given by the restriction of the embed-

ding of PCF of Section 3. The function symbols used are absM,x for all typed term M and
variable x. We define the order ⊏ by:

absM,x ⊏ absN,y if λy.N is a subterm of M.

We write f ⊏ t if f ⊏ g for any function g in t. The STTRS encoding of M then satisfies the
following condition, for any rule ((f p1 . . . pk)) → s:

s ⊏ f (1)

As the order ⊏ defined is well-founded, this implies the termination of this STTRS program.
• Now consider System T. We have seen that System T with weak reduction can also be embedded

into a STTRS. Forget about functions pred, succ, ifz for simplification, and consider the new
function rec. We extend ⊏ by setting: f ⊏ rec for any function f distinct from rec. Then
in the STTRS encoding of a system T term M , each rule ((f p1 . . . pk)) → s satisfies either
condition 1 or the following condition 2: there are a term r and sequences of patterns q1, . . . , qk
such that for any i, j, qi,j is subterm of pi,j, there exist i0, j0 s.t. qi0,j0 6= pi0,j0 and

s = r{x/((f q1 . . . qk))}, and r ⊏ f (2)

So the syntactic ingredient is fairly expressive, since it will allow to validate system T programs.
As to the full termination criterion, including the typing ingredient, we believe it is general

enough to embed Hofmann’s system SLR [14], which is a restriction of system T based on safe
recursion and using linear types, and which characterizes the class of polytime functions.

Formally, the class F needs to be split into two disjoint classes RF and NF . The intended
meaning is that functions in NF will not be defined in a recursive way, while functions in RF
can. We further assume given a strict order ⊏ on F which is well-founded. The rules of a linear
type system for STTRS terms are in Figure 1. A program satisfies the termination criterion if
every rule ((f p1 . . . pk)) → s satisfies:

12

T S((f t1...tn))(X) =1 +

∑

tj ∈ FO
j ≤ arity(f)

T Stj (X)

+

∑

tj ∈ HO
j ≤ arity(f)

n ·X · T Stj (X)

+

∑

j≥arity(f)+1

T Stj (X)

+

∑

s∈R(f)

n ·X · T Ss(X)

 , if f ∈ RF

T S((f t1...tn))(X) =1 +

∑

1≤j≤n

T Stj (X)

+

∑

s∈R(f)

T Ss(X)

 , if f ∈ NF

T S((c t1...tn))(X) =1 +

∑

1≤j≤n

T Stj (X)

 ,

T S((x t1...tn))(X) =1 +

∑

1≤j≤n

T Stj (X)

 ;

T Sv(X) =1, if v is a first order value,

Figure 2: The Definition of T S(·)(X)

1. either f ∈ RF , there are a term r and sequences of patterns q1, . . . , qk such that for any
i, j, qi,j is subterm of pi,j , there exist i0, j0 s.t. qi0,j0 6= pi0,j0 and Γ | x : B,∆ ⊢ r : B,
s = r{x/((f q1 . . . qk))}, and r ⊏ f;

2. or f ∈ NF , s is typable, and s ⊏ f.
Observe that because of the typability condition in 1., this termination criterion implies that there
is at most one recursive call in the right-hand.side s of a rule.

By a standard reducibility argument, one get the following:

Theorem 21 If a program satisfies the termination criterion, then any of its terms is strongly
normalizing.

In the rest of this section, we show that all that matters for the time complexity of STTRSs
satisfying the termination criterion is the size of first-order values that can possibly appear along
the reduction of terms. In other words, we are going to prove that if the latter is bounded, then
the complexity of the starting term is known, modulo a fixed polynomial. Showing this lemma,
which will be crucial in the following, requires introducing many auxiliary definitions and results.

Given a term t and a natural number n ∈ N, n is said to be a bound of first order values for t
if for every reduct s of t, if s contains a first-order value v, then |v| ≤ n.

Lemma 22 If n ∈ N is a bound of first-order values for t and t →∗ s, then n is also a bound of
first-order values for s.

Suppose a function symbol f takes n base arguments. Then f is said to have base values bounded by
a function q : Nn → N if (f t1 . . . tn) has q(|t1|, . . . , |tn|) as a bound of its first-order values whenever
t1, . . . , tn are first-order values. Given a term t, its definitional depth is the maximum, over any
function symbol f appearing in t, of the length of the longest descending ⊏-chain starting from f.
The definitional depth of t is denoted as ∂(t). Given a function symbol f, R(f) denotes the set of
terms appearing in the right-hand side of rules for f, not taking into account recursive calls. More
formally, r belongs to R(f) if there is a rule ((f p1 . . . pk)) → s such that s = r{x/((f q1 . . . qk))}
(where x might not occur in r) and r ⊏ f. For every term t, define its space-time weight as a
polynomial T St(X) on the indeterminate X, by induction on (∂(t), |t|), following the lexicographic
order, as in Figure 2. We denote here by FO (resp. HO) the arguments tj of f of base type (resp.
functional type). The collapsed size ||t|| of a term t is its size, where however all first-order values

13

count for 1. It is defined formally by:

||v|| = 1, if v is a first-order value,

||(t0 t1 . . . tn)|| =
∑

i=0

||ti||,

||α|| = 1, if α = x, c or f.

For instance ||(s (s x))|| = 3 and ||(s (s 0))|| = 1. We define a rewrite relation ⇒ which is like
→, except that whenever a recursive function symbol is unfolded, it is unfolded completely in just
one rewrite step.

We are now ready to explain why the main result of this section holds. First of all, T St(X) is
an upper bound on the collapsed size of t, a result which can be proved by induction:

Lemma 23 For every n and for every t, T St(n) ≥ ||t||.

Proof : A simple induction on t. �

Moreover, T St(X) decreases along any ⇒ step if X is big enough:

Lemma 24 If n is a bound of first-order values for t, and t ⇒ s, then T St(n) > T Ss(n).

Proof : Suppose that t ⇒ s and let ((f r1 . . . rm)) be the redex fired in t to produce s. Then we
can say that there is p such that

T St(n) = T S((f r1...rm))(n) + p;

T Ss(n) = T Sq(n) + p.

Let us now distinguish two cases:
• If f ∈ RF , then q is obtained by at most m · n rewrite steps from ((f r1 . . . rm)) and does

not contain any instance of f anymore. By an easy combinatorial argument, one realizes that,
indeed,

T Sq(n) ≤

∑

rj ∈ HO
j ≤ arity(f)

m · n · T Srj (X)

+

∑

s∈R(f)

m · n · T Ss(X)

which, by definition, is strictly smaller than T S((f r1...rm))(n).
• if f ∈ NF , then q is such that ((f r1 . . . rm)) ⇒ q. As a consequence

T S((f r1...rm))(n) = 1 +

∑

1≤j≤m

T Srj (n)

+

∑

w∈R(f)

T Sw(n)

while q, containing possibly at most one instance of each higher-order value in r1, . . . , rm, is
such that:

T Sq(n) ≤

∑

1≤j≤m

T Srj (n)

+

∑

w∈R(f)

T Sw(n)

 .

This concludes the proof. �

It is now easy to reach our goal:

Proposition 25 Suppose that R satisfies the termination criterion. Moreover, suppose that f has
base values bounded by a function q : Nn → N. Then, there is a polynomial p : N → N such that if
t1, . . . , tn are first-order values and (f t1 . . . tn) →

m s, then m, |s| ≤ p(q(|t1|, . . . , |tn|)).

14

Proof : Let us first prove the following statement: if (f t1 . . . tn) ⇒
m s, then there is q polynomial

such that m, ||s|| ≤ p(q(|t1|, . . . , |tn|)) Actually, the polynomial we are looking for is precisely

q(X) =

∑

s∈R(f)

n ·X · T Ss(X)

+ n.

Indeed, observe that by definition

T S(f t1...tn)(X) = q(X)

and that, by lemmas 24 and 23, this is both a quantity that decreases at any reduction step
and which bounds from above the collapsed size of any reduct of (f t1 . . . tn). Now, observe
that:
• If m is a bound of first order values for t, then |t| ≤ m · ||t||;
• If m is a bound of first order values for t, then the number of “real” →-reduction steps
corresponding to each ⇒-reduction step from t is bounded by m · k, where k is the maximum
arity of function symbols in the underlying STTRS;

• Call-by-value is a strongly confluent rewrite relation, and as a consequence the possible number
of reduction steps from a term does not depend on the specific reduction order. Similarly for
the size of reducts.

This concludes the proof. �

To convince yourself that linearity is needed to get a result like Proposition 25, consider the
following STTRS, whose terms cannot be typed in our linear type systems:

((comp x y) z) → (x(yz)
(autocomp x) → (comp x x)
(id x) → x
(expid 0) → id

(expid (s x)) → (autocomp (expid x))

Both the term id and (expid t) (for every value t of type NAT) can be given type NAT → NAT .
Actually, they all are the same function, extensionally. But try to see what happens if expid is
applied to natural numbers of growing sizes: there is an exponential blowup going on which does
not find any counterpart in any first-order value.

5.2 Higher-Order Max-Polynomials

We want to refine the type system for higher-order polynomials, in order to be able to use types
to restrict the domain of functionals. The grammar of types is now the following one:

S ::= N | S ⊸ S

A ::= S | A → A

Types of the first (resp. second) grammar are called linear types (resp. types) and denoted as
R,S . . . (resp. A,B,C . . .).

The linear function type ⊸ is a subtype of →, i.e., one can define a relation ⊑ between types
by stipulating that S ⊸ R ⊑ S → R and by closing the rule above in the usual way, namely by
imposing that A → B ⊑ C → D whenever C ⊑ A and B ⊑ D.

We now consider the following new set of constructors:

DP = {+ : N ⊸ N ⊸ N,max : N ⊸ N ⊸ N,

× : N → N → N} ∪ {n : N | n ∈ N
⋆},

15

and we consider the following grammar of Church-typed terms

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B |

(MS⊸RNS)R | (λxS .MR)S⊸R

where cA ∈ DP . We also require that:
• in (MA→BNA)B , FV (NA) does not contain any variable xR⊸S with a linear type R ⊸ S;
• in (λxA.MB)A→B the variable xA occurs at least once in MB ;
• in (λxS .MR)S⊸R, the variable xS occurs exactly once in MR.
One can check that this class of Church-typed terms is preserved by β-reduction. A higher-
order max-polynomial (HOMP) is a term defined above and which is in β-normal form. The
interpretations JMK, and the equivalence relation ≡ are defined in a similar way as before. We
define the following objects and constructions on objects:
• N is the domain of strictly positive integers, equipped with the natural order, denoted here
≤N ,

• 1 is the trivial order with one point;
• if σ, τ are objects, then σ × τ is obtained by the product ordering,
• σ ⇒ τ is the set of monotonic total functions from σ to τ , equipped with the extensional order:
f ≤σ⇒τ g if for any a of σ we have f(a) ≤τ g(a).

This way, one obtains a subcategory FPOS of the category POS with partial orders as objects and
monotonic total functions as morphisms.

Given an object σ of the category FPOS and an element e ∈ σ, the size |e| of e is defined as
follows:
• If σ is N , then |e| is simply the natural number e itself;
• If σ = σ1 × · · · × σn, then the size of e = (e1, . . . , en) exists if for any i ∈ {1, . . . , n} the size

|ei| exists, and in this case |e| =
∑n

i=1 |ei|.
• If σ = τ ⇒ ρ, then the size of e, if it exists, is the minimum natural number |e| such that for
every f ∈ τ , |e| ≤ |e(f)| ≤ |e|+ |f |.

We can now define a new construction on FPOS objects: if σ, τ are objects, then σ ⊸ τ is the
restriction of the order σ ⇒ τ to the elements e which admit a size.

We denote by JAK≤ the semantics of A as an object of FPOS, where N is mapped to N , → is
mapped to ⇒ and ⊸ to ⊸. As before, any element of e ∈ JAK≤ can be mapped onto an element
e↓ of JAK. We define JMK≤ for any HOMP M in the natural way.

Proposition 26 Let M be a closed HOMP of type A. Then JMK≤ ∈ JAK≤. Moreover, if A is a
linear type S, then the size of JMK≤ is defined.

Lemma 27 If M is a HOMP of type Nm → N (with m arguments) and such that FV (M) =
{y1 : N, . . . , yk : N}, then the function JMK is bounded by a polynomial and satisfies: ∀i ∈
{1, k +m}, (JMK(x1, . . . , xk))(xk+1, . . . , xk+m) ≥ xi.

Proof : We prove the statement by induction on M :
• If M = x then the statement holds.
• If M = n,+,max or ×, then the statement is obviously also true (note that for × we are using
the fact that the base domain is N∗ and not N).

• If M is an application, it can be written as M = (. . . (M0) M1) . . .) Mn) where M0 is not an
application and n ≥ 1. Moreover M0 cannot be an abstraction since M is in β-normal form,
and it cannot be a variable y since M can only have free variables of type N. So M0 = c for
c = +,max or ×, and therefore n ≤ 2. We obtain that the Mis for 1 ≤ i ≤ 2 are of type N
hence also satisfy the hypothesis, and thus by i.h. they satisfy the claim. Therefore the claim
is also valid for M .

• Finally the only possibility left is M = λx.M1. By definition of HOMPs we know then that x
is a free variable of M1 of type N, and as M1 satisfies the hypothesis, by i.h. we know that
M1 satisfies the claim. Therefore the claim is valid for M .

16

This concludes the proof. �

The following will be useful to obtain the Subterm Property:

Lemma 28 For every type A there is a closed HOMP of type A.

Proof : By induction on A:
• If A is simply N, then the required HOMP is simply 1;
• If A is A1 7→1 . . . An 7→n N (where 7→i is either → or ⊸), then the required HOMP is

λxA1

1 λxAn
n .(x1M

1
1 . . .Mm1

1) + . . .+ (xnM
1
n . . .Mm1

n)

where the HOMPs M j
i exist by induction hypothesis.

�

5.3 Higher-Order Quasi-Interpretations

Now, a HOMP assignment [·] is defined by: for any fA ∈ X (resp. fA ∈ C ∪F), [f] is a variable
f (resp. a closed HOMP M) with a type B, where B is obtained from A by:
• replacing each occurrence of a base type D by N,
• replacing each occurrence of → in A by either → or ⊸.
For instance if A = (D1 → D2) → D3 we can take for B any of the types: (N ⊸ N) → N,
(N → N) → N, etc. In the sequel we will write A for any of these types B. Then [·] is extended
inductively to all t ∈ T as for HOP assignments.

Lemma 29 Let t ∈ T of type A and FV (t) = {y1 : A1, . . . , yn : An}, then: [t] is a HOMP, with
a type A, and FV ([t]) = {y1 : A1, . . . , yn : An} for some types Ai, 1 ≤ i ≤ n.

Additive HOMP assignments are defined just as additive HOP assignments.

Lemma 30 Let [·] be an additive HOMP assignment. Then there exists γ ≥ 1 such that for any
value v of type D, where D is a data type, we have JvK≺ ≤ γ · |v|.

Now, we say that an assignment [·] is a quasi-interpretation for R if for any rule l → r of R, it
holds that JlK≤ ≥ JrK≤. Observe that contrarily to the case of polynomial interpretations these
inequations are not strict, and moreover they are stated with respect to the new domains, taking
into account the distinction between the two connectives → and ⊸.

The interpretation of a term does not, like in the strict case, necessarily decrease along a
reduction step. However, it cannot increase:

Lemma 31 If [·] is a quasi-interpretation and if t →∗ s, then JsK≤ ≤ JtK≤.

Proof :[Sketch] This can be done in a way analogous to what has been done for polynomial
interpretations with Lemma 16, using intermediary lemmas for substitutions and contexts similar
to lemmas 14 and 15, but it is actually easier because here we are not considering a strict order.
�

The previous lemma, together with the possibility of forming HOMPs of arbitrary type (Lemma 28)
implies the following, crucial, property:

Proposition 32 (Subterm Property) Suppose that an STTRS R has an additive quasi-interpretation
[·]. Then, for every function symbol f of arity n with base arguments, there is a polynomial
p : Nn → N such that if (f t1 . . . tn) →

∗ s and if s contains an occurrence of a base term r, then
|r| ≤ p(|t1|, . . . , |tn|).

Proof : Denote t = (f tn . . . tn). Its type A can be written as A = A1, . . . , Ak → D, where
D is a base type. By Lemma 28, for any i ∈ 1, . . . , k there is a closed HOMP Mi of type Ai.
Consider now t′ = (f x1 . . . xn) where for i ∈ 1, . . . , n, xi is a free variable of same type as ti.

17

Then M = [(f x1 . . . xn)]M1 . . . Mk is a HOMP of type N with free variables xi of type N , for
i ∈ 1, . . . , n. By Lemma 27 we deduce from that that there exists a polynomial q such that:

yi ≤ JMK≤(y1, . . . , yn) ≤ q(y1, . . . , yn), for i = 1, . . . , n.

Moreover we have:

J([t] M1 . . . Mk)K≤ = J([t′] M1 . . . Mk)K≤(Jt1K≤, . . . , JtnK≤)

= JMK≤(Jt1K≤, . . . , JtnK≤)

≤ q(Jt1K≤, . . . , JtnK≤)

≤ q(α|t1|, . . . , α|tn|)

for some α, because [·] is an additive quasi-interpretation, thanks to Lemma 30. So finally there
is a polynomial p such that:

J([t] M1 . . . Mk)K≤ ≤ p(|t1|, . . . , |tn|).

Now, as t →∗ s, by Lemma 31 we have JtK≤ ≥ JsK≤. Therefore J[t] M1 . . . MkK≤ ≥ J[s] M1 . . . MkK≤.
So we get: J[s] M1 . . . MkK≤ ≤ p(|t1|, . . . , |tn|). Besides, by assumption we know that s can be writ-
ten as s = s′{y/r}. By Lemma 27 we have J[s′] M1 . . . MkK≤(y) ≥ y, because ([s′] M1 . . . Mk) has
type N and only one free variable y which is also of type N . Therefore we get J[s] M1 . . . MkK≤ =
J[s′] M1 . . . MkK≤(JrK≤) ≥ JrK≤. So finally by combining the two inequalities we obtained we get
JrK≤ ≤ J[s] M1 . . . MkK≤ ≤ p(|t1|, . . . , |tn|). �

And here is the main result of this Section:

Theorem 33 If a program P has an additive quasi-interpretation, P satisfies the termination
criterion and f has arity n with base arguments, then there is a polynomial p : Nn → N such that
if (f t1 . . . tn) →

m s, then m, |s| ≤ p(|t1|, . . . , |tn|). So if f has a type D1, . . . , Dn → D then it is
Ptime.

Proof : A consequence of Proposition 32 and of Proposition 25. �

Notice how Theorem 33 is proved by first observing that terms of STTRSs having a quasi-
interpretation are bounded by natural numbers which are not too big with respect to the input,
thus relying on the termination criterion to translate these bounds to complexity bounds.

5.4 Examples

Consider the program foldl given by:

(1) (foldl f b nil) → b
(2) (foldl f b (cons x xs)) → (f x (foldl f b xs))

with types:
foldl : (D × E → E)× E × L(D) → E
f : D × E → E
nil : L(E)
cons : E × L(E) → L(E)

Now, we choose as assignment:

[nil] = 1 : N
[cons](n,m) = n+m+ 1 : N → N → N
[foldl](φ, p, n) = p+ nφ(1, 1) : (N ⊸ N ⊸ N) → N → N → N

Observe the ⊸ in the type of the first argument of [foldl] which is the way to restrict the
domain of arguments. We denote [b] = p, [x] = n, [xs] = m, [f] = φ. We then obtain the
following interpretations of terms:

[foldl f b nil] = p+ 1φ(1, 1)
[b] = p
[foldl f b cons(x, xs)] = p+ (n+m+ 1)φ(1, 1)
[f(x, (foldl f b xs)))] = φ(n, (p+mφ(1, 1)))

18

The condition JrK≤ ≤ JlK≤ holds for (1), because we have:

p ≤ p+ φ(1, 1)

holds for any p. As to rule (2) consider φ ∈ (N ×N ⊸ N), n, p and m in N . So we know that
there exists c ≥ 0 such that:

c ≤ φ(x1, x2) ≤ x1 + x2 + c, for any x1, x2 ∈ N . (∗)

Then we have:

φ(n, (p+mφ(1, 1))) ≤ n+ p+mφ(1, 1) + c by (∗),

≤ nφ(1, 1) + p+mφ(1, 1) + c,

≤ p+ (n+m+ 1)φ(1, 1).

where for the two last steps we used φ(1, 1) ≥ 1 and φ(1, 1) ≥ c (by (∗)). So JrK≤ ≤ JlK≤ also
holds for (2) and we have an additive quasi-interpretation.

As to the termination criterion, it is satisfied because in (2) xs is a strict sub-pattern of
cons(x, xs) and the term f(x, y) can be typed in the linear type system as required.

Summing up, we can apply Theorem 33 and conclude that: if the termination criterion is
satisfied by all functions, if tD×E→E , bE are terms and [t] is a HOMP with type N ⊸ N ⊸ N,
then (foldl t b) is a polynomial time program of type L(D) → E.

6 Discussion and Relation with Other ICC Systems

The authors believe that the interest of the present work does not lie much in bringing yet another
ready-to-use ICC system but rather in offering a new framework in which to design ICC systems
and prove their complexity properties. Indeed, considered as an ICC system our setting presents
two limitations:
1. given a program one needs to find an assignment and to check that it is a valid quasi-

interpretation, which in general will be difficult to automatize;
2. the termination criterion currently does not allow to reuse higher-order arguments in full

generality.
To overcome 2. we think it will be possible to design more liberal termination criteria, and to
overcome 1. one possibility consists in defining type systems such that if a program is well-typed,
then it admits a quasi-interpretation, and for which one could devise type-inference algorithms.

6.1 Related and Further Work

Let us first compare our approach to other frameworks for proving complexity soundness results.
At first-order, we have already emphasized the fact that our setting is an extension of the

quasi-interpretation approach of [3] (see also [15] for the relation with non-size-increasing, at first-
order). We could examine whether the various flavours they consider on the termination criteria
and the interpretations (e.g. sup-interpretations) could suggest ideas in our higher-order setting.

At higher-order, various approaches based on realizability have been used [14, 16, 17]. While
these approaches were developed for logics or System T-like languages, our setting is adapted to a
language with recursion and pattern-matching. We think it might also be easier to use in practice.

Let us now discuss the relations with other ICC systems. Several variants of system T based
on restriction of recursion and linearity conditions [14, 18, 19] have been proposed which char-
acterize polynomial time. Another system [20] with a linear type system for non-size-increasing
computation offers more intensional expressivity. We believe we should be able to embed these
systems in our approach, but leave this for future work. With respect to the first group of works,
we offer the same benefit as [20], that is to say the nesting of recursions thanks to the distinc-
tion of non-size-increasing functions. With respect to [20], the advantages we bring are the use

19

of recursively defined functions generalizing the System T recursor and a slightly more general
handling of higher-order arguments, allowing for instance to validate the foldl program.

Some other works are based on type systems built out of variants of linear logic [21, 22, 23].
They are less expressive for first-order functions but offer more liberal disciplines for handling
higher-order arguments. In future work we will examine if they could suggest a more flexible
termination condition for our setting, maybe itself based on quasi-interpretations, following [24].

7 Conclusions

We have advocated the usefulness of Simply Typed Term Rewriting Systems to smoothly extend
notions from first-order rewrite systems to the higher-order setting. Our main contribution is a new
framework for studying ICC systems for higher-order languages. While up to now quite distinct
techniques had been successful for providing expressive criteria for Ptime complexity at first-order
and at higher-order respectively, our approach allows to take advantage simultaneously of these
techniques: interpretation methods on the one hand, and semantic domains and type systems on
the other. We have illustrated the strength of this framework by designing an ICC system for Ptime
based on a termination criterion and on quasi-interpretations, which allows to give some sufficient
conditions for programs built with higher-order functionals (like foldl) to work in bounded time.
We think this setting should allow in future work to devise new systems for ensuring complexity
bounds for higher-order languages, which would be more expressive algorithmically.

References

[1] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet, “Algorithms with polynomial inter-
pretation termination proof,” J. Funct. Program., vol. 11, no. 1, pp. 33–53, 2001.

[2] T. Yamada, “Confluence and termination of simply typed term rewriting systems,” in Pro-
ceedings of RTA’01, ser. LNCS, vol. 2051. Springer, 2001, pp. 338–352.

[3] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen, “Quasi-interpretations a way to control re-
sources,” Theor. Comput. Sci., vol. 412, no. 25, pp. 2776–2796, 2011.

[4] D. A. Plaisted, “A recursively defined ordering for proving termination of term rewriting
systems,” University of Illinois, Urbana, Illinois, Tech. Rep. R-78-943, September 1978.

[5] N. Dershowitz, “Orderings for term-rewriting systems,” Theoretical Computer Science,
vol. 17, no. 3, pp. 279–301, 1982.

[6] D. Lankford, “On proving term rewriting systems are noetherian,” Louisiana Tech. University,
Tech. Rep. MTP-3, 1979.

[7] U. Dal Lago and S. Martini, “On constructor rewrite systems and the lambda-calculus,” in
ICALP (2), 2009, pp. 163–174.

[8] J.-P. Jouannaud and M. Okada, “A computation model for executable higher-order algebraic
specification languages,” in LICS, 1991, pp. 350–361.

[9] J. W. Klop, V. van Oostrom, and F. van Raamsdonk, “Combinatory reduction systems:
Introduction and survey,” Theor. Comput. Sci., vol. 121, no. 1&2, pp. 279–308, 1993.

[10] J.-P. Jouannaud and A. Rubio, “The higher-order recursive path ordering,” in LICS, 1999,
pp. 402–411.

[11] T. Aoto and T. Yamada, “Termination of simply typed term rewriting by translation and
labelling,” in Proceedings of RTA’03, ser. LNCS, vol. 2706. Springer, 2003.

20

[12] U. Dal Lago and S. Martini, “Derivational complexity is an invariant cost model,” in
FOPARA, 2009, pp. 88–101.

[13] J.-Y. Marion and J.-Y. Moyen, “Efficient First Order Functional Program Interpreter with
Time Bound Certifications,” in Proceedings of LPAR’00, ser. LNAI, vol. 1955. Springer,
2000, pp. 25–42.

[14] M. Hofmann, “A mixed modal/linear lambda calculus with applications to Bellantoni-Cook
safe recursion,” in Proceedings of CSL, ser. LNCS, 1997, pp. 275–294.

[15] R. Amadio, “Synthesis of max-plus quasi-interpretations,” Fundamenta Informaticae, vol. 65,
pp. 29–60, 2005.

[16] U. Dal Lago and M. Hofmann, “Realizability models and implicit complexity,” Theor. Com-
put. Sci., vol. 412, no. 20, pp. 2029–2047, 2011.

[17] A. Brunel and K. Terui, “Church => Scott = Ptime: an application of resource sensitive
realizability,” in Proceedings of workshop DICE, ser. EPTCS, vol. 23, 2010, pp. 31–46.

[18] S. J. Bellantoni, K.-H. Niggl, and H. Schwichtenberg, “Higher type recursion, ramification
and polynomial time,” Ann. Pure Appl. Logic, vol. 104, no. 1-3, pp. 17–30, 2000.

[19] U. Dal Lago, “The geometry of linear higher-order recursion,” in LICS, 2005, pp. 366–375.

[20] M. Hofmann, “Linear types and non-size-increasing polynomial time computation,” Informa-
tion and Computation, vol. 183, no. 1, pp. 57–85, 2003.

[21] P. Baillot and K. Terui, “Light types for polynomial time computation in lambda calculus,”
Inf. Comput., vol. 207, no. 1, pp. 41–62, 2009.

[22] M. Gaboardi and S. Ronchi Della Rocca, “A soft type assignment system for lambda -
calculus,” in Proceedings of CSL’07, ser. LNCS, vol. 4646. Springer, 2007, pp. 253–267.

[23] P. Baillot, M. Gaboardi, and V. Mogbil, “A polytime functional language from light linear
logic,” in ESOP, 2010, pp. 104–124.

[24] U. Dal Lago and M. Gaboardi, “Linear dependent types and relative completeness,” in LICS,
2011, pp. 133–142.

21

