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Wave propagation in a stratified fluid / porous medium is studied here using analytical and numerical methods. The semi-analytical method is based on an exact stiffness matrix method coupled with a matrix conditioning procedure, preventing the occurrence of poorly conditioned numerical systems. Special attention is paid to calculating the Fourier integrals. The numerical method is based on a high order finite-difference time-domain scheme. Mesh refinement is applied near the interfaces to discretize the slow compressional diffusive wave predicted by Biot's theory. Lastly, an immersed interface method is used to discretize the boundary conditions. The numerical benchmarks are based on realistic soil parameters and on various degrees of hydraulic contact at the fluid / porous boundary. The time evolution of the acoustic pressure and the porous velocity is plotted in the case of one and four interfaces. The excellent level of agreement found to exist between the two approaches confirms the validity of both methods, which cross-checks them and provides useful tools for future researches.

Introduction

This study focuses on the propagation of transient 2D mechanical waves emitted by a source point in a fluid half-space over a stratified poroelastic medium. This configuration occurs in situations such as those encountered in the field of underwater acoustics and civil engineering. Natural or artificial media, presenting unidirectional varying properties, can be modelled as multilayered structures. The wave propagation is described by means of acoustic equations in the fluid and low-frequency Biot's equations in the poroelastic media [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low-frequency range[END_REF]. Hydraulic exchanges between the fluid and the first porous layer are modeled using various boundary conditions [START_REF] Rosenbaum | Synthetic microseismograms: logging in porous formation[END_REF][START_REF] Gurevich | Interface conditions for Biot ′ s equations of poroelasticity[END_REF]. Classical textbooks such as [START_REF] Bourbié | Acoustics of Porous Media[END_REF][START_REF] Carcione | Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media[END_REF] can be consulted for a detailed analysis of Biot's equations (which involve a fast compressional wave and a shear wave, as in elastic media, and a slow compressional wave). In the case of a single fluid / porous interface, many theoretical studies have dealt with the reflection / transmission coefficients [START_REF] Wu | Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary[END_REF] and with the properties of the surface waves [START_REF] Feng | High-frequency acoustic properties of a fluid / porous solid interface. I. New surface mode[END_REF][START_REF] Denneman | Reflection and transmission of waves at a fluid / porous medium[END_REF][START_REF] Edelman | Surface waves at vacuum/porous medium interface: low frequency range[END_REF][START_REF] Gubaidullin | Frequency-dependent acoustic properties of a fluid / porous solid interface[END_REF][START_REF] Van Dalen | On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid[END_REF]. The aim of the present study is to solve this problem in the case of an arbitrary number of layers, using two radically different approaches: a semi-analytical approach and a purely numerical one.

On the one hand, various analytical methods have been developed in the case of a single fluid / porous interface: Cagniard-de Hoop's method [START_REF] Feng | High-frequency acoustic properties of a fluid / porous solid interface. II. The 2D reflection Green's function[END_REF][START_REF] Diaz | Analytical solution for wave propagation in heterogeneous acoustic / porous media. Part 1: the 2D case[END_REF] for an inviscid medium, and [START_REF] Lu | Green's function for a harmonic acoustic point source within seawater overlying a saturated poroelastic seabed[END_REF][START_REF] Van Dalen | Pseudo interface waves observed at the fluid / porous-medium interface. A comparison of two methods[END_REF] for a viscous saturating fluid, to cite but a few. In situations involving a larger number of interfaces, the strategies usually adopted are based on transfer matrix, stiffness matrix, or transmission and reflection matrix methods. These approaches were first developed for use with viscoelastic media [START_REF] Thomson | Transmission of elastic waves through a stratified soil medium[END_REF][START_REF] Haskell | The dispersion of surface waves multilayered media[END_REF][START_REF] Kausel | Stiffness matrices for layered soils[END_REF], and only a few studies using multilayer approaches to poroelastic models have been published so far because of the complexity of poroelastic models and the poor conditioning of the remaining matrices. The exact stiffness matrix method has been applied in the context of poroelasticity to harmonic 2D problems [START_REF] Rajapakse | Dynamic response of a multilayered poroelastic medium[END_REF], transient 2D problems [START_REF] Degrande | Wave propagation in layered dry, saturated and unsaturated poroelastic media[END_REF], and problems involving axisymmetric quasi-static configurations [START_REF] Senjuntichai | Exact stiffness method for quasi-statics of a multi-layered poroelastic medium[END_REF]. All the latter authors stressed the numerical difficulties encountered due to poorly conditioned matrices. Methods have been proposed in [START_REF] Lu | Fundamental solution for a layered porous half space subject to a vertical point force or a point fluid source[END_REF] for eliminating the mismatched terms using the transmission and reflexion matrix approach in the case of axisymmetric geometries, and recently, using the exact stiffness matrix method in [START_REF] Mesgouez | Transient solution for multilayered poroviscoelastic media obtained by an exact stiffness matrix formulation[END_REF]. This method is extended here to the coupling between fluid and porous media by simulating the various interface conditions pertaining at the boundary between the fluid and the stratified porous media.

On the other hand, only a few numerical methods have addressed realistic acoustic / poroelastic configurations: for this purpose, a spectral-element method [START_REF] Morency | Spectral-element simulations of wave propagation in porous media[END_REF], a pseudospectral method [START_REF] Sidler | Simulation of surface waves in porous media[END_REF] and a discontinuous Galerkin method [START_REF] Dupuy | Propagation des Ondes Sismiques dans les Milieux Multiphasiques Hétérogènes : Modélisation Numérique, Sensibilité et Inver[END_REF] have been developed. Three difficulties have to be overcome to be able to perform reliable and efficient numerical simulations. First, the slow compressional Biot wave is highly attenuated, which drastically affects the stability of any explicit numerical scheme [START_REF] De La Puente | Discontinuous Galerkin methods for wave propagation in poroelastic media[END_REF]. Secondly, the slow compressional wave is always located near the interfaces, and thus plays a key role in the balance equations; discretizing this small-scale wave therefore requires a particularly fine spatial mesh. Thirdly, large numerical errors are usually introduced by the boundaries due to the poor discretization of their geometrical and physical properties, and also due to issues involved in the numerical analysis. In the present study, it is proposed to adopt a strategy we have described in previous articles [START_REF] Chiavassa | Time domain numerical modeling of wave propagation in 2D heterogeneous porous media[END_REF][START_REF] Chiavassa | Wave propagation across acoustic / Biot's media: a finite-difference method[END_REF]. A fourth-order finite-difference scheme with splitting is used to integrate the evolution equations, so as to optimize the integration time step. Specific solvers are used in the case of the fluid and the porous media. Their coupling is obtained using an immersed interface method to discretize the boundary conditions, which gives a subcell resolution of the geometries. Lastly, a space-time mesh refinement procedure is applied around the interfaces to account for the small scale of the slow compressional wave.

The paper is organized as follows. In section 2, notations, governing equations and boundary conditions are stated. In section 3, the semi-analytical approach is described, focusing on the coupling between fluid and porous media and on the integration of oscillating functions. In section 4, the key components of the numerical approach are recalled. In section 5, numerical experiments are performed on situations involving one and four interfaces, with realistic soil parameters and under the low-frequency Biot theory. Comparisons between the analytical and numerical solutions obtained confirm the validity of both approaches. From the numerical point of view, this study provides a useful benchmark for future studies on viscous saturating fluids that have not been available so far [START_REF] Morency | Spectral-element simulations of wave propagation in porous media[END_REF][START_REF] Sidler | Simulation of surface waves in porous media[END_REF][START_REF] Dupuy | Propagation des Ondes Sismiques dans les Milieux Multiphasiques Hétérogènes : Modélisation Numérique, Sensibilité et Inver[END_REF]. From the semi-analytical point of view, these comparisons also show the relevance of using the chosen integration parameters, for which no theoretical criterion exists. Concluding remarks and some future lines of research are presented in the last section 6. The 2D configuration under investigation is a fluid half-space Ω 0 over a stack of homogeneous poroelastic layers Ω j (j = 1, • • • , N), as shown in Fig. 1. The x and y geometrical axes point rightward and upward, respectively. The N plane and parallel interfaces are located at y = α i ≤ 0, where α 0 = 0. A source point at (x s = 0, y s > 0) in the fluid emits cylindrical waves.

Statement of the problem

In the fluid domain Ω 0 , the physical parameters are the density ρ f and the celerity of acoustic waves c. The acoustic equations are written as follows

   p = -ρ c 2 ∇.U, ∆ p - 1 c 2 p = -S(t) δ(x) δ(y -y s ), (1) 
where U = (U x , U y ) t is the fluid displacement, p is the acoustic pressure, and S(t) is a causal source term. The overlying dot denotes the derivative in terms of time t.

The poroelastic media Ω j (j = 1, • • • , N) are modeled using the lowfrequency Biot theory [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low-frequency range[END_REF][START_REF] Bourbié | Acoustics of Porous Media[END_REF]. The physical parameters are

• the dynamic viscosity η and the density ρ f of the saturating fluid.

The latter is assumed to be the same as in Ω 0 , and the notation ρ f is therefore used in both cases;

• the density ρ s and the shear modulus µ of the elastic skeleton;

• the connected porosity φ, the tortuosity a ∞ , the absolute permeability κ, the Lamé coefficient of the dry matrix λ 0 , and the two Biot coefficients β and m of the isotropic matrix.

We thus obtain the total density ρ = φ ρ f + (1 -φ) ρ s . The low-frequency Biot model is valid at frequencies below the critical value defined as

f c = η φ 2 π a ∞ κ ρ f . (2) 
Based on the constitutive equations and the conservation of momentum in porous media, one obtains

[1]                  σ = (λ 0 ∇.u -β p) I + 2 µ ε, p = -m (β ∇.u + ∇.w) , ∇ σ = ρ ü + ρ f ẅ, -∇ p = ρ f ü + a ∞ ρ f φ ẅ + η κ ẇ, (3) 
where u = (u x , u y ) t is the solid displacement, U = (U x , U y ) t is the fluid displacement, w = φ (Uu) = (w x , w y ) t is the relative displacement, I is the identity tensor, σ is the stress tensor, ε = 1 2 (∇ u + ∇ t u) is the strain tensor, and p is the pore pressure.

Boundary conditions

The governing equations (1) and (3) have to be completed by a set of boundary conditions along the N plane interfaces y = α j (j = 0, • • • , N -1). For this purpose, we take [g] j to denote the jump in a function g from Ω j to Ω j+1 across α j

[g] j = lim ε→0,ε>0 g(x, α j + ε, t) -lim ε→0,ε>0 g(x, α j -ε, t), = (g) + j -(g) - j . (4) 
The fluid / porous interface α 0 is modeled with the following boundary conditions [START_REF] Rosenbaum | Synthetic microseismograms: logging in porous formation[END_REF][START_REF] Gurevich | Interface conditions for Biot ′ s equations of poroelasticity[END_REF][START_REF] Bourbié | Acoustics of Porous Media[END_REF][START_REF] Feng | High-frequency acoustic properties of a fluid / porous solid interface. I. New surface mode[END_REF][START_REF] Sharma | Wave propagation across the boundary between two dissimilar poroelastic solids[END_REF]]

                   (u y ) - 0 + (w y ) - 0 = (U y ) + 0 , (5a) 
(σ xy ) - 0 = 0, ( 5b 
) (σ yy ) - 0 = -(p) + 0 , (5c) 
[p] 0 = 1 K ( ẇy ) - 0 . (5d) 
Eq. (5d) involves the hydraulic permeability of the interface K, resulting in the following limit cases:

• if K → +∞, then Eq. (5d) becomes [p] 0 = 0, describing open pores;

• if K → 0, then no fluid exchange occurs across α 0 , and Eq. (5d) is replaced by ( ẇy ) - 0 = 0, describing sealed pores; • if 0 < K < +∞, then an intermediate state between open and sealed pores is reached, describing imperfect pores.

The porous / porous interfaces α j (j = 1, • • • N -1) are assumed to be in perfect bonded contact [START_REF] Gurevich | Interface conditions for Biot ′ s equations of poroelasticity[END_REF][START_REF] Bourbié | Acoustics of Porous Media[END_REF]:

[u x ] j = 0, [u y ] j = 0, [w y ] j = 0, [σ xy ] j = 0, [σ yy ] j = 0, [p] j = 0. ( 6 
)
3. Semi-analytical solution

Helmholtz decompositions

Pressure and stress components are eliminated from Eqs. (3), giving a (u, w) second-order wave formulation

     (λ 0 + µ + m β 2 ) ∇(∇.u) + µ ∇ 2 u + m β ∇(∇.w) = ρ ü + ρ f ẅ, m β ∇(∇.u) + m ∇(∇.w) = ρ f ü + a ρ f φ ẅ + η κ ẇ. ( 7 
)
The solid and relative displacements in Eqs. ( 7) can be expressed by

u = ∇ ϕ + ∇ × Ψ, w = ∇ ϕ r + ∇ × Ψ r , (8) 
where ϕ and ϕ r are scalar potentials, and Ψ and Ψ r are vector potentials. One introduces mass, stiffness and damping matrices

K P = λ 0 + 2µ + m β 2 m β m β m , K S = µ 0 0 0 , M =   ρ ρ f ρ f a ∞ ρ f φ   , C =   0 0 0 η κ   . (9) 
The Fourier transforms in time t and space x are defined by

f (t) = +∞ -∞ f * (ω) exp(-iωt)dω, f * (ω) = 1 2π +∞ -∞ f (t) exp(iωt)dt, g(x) = +∞ -∞ g(k x ) exp(ik x x) dk x , g(k x ) = 1 2π +∞ -∞ g(x) exp(-ik x x)dx.
(10) Applying these x and t Fourier transforms to relations ( 7) and ( 8) yields decoupled ordinary differential systems in the frequency-wavenumber domain, associated with fast and slow compressional waves P f and P s , and with shear wave S, respectively

- d 2 dy 2 -k 2 x K P -ω 2 M -i ω C ϕ * ϕ r * = 0 0 , - d 2 dy 2 -k 2 x K S -ω 2 M -i ω C Ψ * Ψ r * = 0 0 . (11) 
Taking the Fourier transforms of Eqs. [START_REF] Van Dalen | On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid[END_REF] over y gives the dispersion relations

det k 2 P j K P -ω 2 M -i ω C = 0, k 2 S = ω 2 µ (ρ + ρ f G) , (12) 
where k P j (j = f, s) are the wavenumbers of the fast (f ) and slow (s) compressional waves, and k S is the wavenumber of the shear wave, see Appendix A, Eq. (A.1). G is defined in Appendix A, Eq. (A.2). This gives the phase velocities c P j = ω / ℜ(k P j ) and c S = ω / ℜ(k S ), where c P f > max(c P s , c S ).

Exact stiffness matrix approach

The exact stiffness matrix approach is based on vectors of transformed displacement and stress components [START_REF] Degrande | Wave propagation in layered dry, saturated and unsaturated poroelastic media[END_REF], defined as

Υ * = (u * x , i u * y , i w * y ) t , Σ * = (σ * xy , i σ * yy , -i p * ) t .
Analytical expression for the transformed displacement is then solution of the matrix system

S T S R Z(h j ) -S T Z(h j ) -S R Q T Q R Z(h j ) Q T Z(h i ) Q R -1 T j (6×6) (Υ * ) - j-1 (Υ * ) + j = (Σ * ) - j-1 -(Σ * ) + j , (13) 
where h j = α j-1 -α j is the thickness of layer Ω j (j = 1, • • • , N -1). Further information about the matrices Z(h j ), S T,R , Q T,R is given in Appendix A, Eqs. (A.3), (A.4) and (A.5), respectively. The superscripts T and R stand for transmitted and reflected waves respectively. Special attention is paid to the conditioning of the matrices. Increasing exponential terms corresponding to reflected waves are excluded from the formulation. These are included in the unknown wave potential vectors, which do not need to be calculated, see [START_REF] Mesgouez | Transient solution for multilayered poroviscoelastic media obtained by an exact stiffness matrix formulation[END_REF]. Only decreasing exponential terms are therefore explicitly included in the expressions of Z(h j ), Appendix A, Eq. (A.3). Based on Eqs. ( 6), a classical assembling procedure between the porous layers is used, which involves the continuity of the stresses and displacements at each interface. In the case of the half-space (hs) Ω N under the layers, only the transmitted terms are kept and T hs = S T (Q T ) -1 . The whole matrix system involving all the poroelastic subdomains has dimension 3 N × 3 N.

Assembling of the fluid / porous interface α 0

In the fluid domain Ω 0 , the acoustic pressure p * is the sum of an incident cylindrical wave emitted by the source point and a reflected wave

p * = p * I + p * R = i S(ω) 4 π exp(i k yf | y -y s |) k yf + A exp(i k yf y), ( 14 
)
where A is determined by the boundary conditions (5) along α 0 , and

k 2 f = ω 2 /c 2 f = k 2 x + k 2 yf .
Taking k yf with ℑ(k yf ) 0, the pressure vanishes at y → +∞ (the radiation condition). Expressions for U * x and U * y are easily deduced from Eqs. ( 14) and (1). In the matrix condensed form, the part to be included into the overall system is written as follows

    - i ρ f ω 2 k yf - i ρ f ω 2 k yf - i ρ f ω 2 k yf - i ρ f ω 2 k yf - i ω K     i (u * ) - 0 i (w * ) - 0 =     i (p * ) + 0 + S(ω) 2 π exp(i k yf y s ) k yf i (p * ) - 0 + S(ω) 2 π exp(i k yf y s ) k yf     .
(15) Coupling system ( 13) with ( 15) yields the overall system

           ... ... ... ... ... T 1 22 - i ρ f ω 2 k yf T 1 23 - i ρ f ω 2 k yf ... ... T 1 32 - i ρ f ω 2 k yf T 1 33 - i ρ f ω 2 k yf - i ω K ... ... ... ... ... ... ... ... ...                     (u * x ) - 0 i (u * ) - 0 i (w * y ) - 0 ... ...          =            0 S(ω) 2 π exp(i k yf y s ) k yf S(ω) 2 π exp(i k yf y s ) k yf 0 ...            . ( 16 
)
The solution to system [START_REF] Thomson | Transmission of elastic waves through a stratified soil medium[END_REF] gives the horizontal, vertical solid and relative displacements at each interface. The displacements, stresses, velocities and acoustic pressure in each domain Ω j can then be obtained.

Processing the oscillating integrals

Carrying out inverse Fourier transforms over the horizontal wavenumber k x and the angular frequency ω requires the use of numerical integration procedures.

Two problems have to be overcome when calculating the integral over the horizontal wavenumber. First, the integrand shows fast oscillatory behavior due to the factor exp(ik x x). Secondly, the envelope of the maximum amplitudes shows sharp peaks, as shown in Fig. 2. Alternative techniques to the usual Fast Fourier Transform for evaluating the integral properly can be found in [START_REF] Bouchon | Discrete wavenumber representation of seismicsource wavefields[END_REF][START_REF] Apsel | On the Green's functions for a layered halfspace. Part II[END_REF][START_REF] Dravinski | On evaluation of the Green function for harmonic line loads in a viscoelastic half-space[END_REF] in the context of elastodynamics, and [START_REF] Rajapakse | Dynamic response of a multilayered poroelastic medium[END_REF][START_REF] Degrande | Wave propagation in layered dry, saturated and unsaturated poroelastic media[END_REF] in that of poroelastodynamics, for example. Here we use the adaptive Filon quadrature, which is particularly accurate and suitable for dealing with these integrals. The transformed fluid pressure, pore pressure, stress tensor normal component, vertical displacement and velocity are symmetric terms with respect to * (k x , ω 0 ) (blue) and uy * (k x , ω 0 ) cos(k x x) (red). This signal is obtained at recorder R 4 in the case of N = 4 interfaces, with sealed pore conditions; see section 5 for details. k x . These functions, which are denoted by h * , can be written as follows

h(x, y, t) = +∞ -∞ 2 +∞ 0 h * (k x , y, ω) cos(k x x) dk x exp(-i ω t) dω. (17) 
In line with the Filon quadrature theory, the integrand is separated into the product of a slowly-varying component and a fast-oscillating one. The oscillatory kernel is rigorously accounted for, since only the complex function h * (k x , y, ω) is replaced by a (second degree here) polynomial approximation. The resulting integral is then computed analytically [START_REF] Chase | An algorithm for Filon quadrature[END_REF].

One possible adaptive procedure consists in dividing the entire interval into several parts based on what is known about h * (k x , y, ω). Because of the sharp changes in the integrand occuring around the wavenumbers of the propagating waves, the wavenumbers are calculated and sorted out. The quadrature is performed by discretizing finely in the neighborhood of these wavenumbers and more coarsely farther away. The integral is truncated depending on the highest wavenumber and adapted to each frequency.

Concerning the numerical processing over ω, the physical space-time domain h(x, y, t) term is real. We therefore obtain

h(x, y, t) = +∞ 0 2 ℜ 2 +∞ 0 h * (k x , y, ω) cos(k x x) dk x exp(-i ω t) dω. ( 18 
)
Numerical integration is done using a Simpson quadrature, and the Nyquist-Shannon sampling theorem is checked.

Numerical solution

4.1. Numerical scheme Velocity-stress formulation for the governing equations can be obtained from Eqs. ( 1) and (3). Setting

Λ =    Ux , Uy , p t in Ω 0 , ( ux , uy , ẇx , ẇy , σ xx , σ xy , σ yy , p) t in Ω j , j = 1, • • • , N, (19) 
gives the first-order linear system of partial differential equations with source term

Λ + A ∂ ∂x Λ + B ∂ ∂y Λ = -C Λ + F. (20) 
In Eq. ( 20), A, B and C are 3 × 3 matrices in Ω 0 , and 8 × 8 matrices in Ω j (j = 1, • • • , N); the vector F accounts for the acoustic source in Eqs. [START_REF] Biot | Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low-frequency range[END_REF]. In Ω 0 , C = 0. Due to the non-zero diffusive term C present in the poroelastic media Ω j , an unsplit discretization scheme for Eq. ( 20) would not be suitable, leading to a penalizing time step. A much more efficient method, which was used in [START_REF] Chiavassa | Time domain numerical modeling of wave propagation in 2D heterogeneous porous media[END_REF], consists in using a Strang splitting procedure. The following partial differential equations are solved successively

           Λ + A ∂ ∂ x Λ + B ∂ ∂ y Λ = 0, (21a) 
Λ = -C Λ, (21b) 
Λ = F. (21c) 
The propagative part (21a) is solved using an ADER 4 scheme [START_REF] Schwartzkopff | Fast high order ADER schemes for linear hyperbolic equations[END_REF] on a uniform Cartesian grid, with spatial mesh sizes ∆x, ∆y and a time step ∆t. This explicit two-step finite-difference scheme is accurate to the fourth-order in both time and space, and satisfies the optimum CFL stability condition. The diffusive part (21b) is solved exactly in the poroelastic layers Ω j , see Eq. ( 18) in [START_REF] Chiavassa | Time domain numerical modeling of wave propagation in 2D heterogeneous porous media[END_REF]. This step induces no stability restrictions. The fluid Ω 0 has no diffusive part, because there is no attenuation. Lastly, numerical integration is performed on Ω 0 to account for the source term (21c).

Mesh refinement

In the low-frequency range, the slow compressional wave is a diffusive non-propagating solution with very small wavelength λ P s . A very fine spatial mesh is therefore required. Since this wave does not propagate and is always located near the interfaces, space-time mesh refinement is a good strategy. For this purpose, a steady-state version of the algorithm presented in [START_REF] Berger | Adaptive mesh refinement using wavepropagation algorithms for hyperbolic systems[END_REF] is developed. Each interface is inserted into a refined grid, where both the spatial meshes and the time step are divided by the refinement factor q. This procedure ensures that the same CFL number will be obtained in each grid. The coupling between coarse and fine meshes is achieved by performing spatial and temporal interpolations. The factor q is used to obtain the same discretization of the slow wave on the refined zone, as with the fast wave on the coarse grid. Taking f 0 to denote the central frequency of the signal, direct calculations give q(f 0 ) = c P f (f 0 )/c P s (f 0 ).

Immersed interface method

The discretization of the boundary conditions requires special care, for three reasons. First, if the interfaces do not coincide with the uniform meshing, then geometrical errors will occur. Secondly, the conditions ( 5) and (6) will not be enforced numerically by the finite-difference scheme, and the numerical solution will therefore not converge towards the exact solution. Lastly, the smoothness of the solution required to solve Eq. [START_REF] Degrande | Wave propagation in layered dry, saturated and unsaturated poroelastic media[END_REF] will not be satisfied across the interface, which will decrease the convergence rate of the ADER scheme.

To overcome these drawbacks without detracting the efficiency of Cartesian grid methods, an immersed interface method [START_REF] Chiavassa | Time domain numerical modeling of wave propagation in 2D heterogeneous porous media[END_REF][START_REF] Chiavassa | Wave propagation across acoustic / Biot's media: a finite-difference method[END_REF] is used. The latter studies can be consulted for a detailed description of this method. The basic principle is as follows: at the irregular nodes where the ADER scheme crosses an interface, modified values of the solution are used on the other side of the interface instead of the usual numerical values.

Calculating these modified values is a complex task involving high-order derivation of boundary conditions ( 5)-( 6), Beltrami-Michell relations [START_REF] Coussy | Mechanics of Porous Continua[END_REF] and singular value decompositions. Fortunately, all these time consuming procedures can be carried out during a preprocessing stage and only small matrixvector multiplications need to be performed during the simulation. After optimizing the code, the extra CPU cost can be practically negligible, i.e. lower than 1% of that required by the time-marching procedure. In addi-tion, by choosing the order of the interface method carefully, it is possible to achieve the overall fourth-order accuracy of the ADER 4 scheme. Two configurations are proposed for testing the above semi-analytical and numerical methods. The influence of the various fluid / porous boundary conditions on the computed fields is also investigated. The first test involves a single interface (N = 1) between a fluid and a porous medium. The second test is performed on a layered medium involving 4 interfaces (N = 4). The accuracy and robustness of the semi-analytical and numerical approaches are proven in the case of realistic soil parameters.

Numerical results and discussion

Configuration and physical parameters

Ω 2 j-1 Ω 2 j Saturating fluid ρ f (kg/m 3 )
The acoustic medium Ω 0 is water (ρ f = 1000 kg/m 3 , c = 1500 m/s). The poroelastic layers consist alternately of water-saturated sand in Ω 2j-1 [START_REF] Denneman | Reflection and transmission of waves at a fluid / porous medium[END_REF], and Berea sandstone in Ω 2j [START_REF] Mesgouez | Transient solution for multilayered poroviscoelastic media obtained by an exact stiffness matrix formulation[END_REF]. The poroelastic properties of these media 22) and ( 23). The vertical dashed line gives the central angular frequency ω 0 = 2 π f 0 .

are summarized in Table 1. In the case where an imperfect hydraulic contact occurs along the interface α 0 , the hydraulic permeability is K = 5. 10 -8 m/s/Pa. The time evolution of the source S appearing in Eq. ( 1) is a combination of truncated sinusoids

S(t) =      4 m=1 a m sin(β m ω 0 t) if 0 < t < 1 f 0 , 0 otherwise, ( 22 
)
where β m = 2 m-1 and ω 0 = 2π f 0 ; the coefficients a m ensuring C 6 smoothness of the solution are: a 1 = 1, a 2 = -21/32, a 3 = 63/768, a 4 = -1/512. The Fourier transform of Eq. ( 22) is

S * (ω) = 4 m=1 a m β m ω 0 2 π exp(i 2 π ω 0 /ω) -1 ω 2 -β m ω 2 0 . (23) 
The central frequency in Eqs. ( 22) and ( 23) is f 0 = 20 kHz, which is much smaller than the critical Biot frequency of poroelastic layers, see Eq. ( 2) and Table 1. The time evolution and Fourier transform of S are presented in Fig. 3. In the following test cases, the source is always applied in the fluid domain at point (x s = 0, y s = 4.10 -3 ) m.

Test 1: N = 1 interface

The interface between water and saturated sand is set at α 0 = 0 m. With the present numerical method, the whole computational domain [-2, 2] 2 m 2 is discretized using a regular Cartesian grid with ∆x = ∆y = 2.10 -3 m. This grid is refined locally by a factor q = 5 in the neighborhood of the interface in order to satisfy the criterion defined in section 4.2. With these parameters, the fast and slow compressional waves are discretized by at least 75 grid points per wavelength, and acoustic and shear waves by about 37 points per wavelength.

The numerical solution obtained (p in the fluid, σ xx in the poroelastic medium) is shown in Fig. 4, at time t = 0.72 ms under open pore conditions. Since the source is located very near the interface, the reflected acoustic wave in Ω 0 cannot be distinguished from the circular incident wave; the headwaves are also clearly visible. The transmitted fast compressional wave (circular wavefront) and shear wave (more complex structure) can be seen in Ω 1 . Pseudo-Stoneley waves can also be observed along the interface, just behind the shear wave. The transmitted slow compressional wave cannot be seen here; it remains located along the interface on very small spatial scales.

In this configuration, the semi-analytical results were obtained with the following set of numerical parameters. As previously explained in section 3.4, wavenumbers corresponding to the propagating waves are calculated and sorted out. Let k x,min and k x,max denote the lowest and highest wavenumbers of propagating waves. The integral over k x is divided into three parts. The second part includes the sharp evolution of the integrand, and integration is performed in this part with a finer grid. We perform 1. integration over k x ∈ [0, 0.75 k x,min ] with 500 subintervals; 2. integration over k x ∈ [0.75 k x,min , 1.25 k x,max ] with 5000 subintervals; 3. integration over k x ∈ [1.25 k x,max , 20 k x,max ] with 200 subintervals.

The numerical integration over ω is led with 2000 regular subintervals, up to the maximum angular frequency ω max = 7 10 5 rad.s -1 . Sampling with respect to time was performed with 4000 points, where t ∈ [0, 0.70] ms in Fig. 5.

The time history of the pressure p and of the vertical velocity uy obtained with these two methods is presented in Fig. 5. The receivers were placed near the interface in order to capture the surface waves. The pressure was recorded in the fluid domain at point R1 (x = 0.5, y = 0.02) m while the vertical velocity was recorded in the porous medium at R2 (x = 0.5, y = -0.012) m. Results were normalized with respect to the maximum value of the pressure (R1) or velocity (R2) respectively. Excellent agreement was obtained between the semi-analytical and numerical pore conditions tested. The validity of the numerical strategy used to compute the integrals in the semi-analytical method was therefore confirmed.

From the physical point of view, Figure 5 presents three peaks due to the following waves: P f for the fast compressional wave (t P f ≈ 0.21 ms), F for the direct fluid wave (t F = 0.33 ms), and St for the pseudo-Stoneley wave (t St ≈ 0.51 ms). The influence of the pore conditions adopted at the fluid / porous interface can be clearly seen in Fig. 6. Note that the direct fluid wave occurring in the acoustic pressure component (R1) was not affected by the pore conditions, contrary to what occurred with all the other peaks.

Test 2: N = 4 interfaces

The computational domain was the same here as in test 1 and the coordinates of the 4 interfaces were set as follows: α 0 = 0 m, α 1 = -0.1 m, α 2 = -0.15 m, and α 3 = -0.6 m, with layer thicknesses ranging from 0.5 to 4 wavelengths of the fast compressional wave. Once again, ∆x = ∆y = 2.10 -3 m were used for the coarse grid, and ∆x/5, ∆y/5 in the more highly refined grids surrounding each interface.

The numerical solution is presented in Fig. 7, where complex interactions and wave conversions can be observed. The time evolution of the acoustic pressure at point R3 (x = 1, y = 0.02) m and that of the vertical velocity uy at point R4 (x = 1, y = -0.112) m are shown in Fig. 8. Once again, excellent agreement was observed between the semi-analytical and numerical values obtained. With the conditioning matrix technique, no oscillation occurs in the semi-analytical values, and the layers therefore do not need to be divided into sublayers, which makes the calculations more efficient [START_REF] Mesgouez | Transient solution for multilayered poroviscoelastic media obtained by an exact stiffness matrix formulation[END_REF]. Differences between the pressures computed under open, imperfect and sealed conditions can be clearly seen in Fig. 9, especially in the successive diffracted waves. This shows the need for an accurate means of treating the pore conditions whatever the numerical method used, even in the case of a single fluid / porous interface.

Conclusion

The propagation of transient waves in a stratified 2D fluid / poroelastic medium was studied here using two different approaches: a semi-analytical and a numerical approach. On the one hand, the analytical solution is fast, and can therefore be efficiently plugged into imaging codes [START_REF] Lefeuve-Mesgouez | Retrieval of the source location and mechanical descriptors of a hysteretically-damped solid occupying a half space by full wave inversion of the response signal on its boundary[END_REF][START_REF] Barros | Full waveform inversion of seismic waves reflected in a stratified porous medium[END_REF]. This approach can only be used with academic geometries, however. On the other hand, the numerical solution can be used to handle much more complex geometries and media, but the full space-time grid is not suitable when the solution is sought only at some receivers.

Both methods are also able to deal with various boundary conditions, which can have non-negligible effects on the various fields, as we have seen here. As far as we know, the case of imperfect pores has never been treated previously using a numerical approach. Since the assumptions underlying the present semi-analytical and numerical approaches are radically different, the comparisons between the results obtained constitute an authentic crosscheck, and the results obtained therefore provide useful benchmarks for future researches.

We are currently extending this study to include frequencies greater than Eq. ( 2), using the JKD model [START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluid-saturated porous media[END_REF]. The frequency correction can be straightforwardly incorporated into the analytical method, but the time-domain numerical modeling needs to be considerably adapted because of fractional derivatives involved [START_REF] Lu | Wave field simulation for heterogeneous porous media with singular memory drag force[END_REF]. Work is currently under way on these lines [START_REF] Blanc | Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives[END_REF]. and
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Figure 1 :

 1 Figure 1: Configuration under study. Fluid medium over a multilayered porous medium. Source point y s in the fluid.

Figure 2 :

 2 Figure 2: Processing the integrals. Real part (left) and imaginary part (right) of uy* (k x , ω 0 ) (blue) and uy * (k x , ω 0 ) cos(k x x) (red). This signal is obtained at recorder R 4 in the case of N = 4 interfaces, with sealed pore conditions; see section 5 for details.

Figure 3 :

 3 Figure 3: Time evolution (left) and spectrum (right) of the source S defined by Eqs. (22) and (23). The vertical dashed line gives the central angular frequency ω 0 = 2 π f 0 .

Figure 4 :

 4 Figure 4: N = 1 interface with open pores. Snapshot of p (in the fluid) and σ xx (in the poroelastic medium) at t = 0.72 ms. Green-red: compressional waves; yellow-magenta: shear wave.

Figure 5 :

 5 Figure 5: N = 1 interface, with open pores (top), imperfect pores (middle) and sealed pores (bottom). Time evolution of the acoustic pressure p at recorder R1 (x = 0.5, y = 0.02) m (left) and that of the vertical velocity uy at recorder R2 (x = 0.5, y = -0.012) m (right).

Figure 6 :

 6 Figure 6: N = 1 interface. Comparison between the different pore conditions: pressure (left) and vertical velocity (right).

Figure 7 :

 7 Figure 7: N = 4 interfaces involving open pores at the fluid/porous boundary. Snapshot of p (in the fluid) and σ xx (in the poroelastic layers) at t = 0.69 ms.

Figure 8 :

 8 Figure 8: N = 4 interfaces, with open pores (top), imperfect pores (middle) and sealed pores (bottom). Time evolution of the acoustic pressure p at recorder R3 (x = 1, y = 0.02) m (left) and that of the vertical velocity uy at recorder R4 (x = 1, y = -0.112) m (right).

Figure 9 : 11 = 2

 9112 Figure 9: N = 4 interfaces. Comparison between the different pore conditions: pressure (left) and vertical velocity (right).

Table 1 :

 1 

			1000	1000
		c (m/s)	1500	1500
		η (Pa.s)	10 -3	10 -3
	Grain	ρ s (kg/m 3 )	2760	2644
		µ (Pa)	3.40 10 9 7.04 10 9
	Matrix	φ	0.24	0.20
		a ∞	2.3	2.4
		κ (m 2 )	3.9 10 -13 3.6 10 -13
		λ 0 (Pa)	3.5 10 9	5.5 10 9
		m (Pa)	8.1 10 9	9.7 10 9
		β	0.855	0.720
	Phase velocities c P f (f 0 ) (m/s) 2636.8	3263.7
		c P s (f 0 ) (m/s) 571.5	649.5
		c S (f 0 ) (m/s) 1210.8	1751.0
		c St (m/s)	1007.1	
		f c (kHz)	42.5	36.8

Poroelastic media Ω 2 j-1 and Ω 2 j (j = 1, • • • , N ): physical parameters and acoustic properties at f 0 = 20 kHz.
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Appendix A. Notations used along section 3

The vertical components of the wavenumbers [START_REF] Feng | High-frequency acoustic properties of a fluid / porous solid interface. II. The 2D reflection Green's function[END_REF], which are denoted by an y index, satisfy

To ensure the radiation condition, we choose ℑ(k yP j , k yS ) ≥ 0. Then, the coefficients associated with compressional waves and the shear wave are

2) The matrices Z, S T,R and Q T,R in system (13) are given by Z(h k ) = diag < exp(i k yP f h k ), exp(i k yP s h k ), exp(i k yS h k ) >, (A.3)