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Abstract

Wave propagation in a stratified fluid / porous medium is studied here using
analytical and numerical methods. The semi-analytical method is based on
an exact stiffness matrix method coupled with a matrix conditioning pro-
cedure, preventing the occurrence of poorly conditioned numerical systems.
Special attention is paid to calculating the Fourier integrals. The numeri-
cal method is based on a high order finite-difference time-domain scheme.
Mesh refinement is applied near the interfaces to discretize the slow com-
pressional diffusive wave predicted by Biot’s theory. Lastly, an immersed
interface method is used to discretize the boundary conditions. The numeri-
cal benchmarks are based on realistic soil parameters and on various degrees
of hydraulic contact at the fluid / porous boundary. The time evolution of
the acoustic pressure and the porous velocity is plotted in the case of one and
four interfaces. The excellent level of agreement found to exist between the
two approaches confirms the validity of both methods, which cross-checks
them and provides useful tools for future researches.
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1. Introduction

This study focuses on the propagation of transient 2D mechanical waves
emitted by a source point in a fluid half-space over a stratified poroelastic
medium. This configuration occurs in situations such as those encountered
in the field of underwater acoustics and civil engineering. Natural or arti-
ficial media, presenting unidirectional varying properties, can be modelled
as multilayered structures. The wave propagation is described by means
of acoustic equations in the fluid and low-frequency Biot’s equations in the
poroelastic media [1]. Hydraulic exchanges between the fluid and the first
porous layer are modeled using various boundary conditions [2, 3]. Classical
textbooks such as [4, 5] can be consulted for a detailed analysis of Biot’s
equations (which involve a fast compressional wave and a shear wave, as in
elastic media, and a slow compressional wave). In the case of a single fluid
/ porous interface, many theoretical studies have dealt with the reflection
/ transmission coefficients [6] and with the properties of the surface waves
[7, 8, 9, 10, 11]. The aim of the present study is to solve this problem in
the case of an arbitrary number of layers, using two radically different ap-
proaches: a semi-analytical approach and a purely numerical one.

On the one hand, various analytical methods have been developed in the
case of a single fluid / porous interface: Cagniard-de Hoop’s method [12, 13]
for an inviscid medium, and [14, 15] for a viscous saturating fluid, to cite but
a few. In situations involving a larger number of interfaces, the strategies
usually adopted are based on transfer matrix, stiffness matrix, or transmis-
sion and reflection matrix methods. These approaches were first developed
for use with viscoelastic media [16, 17, 18], and only a few studies using mul-
tilayer approaches to poroelastic models have been published so far because
of the complexity of poroelastic models and the poor conditioning of the re-
maining matrices. The exact stiffness matrix method has been applied in the
context of poroelasticity to harmonic 2D problems [19], transient 2D prob-
lems [20], and problems involving axisymmetric quasi-static configurations
[21]. All the latter authors stressed the numerical difficulties encountered
due to poorly conditioned matrices. Methods have been proposed in [22] for
eliminating the mismatched terms using the transmission and reflexion ma-
trix approach in the case of axisymmetric geometries, and recently, using the
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exact stiffness matrix method in [23]. This method is extended here to the
coupling between fluid and porous media by simulating the various interface
conditions pertaining at the boundary between the fluid and the stratified
porous media.

On the other hand, only a few numerical methods have addressed realistic
acoustic / poroelastic configurations: for this purpose, a spectral-element
method [24], a pseudospectral method [25] and a discontinuous Galerkin
method [26] have been developed. Three difficulties have to be overcome
to be able to perform reliable and efficient numerical simulations. First,
the slow compressional Biot wave is highly attenuated, which drastically
affects the stability of any explicit numerical scheme [27]. Secondly, the slow
compressional wave is always located near the interfaces, and thus plays a
key role in the balance equations; discretizing this small-scale wave therefore
requires a particularly fine spatial mesh. Thirdly, large numerical errors are
usually introduced by the boundaries due to the poor discretization of their
geometrical and physical properties, and also due to issues involved in the
numerical analysis. In the present study, it is proposed to adopt a strategy we
have described in previous articles [28, 29]. A fourth-order finite-difference
scheme with splitting is used to integrate the evolution equations, so as to
optimize the integration time step. Specific solvers are used in the case of the
fluid and the porous media. Their coupling is obtained using an immersed
interface method to discretize the boundary conditions, which gives a subcell
resolution of the geometries. Lastly, a space-time mesh refinement procedure
is applied around the interfaces to account for the small scale of the slow
compressional wave.

The paper is organized as follows. In section 2, notations, governing equa-
tions and boundary conditions are stated. In section 3, the semi-analytical
approach is described, focusing on the coupling between fluid and porous
media and on the integration of oscillating functions. In section 4, the key
components of the numerical approach are recalled. In section 5, numerical
experiments are performed on situations involving one and four interfaces,
with realistic soil parameters and under the low-frequency Biot theory. Com-
parisons between the analytical and numerical solutions obtained confirm the
validity of both approaches. From the numerical point of view, this study
provides a useful benchmark for future studies on viscous saturating fluids
that have not been available so far [24, 25, 26]. From the semi-analytical
point of view, these comparisons also show the relevance of using the chosen
integration parameters, for which no theoretical criterion exists. Concluding
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remarks and some future lines of research are presented in the last section 6.

2. Statement of the problem

2.1. Governing equations
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Figure 1: Configuration under study. Fluid medium over a multilayered porous medium.
Source point ys in the fluid.

The 2D configuration under investigation is a fluid half-space Ω0 over a
stack of homogeneous poroelastic layers Ωj (j = 1, · · · , N), as shown in Fig.
1. The x and y geometrical axes point rightward and upward, respectively.
The N plane and parallel interfaces are located at y = αi ≤ 0, where α0 = 0.
A source point at (xs = 0, ys > 0) in the fluid emits cylindrical waves.

In the fluid domain Ω0, the physical parameters are the density ρf and
the celerity of acoustic waves c. The acoustic equations are written as follows







p = −ρ c2 ∇.U,

∆ p−
1

c2
p̈ = −S(t) δ(x) δ(y − ys),

(1)

where U = (Ux, Uy)
t is the fluid displacement, p is the acoustic pressure,

and S(t) is a causal source term. The overlying dot denotes the derivative in
terms of time t.
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The poroelastic media Ωj (j = 1, · · · , N) are modeled using the low-
frequency Biot theory [1, 4]. The physical parameters are

• the dynamic viscosity η and the density ρf of the saturating fluid.
The latter is assumed to be the same as in Ω0, and the notation ρf is
therefore used in both cases;

• the density ρs and the shear modulus µ of the elastic skeleton;

• the connected porosity φ, the tortuosity a∞, the absolute permeability
κ, the Lamé coefficient of the dry matrix λ0, and the two Biot coeffi-
cients β and m of the isotropic matrix.

We thus obtain the total density ρ = φ ρf + (1 − φ) ρs. The low-frequency
Biot model is valid at frequencies below the critical value defined as

fc =
η φ

2 π a∞ κ ρf
. (2)

Based on the constitutive equations and the conservation of momentum in
porous media, one obtains [1]







σ = (λ0∇.u− β p) I+ 2µ ε,

p = −m (β∇.u+∇.w) ,

∇ σ = ρ ü+ ρf ẅ,

−∇ p = ρf ü+
a∞ ρf
φ

ẅ +
η

κ
ẇ,

(3)

where u = (ux, uy)
t is the solid displacement, U = (Ux, Uy)

t is the fluid
displacement, w = φ (U − u) = (wx, wy)

t is the relative displacement, I is
the identity tensor, σ is the stress tensor, ε = 1

2
(∇u+∇t u) is the strain

tensor, and p is the pore pressure.

2.2. Boundary conditions

The governing equations (1) and (3) have to be completed by a set of
boundary conditions along the N plane interfaces y = αj (j = 0, · · · , N −1).
For this purpose, we take [g]j to denote the jump in a function g from Ωj to
Ωj+1 across αj

[g]j = lim
ε→0,ε>0

g(x, αj + ε, t)− lim
ε→0,ε>0

g(x, αj − ε, t),

= (g)+j − (g)−j .
(4)
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The fluid / porous interface α0 is modeled with the following boundary con-
ditions [2, 3, 4, 7, 30]







(uy)
−

0 + (wy)
−

0 = (Uy)
+
0 , (5a)

(σxy)
−

0 = 0, (5b)

(σyy)
−

0 = −(p)+0 , (5c)

[p]0 =
1

K
(ẇy)

−

0 . (5d)

Eq. (5d) involves the hydraulic permeability of the interface K, resulting in
the following limit cases:

• if K → +∞, then Eq. (5d) becomes [p]0 = 0, describing open pores;

• if K → 0, then no fluid exchange occurs across α0, and Eq. (5d) is
replaced by (ẇy)

−

0 = 0, describing sealed pores;

• if 0 < K < +∞, then an intermediate state between open and sealed
pores is reached, describing imperfect pores.

The porous / porous interfaces αj (j = 1, · · ·N − 1) are assumed to be in
perfect bonded contact [3, 4]:

[ux]j = 0, [uy]j = 0, [wy]j = 0, [σxy]j = 0, [σyy]j = 0, [p]j = 0. (6)

3. Semi-analytical solution

3.1. Helmholtz decompositions

Pressure and stress components are eliminated from Eqs. (3), giving a
(u, w) second-order wave formulation







(λ0 + µ+mβ2)∇(∇.u) + µ∇2 u+mβ∇(∇.w) = ρ ü+ ρf ẅ,

m β∇(∇.u) +m∇(∇.w) = ρf ü+
a ρf
φ

ẅ +
η

κ
ẇ.

(7)

The solid and relative displacements in Eqs. (7) can be expressed by

u = ∇ϕ+∇ ×Ψ, w = ∇ϕr +∇ ×Ψr, (8)
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where ϕ and ϕr are scalar potentials, and Ψ and Ψr are vector potentials.
One introduces mass, stiffness and damping matrices

KP =

(

λ0 + 2µ+mβ2 mβ

mβ m

)

, KS =

(

µ 0

0 0

)

,

M =





ρ ρf

ρf
a∞ ρf
φ



 , C =





0 0

0
η

κ



 .

(9)

The Fourier transforms in time t and space x are defined by

f(t) =

∫ +∞

−∞

f ∗(ω) exp(−iωt)dω, f ∗(ω) =
1

2π

∫ +∞

−∞

f(t) exp(iωt)dt,

g(x) =

∫ +∞

−∞

g(kx) exp(ikxx) dkx, g(kx) =
1

2π

∫ +∞

−∞

g(x) exp(−ikxx)dx.

(10)
Applying these x and t Fourier transforms to relations (7) and (8) yields de-
coupled ordinary differential systems in the frequency-wavenumber domain,
associated with fast and slow compressional waves Pf and Ps, and with shear
wave S, respectively

(

−

(
d2

dy2
− k2

x

)

KP − ω2M− i ωC

)(

ϕ∗

ϕr∗

)

=

(

0

0

)

,

(

−

(
d2

dy2
− k2

x

)

KS − ω2M− i ωC

)(

Ψ
∗

Ψ
r∗

)

=

(

0

0

)

.

(11)

Taking the Fourier transforms of Eqs. (11) over y gives the dispersion rela-
tions

det
(
k2
Pj KP − ω2M− i ωC

)
= 0, k2

S =
ω2

µ
(ρ+ ρf G) , (12)

where kPj (j = f, s) are the wavenumbers of the fast (f) and slow (s) com-
pressional waves, and kS is the wavenumber of the shear wave, see Appendix
A, Eq. (A.1). G is defined in Appendix A, Eq. (A.2). This gives the phase
velocities cPj = ω /ℜ(kPj) and cS = ω /ℜ(kS), where cPf > max(cPs, cS).
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3.2. Exact stiffness matrix approach

The exact stiffness matrix approach is based on vectors of transformed
displacement and stress components [20], defined as

Υ
∗

= (u∗

x, i u
∗

y, i w
∗

y)
t, Σ

∗

= (σ∗

xy, i σ
∗

yy, −i p∗)t.

Analytical expression for the transformed displacement is then solution of
the matrix system

(

ST SRZ(hj)

−STZ(hj) −SR

)(

QT QRZ(hj)

QTZ(hi) QR

)
−1

︸ ︷︷ ︸

T
j

(6×6)

(

(Υ
∗

)−j−1

(Υ
∗

)+j

)

=

(

(Σ
∗

)−j−1

−(Σ
∗

)+j

)

,

(13)
where hj = αj−1−αj is the thickness of layer Ωj (j = 1, · · · , N −1). Further
information about the matrices Z(hj), S

T,R, QT,R is given in Appendix A,
Eqs. (A.3), (A.4) and (A.5), respectively. The superscripts T and R stand
for transmitted and reflected waves respectively. Special attention is paid to
the conditioning of the matrices. Increasing exponential terms corresponding
to reflected waves are excluded from the formulation. These are included in
the unknown wave potential vectors, which do not need to be calculated,
see [23]. Only decreasing exponential terms are therefore explicitly included
in the expressions of Z(hj), Appendix A, Eq. (A.3). Based on Eqs. (6),
a classical assembling procedure between the porous layers is used, which
involves the continuity of the stresses and displacements at each interface.
In the case of the half-space (hs) ΩN under the layers, only the transmitted
terms are kept and Ths = ST (QT )−1. The whole matrix system involving all
the poroelastic subdomains has dimension 3N × 3N .

3.3. Assembling of the fluid / porous interface α0

In the fluid domain Ω0, the acoustic pressure p∗ is the sum of an incident
cylindrical wave emitted by the source point and a reflected wave

p∗ = p∗I + p∗R =
i S(ω)

4 π

exp(i kyf | y − ys |)

kyf
+ A exp(i kyf y), (14)

where A is determined by the boundary conditions (5) along α0, and k2
f =

ω2/c2f = k2
x + k2

yf . Taking kyf with ℑ(kyf) > 0, the pressure vanishes at

y → +∞ (the radiation condition). Expressions for U
∗

x and U
∗

y are easily
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deduced from Eqs. (14) and (1). In the matrix condensed form, the part to
be included into the overall system is written as follows







−
i ρf ω

2

kyf
−
i ρf ω

2

kyf

−
i ρf ω

2

kyf
−
i ρf ω

2

kyf
−

i ω

K







(
i (u∗)−0

i (w∗)−0

)

=







i (p∗)+0 +
S(ω)

2 π

exp(i kyf ys)

kyf

i (p∗)−0 +
S(ω)

2 π

exp(i kyf ys)

kyf







.

(15)
Coupling system (13) with (15) yields the overall system














... ... ... ...

... T 1
22 −

i ρf ω
2

kyf
T 1
23 −

i ρf ω
2

kyf
...

... T 1
32 −

i ρf ω
2

kyf
T 1
33 −

i ρf ω
2

kyf
−

i ω

K
...

... ... ... ...

... ... ... ...

























(u∗

x)
−

0

i (u∗)−0

i (w∗

y)
−

0

...

...












=














0

S(ω)

2 π

exp(i kyf ys)

kyf
S(ω)

2 π

exp(i kyf ys)

kyf
0
...














.

(16)
The solution to system (16) gives the horizontal, vertical solid and relative
displacements at each interface. The displacements, stresses, velocities and
acoustic pressure in each domain Ωj can then be obtained.

3.4. Processing the oscillating integrals

Carrying out inverse Fourier transforms over the horizontal wavenumber
kx and the angular frequency ω requires the use of numerical integration
procedures.

Two problems have to be overcome when calculating the integral over the
horizontal wavenumber. First, the integrand shows fast oscillatory behavior
due to the factor exp(ikxx). Secondly, the envelope of the maximum am-
plitudes shows sharp peaks, as shown in Fig. 2. Alternative techniques to
the usual Fast Fourier Transform for evaluating the integral properly can be
found in [31, 32, 33] in the context of elastodynamics, and [19, 20] in that of
poroelastodynamics, for example. Here we use the adaptive Filon quadrature,
which is particularly accurate and suitable for dealing with these integrals.
The transformed fluid pressure, pore pressure, stress tensor normal compo-
nent, vertical displacement and velocity are symmetric terms with respect to
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Figure 2: Processing the integrals. Real part (left) and imaginary part (right) of
u̇y

∗

(kx, ω0) (blue) and u̇y

∗

(kx, ω0) cos(kx x) (red). This signal is obtained at recorder
R4 in the case of N = 4 interfaces, with sealed pore conditions; see section 5 for details.

kx. These functions, which are denoted by h
∗

, can be written as follows

h(x, y, t) =

∫ +∞

−∞

{

2

∫ +∞

0

h
∗

(kx, y, ω) cos(kx x) dkx

}

exp(−i ω t) dω. (17)

In line with the Filon quadrature theory, the integrand is separated into
the product of a slowly-varying component and a fast-oscillating one. The
oscillatory kernel is rigorously accounted for, since only the complex function
h
∗

(kx, y, ω) is replaced by a (second degree here) polynomial approximation.
The resulting integral is then computed analytically [34].

One possible adaptive procedure consists in dividing the entire interval
into several parts based on what is known about h

∗

(kx, y, ω). Because of
the sharp changes in the integrand occuring around the wavenumbers of the
propagating waves, the wavenumbers are calculated and sorted out. The
quadrature is performed by discretizing finely in the neighborhood of these
wavenumbers and more coarsely farther away. The integral is truncated
depending on the highest wavenumber and adapted to each frequency.

Concerning the numerical processing over ω, the physical space-time do-
main h(x, y, t) term is real. We therefore obtain

h(x, y, t) =

∫ +∞

0

2ℜ

({

2

∫ +∞

0

h
∗

(kx, y, ω) cos(kx x) dkx

}

exp(−i ω t)

)

dω.

(18)
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Numerical integration is done using a Simpson quadrature, and the Nyquist-
Shannon sampling theorem is checked.

4. Numerical solution

4.1. Numerical scheme

Velocity-stress formulation for the governing equations can be obtained
from Eqs. (1) and (3). Setting

Λ =







(

U̇x, U̇y, p
)t

in Ω0,

(u̇x, u̇y, ẇx, ẇy, σxx, σxy, σyy, p)
t in Ωj , j = 1, · · · , N,

(19)

gives the first-order linear system of partial differential equations with source
term

Λ̇+A
∂

∂x
Λ+B

∂

∂y
Λ = −CΛ+ F. (20)

In Eq. (20), A, B and C are 3× 3 matrices in Ω0, and 8× 8 matrices in Ωj

(j = 1, · · · , N); the vector F accounts for the acoustic source in Eqs. (1). In
Ω0, C = 0. Due to the non-zero diffusive term C present in the poroelastic
media Ωj , an unsplit discretization scheme for Eq. (20) would not be suitable,
leading to a penalizing time step. A much more efficient method, which was
used in [28], consists in using a Strang splitting procedure. The following
partial differential equations are solved successively







Λ̇+A
∂

∂ x
Λ+B

∂

∂ y
Λ = 0, (21a)

Λ̇ = −CΛ, (21b)

Λ̇ = F. (21c)

The propagative part (21a) is solved using an ADER 4 scheme [35] on a
uniform Cartesian grid, with spatial mesh sizes ∆x,∆y and a time step ∆t.
This explicit two-step finite-difference scheme is accurate to the fourth-order
in both time and space, and satisfies the optimum CFL stability condition.
The diffusive part (21b) is solved exactly in the poroelastic layers Ωj , see Eq.
(18) in [28]. This step induces no stability restrictions. The fluid Ω0 has no
diffusive part, because there is no attenuation. Lastly, numerical integration
is performed on Ω0 to account for the source term (21c).
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4.2. Mesh refinement

In the low-frequency range, the slow compressional wave is a diffusive
non-propagating solution with very small wavelength λPs. A very fine spatial
mesh is therefore required. Since this wave does not propagate and is always
located near the interfaces, space-time mesh refinement is a good strategy.
For this purpose, a steady-state version of the algorithm presented in [36]
is developed. Each interface is inserted into a refined grid, where both the
spatial meshes and the time step are divided by the refinement factor q.
This procedure ensures that the same CFL number will be obtained in each
grid. The coupling between coarse and fine meshes is achieved by performing
spatial and temporal interpolations. The factor q is used to obtain the same
discretization of the slow wave on the refined zone, as with the fast wave
on the coarse grid. Taking f0 to denote the central frequency of the signal,
direct calculations give q(f0) = cPf(f0)/cPs(f0).

4.3. Immersed interface method

The discretization of the boundary conditions requires special care, for
three reasons. First, if the interfaces do not coincide with the uniform mesh-
ing, then geometrical errors will occur. Secondly, the conditions (5) and
(6) will not be enforced numerically by the finite-difference scheme, and the
numerical solution will therefore not converge towards the exact solution.
Lastly, the smoothness of the solution required to solve Eq. (20) will not be
satisfied across the interface, which will decrease the convergence rate of the
ADER scheme.

To overcome these drawbacks without detracting the efficiency of Carte-
sian grid methods, an immersed interface method [28, 29] is used. The latter
studies can be consulted for a detailed description of this method. The basic
principle is as follows: at the irregular nodes where the ADER scheme crosses
an interface, modified values of the solution are used on the other side of the
interface instead of the usual numerical values.

Calculating these modified values is a complex task involving high-order
derivation of boundary conditions (5)-(6), Beltrami-Michell relations [37] and
singular value decompositions. Fortunately, all these time consuming proce-
dures can be carried out during a preprocessing stage and only small matrix-
vector multiplications need to be performed during the simulation. After
optimizing the code, the extra CPU cost can be practically negligible, i.e.
lower than 1% of that required by the time-marching procedure. In addi-

12



tion, by choosing the order of the interface method carefully, it is possible to
achieve the overall fourth-order accuracy of the ADER 4 scheme.

5. Numerical results and discussion

5.1. Configuration and physical parameters

Ω2 j−1 Ω2 j

Saturating fluid ρf (kg/m3) 1000 1000
c (m/s) 1500 1500
η (Pa.s) 10−3 10−3

Grain ρs (kg/m
3) 2760 2644

µ (Pa) 3.40 109 7.04 109

Matrix φ 0.24 0.20
a∞ 2.3 2.4
κ (m2) 3.9 10−13 3.6 10−13

λ0 (Pa) 3.5 109 5.5 109

m (Pa) 8.1 109 9.7 109

β 0.855 0.720
Phase velocities cPf(f0) (m/s) 2636.8 3263.7

cPs(f0) (m/s) 571.5 649.5
cS(f0) (m/s) 1210.8 1751.0
cSt (m/s) 1007.1
fc (kHz) 42.5 36.8

Table 1: Poroelastic media Ω2 j−1 and Ω2 j (j = 1, · · · , N): physical parameters and
acoustic properties at f0 = 20 kHz.

Two configurations are proposed for testing the above semi-analytical and
numerical methods. The influence of the various fluid / porous boundary
conditions on the computed fields is also investigated. The first test involves
a single interface (N = 1) between a fluid and a porous medium. The second
test is performed on a layered medium involving 4 interfaces (N = 4). The
accuracy and robustness of the semi-analytical and numerical approaches are
proven in the case of realistic soil parameters.

The acoustic medium Ω0 is water (ρf = 1000 kg/m3, c = 1500 m/s). The
poroelastic layers consist alternately of water-saturated sand in Ω2j−1 [8],
and Berea sandstone in Ω2j [23]. The poroelastic properties of these media
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Figure 3: Time evolution (left) and spectrum (right) of the source S defined by Eqs. (22)
and (23). The vertical dashed line gives the central angular frequency ω0 = 2 π f0.

are summarized in Table 1. In the case where an imperfect hydraulic contact
occurs along the interface α0, the hydraulic permeability is K = 5. 10−8

m/s/Pa.
The time evolution of the source S appearing in Eq. (1) is a combination

of truncated sinusoids

S(t) =







4∑

m=1

am sin(βm ω0 t) if 0 < t <
1

f0
,

0 otherwise,

(22)

where βm = 2m−1 and ω0 = 2π f0; the coefficients am ensuring C6 smoothness
of the solution are: a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512. The
Fourier transform of Eq. (22) is

S∗(ω) =

4∑

m=1

am
βm ω0

2 π

exp(i 2 π ω0/ω)− 1

ω2 − βm ω2
0

. (23)

The central frequency in Eqs. (22) and (23) is f0 = 20 kHz, which is much
smaller than the critical Biot frequency of poroelastic layers, see Eq. (2) and
Table 1. The time evolution and Fourier transform of S are presented in Fig.
3. In the following test cases, the source is always applied in the fluid domain
at point (xs = 0, ys = 4.10−3) m.

5.2. Test 1: N = 1 interface

The interface between water and saturated sand is set at α0 = 0 m. With
the present numerical method, the whole computational domain [−2, 2]2 m2
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poroelastic medium) at t = 0.72 ms. Green-red: compressional waves; yellow-magenta:
shear wave.
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is discretized using a regular Cartesian grid with ∆x = ∆y = 2.10−3 m. This
grid is refined locally by a factor q = 5 in the neighborhood of the interface in
order to satisfy the criterion defined in section 4.2. With these parameters,
the fast and slow compressional waves are discretized by at least 75 grid
points per wavelength, and acoustic and shear waves by about 37 points per
wavelength.

The numerical solution obtained (p in the fluid, σxx in the poroelastic
medium) is shown in Fig. 4, at time t = 0.72 ms under open pore conditions.
Since the source is located very near the interface, the reflected acoustic wave
in Ω0 cannot be distinguished from the circular incident wave; the headwaves
are also clearly visible. The transmitted fast compressional wave (circular
wavefront) and shear wave (more complex structure) can be seen in Ω1.
Pseudo-Stoneley waves can also be observed along the interface, just behind
the shear wave. The transmitted slow compressional wave cannot be seen
here; it remains located along the interface on very small spatial scales.

In this configuration, the semi-analytical results were obtained with the
following set of numerical parameters. As previously explained in section
3.4, wavenumbers corresponding to the propagating waves are calculated and
sorted out. Let kx,min and kx,max denote the lowest and highest wavenumbers
of propagating waves. The integral over kx is divided into three parts. The
second part includes the sharp evolution of the integrand, and integration is
performed in this part with a finer grid. We perform

1. integration over kx ∈ [0, 0.75 kx,min] with 500 subintervals;

2. integration over kx ∈ [0.75 kx,min, 1.25 kx,max] with 5000 subintervals;

3. integration over kx ∈ [1.25 kx,max, 20 kx,max] with 200 subintervals.

The numerical integration over ω is led with 2000 regular subintervals, up
to the maximum angular frequency ωmax = 7 105 rad.s−1. Sampling with
respect to time was performed with 4000 points, where t ∈ [0, 0.70] ms in
Fig. 5.

The time history of the pressure p and of the vertical velocity u̇y obtained
with these two methods is presented in Fig. 5. The receivers were placed
near the interface in order to capture the surface waves. The pressure was
recorded in the fluid domain at point R1 (x = 0.5, y = 0.02) m while the ver-
tical velocity was recorded in the porous medium at R2 (x = 0.5, y = −0.012)
m. Results were normalized with respect to the maximum value of the pres-
sure (R1) or velocity (R2) respectively. Excellent agreement was obtained
between the semi-analytical and numerical values, under all the interface

16



p (open pores) u̇y (open pores)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

P
re

ss
ur

e 
 (

P
a)

 

 

P
f

F

S
t

Numerical
Analytical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

u̇
y

(m
/
s)

 

 

Numerical
Analytical

p (imperfect pores) u̇y (imperfect pores)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

P
re

ss
ur

e 
 (

P
a)

 

 

Numerical
Analytical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

u̇
y

(m
/
s)

 

 

Numerical
Analytical

p (sealed pores) u̇y (sealed pores)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

P
re

ss
ur

e 
 (

P
a)

 

 

Numerical
Analytical

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

u̇
y

(m
/
s)

 

 

Numerical
Analytical

Figure 5: N = 1 interface, with open pores (top), imperfect pores (middle) and sealed pores
(bottom). Time evolution of the acoustic pressure p at recorder R1 (x = 0.5, y = 0.02) m
(left) and that of the vertical velocity u̇y at recorder R2 (x = 0.5, y = −0.012) m (right).
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Figure 6: N = 1 interface. Comparison between the different pore conditions: pressure
(left) and vertical velocity (right).

pore conditions tested. The validity of the numerical strategy used to com-
pute the integrals in the semi-analytical method was therefore confirmed.
From the physical point of view, Figure 5 presents three peaks due to the
following waves: Pf for the fast compressional wave (tPf ≈ 0.21 ms), F for
the direct fluid wave (tF = 0.33 ms), and St for the pseudo-Stoneley wave
(tSt ≈ 0.51 ms). The influence of the pore conditions adopted at the fluid
/ porous interface can be clearly seen in Fig. 6. Note that the direct fluid
wave occurring in the acoustic pressure component (R1) was not affected by
the pore conditions, contrary to what occurred with all the other peaks.

5.3. Test 2: N = 4 interfaces

The computational domain was the same here as in test 1 and the co-
ordinates of the 4 interfaces were set as follows: α0 = 0 m, α1 = −0.1 m,
α2 = −0.15 m, and α3 = −0.6 m, with layer thicknesses ranging from 0.5 to 4
wavelengths of the fast compressional wave. Once again, ∆x = ∆y = 2.10−3

m were used for the coarse grid, and ∆x/5, ∆y/5 in the more highly refined
grids surrounding each interface.

The numerical solution is presented in Fig. 7, where complex interactions
and wave conversions can be observed. The time evolution of the acoustic
pressure at point R3 (x = 1, y = 0.02) m and that of the vertical velocity u̇y

at point R4 (x = 1, y = −0.112) m are shown in Fig. 8. Once again, excellent
agreement was observed between the semi-analytical and numerical values
obtained. With the conditioning matrix technique, no oscillation occurs in
the semi-analytical values, and the layers therefore do not need to be divided
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into sublayers, which makes the calculations more efficient [23].
Differences between the pressures computed under open, imperfect and

sealed conditions can be clearly seen in Fig. 9, especially in the successive
diffracted waves. This shows the need for an accurate means of treating the
pore conditions whatever the numerical method used, even in the case of a
single fluid / porous interface.

6. Conclusion

The propagation of transient waves in a stratified 2D fluid / poroelastic
medium was studied here using two different approaches: a semi-analytical
and a numerical approach. On the one hand, the analytical solution is fast,
and can therefore be efficiently plugged into imaging codes [38, 39]. This
approach can only be used with academic geometries, however. On the other
hand, the numerical solution can be used to handle much more complex
geometries and media, but the full space-time grid is not suitable when the
solution is sought only at some receivers.

Both methods are also able to deal with various boundary conditions,
which can have non-negligible effects on the various fields, as we have seen
here. As far as we know, the case of imperfect pores has never been treated
previously using a numerical approach. Since the assumptions underlying
the present semi-analytical and numerical approaches are radically different,
the comparisons between the results obtained constitute an authentic cross-
check, and the results obtained therefore provide useful benchmarks for future
researches.

We are currently extending this study to include frequencies greater than
Eq. (2), using the JKD model [40]. The frequency correction can be straight-
forwardly incorporated into the analytical method, but the time-domain
numerical modeling needs to be considerably adapted because of fractional
derivatives involved [41]. Work is currently under way on these lines [42].
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Figure 8: N = 4 interfaces, with open pores (top), imperfect pores (middle) and sealed
pores (bottom). Time evolution of the acoustic pressure p at recorder R3 (x = 1, y = 0.02)
m (left) and that of the vertical velocity u̇y at recorder R4 (x = 1, y = −0.112) m (right).

21



0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

P
re

ss
ur

e 
 (

P
a)

 

 

Open
Imperfect
Sealed

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

u̇
y

(m
/
s)

 

 

Open
Imperfect
Sealed

Figure 9: N = 4 interfaces. Comparison between the different pore conditions: pressure
(left) and vertical velocity (right).

Appendix A. Notations used along section 3

The vertical components of the wavenumbers (12), which are denoted by
an y index, satisfy

k2
yP j = k2

Pj − k2
x, k2

yS = k2
S − k2

x. (A.1)

To ensure the radiation condition, we choose ℑ(kyP j, kyS) ≥ 0. Then, the
coefficients associated with compressional waves and the shear wave are

FPj =
(k2

yP j + k2
x)β m− ω2 ρf

−(k2
yP j + k2

x)m+ ω2a∞ ρf/φ+ iω η/κ
, j = f, s (fast, slow),

G = −
φ ρf κω

a∞ ρf κω + i η φ
.

(A.2)
The matrices Z, ST,R and QT,R in system (13) are given by

Z(hk) = diag < exp(i kyPf hk), exp(i kyPs hk), exp(i kyS hk) >, (A.3)
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where diag stands for the diagonal matrix,

ST =






ST
11 ST

12 ST
13

ST
21 ST

22 ST
23

ST
31 ST

32 0




 , SR =






−ST
11 −ST

12 ST
13

ST
21 ST

22 −ST
23

ST
31 ST

32 0




 ,

ST
11 = 2µ kyPf kx,

ST
12 = 2µ kyPs kx,

ST
13 = µ (k2

yS − k2
x),

ST
21 = i (−(k2

yPf + k2
x) (λ0 +mβ2 +mβFPf)− 2µ k2

yPf),

ST
22 = i (−(k2

yPs + k2
x) (λ0 +mβ2 +mβFPs)− 2µ k2

yPs),

ST
23 = 2 i µ kyS kx,

ST
31 = −im (k2

yPf + k2
x) (FPf + β),

ST
32 = −im (k2

yPs + k2
x) (FPs + β),

(A.4)

and

QT =






i kx i kx i kyS

kyPf kyPs −kx

kyPfFPf kyPsFPs −kx G




 , QR =






QT
11 QT

12 −QT
13

−QT
21 −QT

22 QT
23

−QT
31 −QT

32 Q33




 .

(A.5)
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