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Abstract — The aim of this paper is to consider the adaptation 

behavior of an electromechanical arm manipulator to the 

physical interaction of humans. Preliminary experiments to 

explore the possibility of adaptive interactions between an arm 

robot and a human without knowledge of the forces are 

investigated. A simple and efficient control adaptation of the 

system is implemented at the level of the electrical drive. 

I. INTRODUCTION 

OWADAYS, robotic arms have a high level of

resolution for technical tasks, laid by the industry 

constraints, resulting in major breakthroughs in the field of 

control theory and computer systems. In humanoid robotics, 

further progress depends on the success in solving more 

fundamental problems like the reproduction of the faculty of 

learning and of the cognitive mechanisms in human beings 

when robots are interacting with humans physically or 

socially. In particular, the control of the physical interactions 

between humans and robots is a fundamental problem for 

humanoid robots [1]. 

In industry, there are a variety of tasks for which the robot 

manipulator interacts with an external force. The torque 

generated by the external force can be considered as a 

disturbance. The robot's controller can usually compensate 

the action of this disturbance by using different control 

methods. The specifics of physical human-robot interaction 

(pHRI) come from the great variations in interaction 

parameters: amplitudes, speeds and endurance of forces 

application on the part of the human being. These parameters 

are unknown and cannot always be measured. 

In the area of the adaptive control of arm robot in 

interaction, a lot of previous works have been developed. The 

control of robot arms is often based on position, velocity, and 

torque measurements. Other approaches like polynomial 

family of PD-type controllers [2], adaptive iterative learning 
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control [3] and nonlinear mixed H2/H∞ control [4], hybrid 

force/velocity control of industrial robot arms [5] have also 

been proposed for control of robot arms. The impedance 

control [6, 7] and compliance control [8, 9] have been 

suggested to realize the flexible motion of robot arms, and 

applied it to industrial robots [10, 11]. These control methods 

presuppose to modeling the dynamic characteristics between 

the end-effector and its environment. 

The sensorless flexible control was suggested for create 

flexible motion of industrial articulated robot arms [12]. This 

method allows switching from a classical control law to a 

suitably defined hybrid force/motion controller that enables to 

keep the contact when collision is detected, while sliding on 

the obstacle, and regulates the interaction force. Other authors 

have proposed the force-free control approach [13]. This 

method can create the guided motion under ideal conditions. 

The robot arm could be moved by an external force under 

unnatural conditions as if there were no forces of gravity and 

no forces of friction. 

All these approaches were especially developed for 

industrial applications for which the environment is partially 

known, for which the human who is interacting with the robot 

is a professional worker with “calibrated” behavior. In the 

case of human interactions with humanoid robots, the person 

can be anyone and her behavior could change every time. 

Then the controller must adapt itself to the large varieties of 

the human physical interaction. 

In this paper, preliminary experiments to explore the 

possibility of adaptive interactions between an arm robot and 

a human without knowledge of the interaction forces are 

investigated. The control adaptation of the system is 

implemented at the level of the electrical drive. 

After this introduction, the second section of this paper 

describes the physical interaction problem between human 

and robot arm used in the experiments. The problem is 

studied in two ways: simulation and modeling. Third section 

presents experiments in the adaptation algorithm 

accompanying an unknown external force for one of degree 

of freedom of the robot. Finally, in section four, a short 

summary and conclusion is given. 
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�0�!� � "12	��30 . !�		 			�5�	
where kH is the force coefficient adjusted experimentally. 

This force is exerted at the end of the arm like in the 

experiments presented in next subsection.  

Based on the equations (2), (3) and (5) we have built a 

simulated model of a single joint manipulator in interaction in 

the Matlab package (Fig. 3 and Fig. 4). 

According to the scheme of Fig.4 there is no compensator 

gravity, the modelized human force, following the equation 

(5), is applied to the link of the simulated manipulator. Fig 5 

and Fig. 6 show the effects on angle joint variation ΚΘ(t) and 

motor current I(t) by applying this external force. The 

independent joint control system compensates this force like 

as a disturbance. We can see that this compensation depends 

on the gains of outer loop kp and inner loop ki and kd. 

Fig. 5. Simulation of the influence of coefficient kd of the speed -PI-

controller on the characteristics of the joint movement (articular position).  

D.  Experiment: interaction between passive robot arm and 

human arm 

The goal of these experiments is to estimate the response 

of the manipulator to a series of unknown external forces 

perturbations exerted by a human (in the vertical plane). Two 

types of series of forces are applied to the elbow axe, at the 

same point (see Fig. 7). Scenario A: the intensity of the force 

is gradually increasing. Scenario B: intensity of the force is 

suddenly increasing. 

Examples of robot response to the perturbation of scenario 

"A" and "B" are depicted on Fig. 8 and Fig. 9. The action of 

the perturbation can be decomposed of two phases. During 

the first phases (phases a and c on Fig. 8) the human pushes 

the arm that moves away from its initial position. In the 

second phase (phases b and d), the human stops to push and 

the arm returns to its initial position. The average of speed 

and current are presented in Tables I and II.  

By comparing the response to disturbance of the joint, we 

can see that the displacement is almost the same for both 

types of human disturbance. So we can see that in the non 

aggressive scenario A, the influence of the external force 

causes an articular displacement of  around 3 degrees and the 

maximal current consumed by the PWM module is  about 

284 mA, the influence of this force causes the speed up to 

Fig. 3. One axis robot dynamic model implementation in 

MATLAB/SimMecanics. 

Fig.4. Electric drive model with independent joint control implementation 

in MATLAB/Simulink. 

Fig. 6. Simulation of the influence of coefficient kd of the speed -PI-

controller on the characteristics of the joint movement (motor current).  

Fig. 7. Experiment of Robot Katana under influence of an external 

unknown force. 
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0.0055 rag s-1. Scenario B is more aggressive: the influence 

of this force causes the speed up to 0.0107 rad·s
-1

 and the 

current consumed up to 236 mA, the joint displacement 2.5 

degrees. 

TABLE I. PERTURBATION OF THE TYPE "A" 

Phase 
Angular velocity mean 

value, rad · s-1 

Current mean 

value, mA 

a 0.0047 161.3 

b 0.0039 100.1 

c 0.0062 199.8 

d  0.0055 107.6 

TABLE II. PERTURBATION OF THE TYPE "B" 

Phase 
Angular velocity mean 

value, rad · s-1 

Current mean 

value, mA 

a 0.0085 140.1 

b 0.0037 100.3 

c 0.0130 114 

d 0.0065 118.7 

The response of system to a perturbation by scenario "A" 

for different values of the proportional gain kd of the speed 

loop is depicted on Fig. 10. The results are very similar to the 

simulations of section II C except for the current when kp= 16 

because the control loop is very strong. 

We see that, for low values of the gain, the system 

undergoes external force with a large angular variation 

because the control strength is "soft". By increasing the gain, 

the system becomes more "rigid". However, for all cases, 

changes in current are almost identical to the order of 0.1 A. 

Compared to the simulation, the differences in the current 

profile are caused by approximate allowance for the friction 

forces and the perturbation force, an approximate calculation 

of the mass of the investigated joint. 

III. EXPERIMENT OF ADAPTATION ALGORITHM

ACCOMPANYING THE EXTERNAL FORCE 

In the interaction between robot and human, one way is the 

“following robot”, i.e; the robot follows the force applied by 

human. The robotic arm accompanies the human arm in its 

movement depending on the intensity of the force and 

Fig. 8. Dependences of angle joint variation �Θ(t) and motor current I(t) 

in case of the non aggressive  perturbation (scenario "A"). 

Fig. 9. Dependences of angle joint variation �Θ(t) and motor current I(t) in 

case of aggressive perturbation (scenario "B"). 

Fig. 10. Experimental dependences of the influence coefficient kd of the PI-

controller of speed on the character of the movement system. 
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direction (two directions in our experiment: up or down). We 

propose to modify the feedback loop, i.e. to change the 

position set point  when the interaction is detected and adapt 

this set point to the direction and intensity of force applied by 

human. (Fig. 11). 

A. Adjustment of the reference of position loop step-by-step 

In this control algorithm, small step by step movements of 

the electromechanical system are processed using the value of 

the minimum displacement Θmin. By using the measured 

current of the PWM module, we create a new desired input 

for the position loop. Thus the control law is:  

6Θ89' � Θ8 
 Θ:8; <+ = > =?@)Θ89' � Θ8 � Θ:8; <+ = < �=?@)Θ89' � Θ8 <+ = � 0 B (6) 

Where Imin the non-sensitive zone to reject the noise of 

measured current (adjusted experimentally). The results of 

physical interaction are depicted on Fig. 12. 

The manipulator link is led by the human. It is necessary to 

make the link repeating trajectory and peculiarities of motion 

of the man’s hand that pushing the arm. (fig.11).  The table 

III presents the values of the angle of displacement of joint 

under the action the force of human being: average of the 

absolute value of velocity, eq. (7) (i.e. displacement) and 

active value of current, eq. (8). 

CD� = 1EF |H�!�|I!�
J 	 	�7�	

=DLM = N1EF &<�!�*OI!�
J 								�8�

TABLE III. VALUES OBSERVED DURING THE EXPERIMENT IN FIG.12 

Period of time, s 0.30-19.5 19.5-37.6 37.6-55.9 

Rotation, deg 10 25 55 

Average of the absolute value 

of velocity , rad·s-1 

0.0021 0.0029 0.0069 

Active value of current, mА 175 212 278 

Period of time, s 55.9-77.6 77.6-102 102-120 

Rotation, deg 38 38 25 

Average of the absolute value 

of velocity , rad·s-1 

0.0042 0.0044 0.0033 

Active value of current, mА 230 106 233 

Table IV shows data when the man applied physical force to 

the link in various directions. The time intervals were from 18 

to 20 seconds on average. The smallest move, achieved with 

the manipulator link, was 10 degrees with the average angular 

speed 0.0021 rad.s
-1

. The average value of the registered 

current was 175 mA during the given interval. The largest 

move achieved was 55 degrees with the average angular 

speed 0.0069 rad.s
-1

, with an average current of 278 mA. To 

the question if he had been feeling comfort when interacting 

with the robot, the man said that it had not been exactly the 

case. First, the arm bounced; second, he had some difficulties 

to take up the needed positions. 

B. Adjustment of the reference proportionally to the 

movement. 

This approach provides to change of reference for position 

loop. The reference is computed proportionally to the human 

interacting forces. The coefficients of regulators do not 

change during the experiment. The previous algorithm can be 

modified to make the adjustment of the task for position loop 

proportional to the difference of current displacement		ΔR =Θ8 −	Θ8S' caused by the external force. This control law (eq.

(9)) is simpler than the first one (eq. (6)): 	Θ89' = 	Θ8 + ΔR ∙ K																																�9�
The results of physical interaction are depicted on Fig. 13. 

The comparaison of the performances of the two proposed 

algorithms shows that the the first algorithm allows an 

average of 31 degrees in the motion  displacement for an 

average current of 205 mA  (1 degree  consumes 

approximately 4.46 mA). 

The second algorithm allows a similar motion 

Fig. 11. Adaptation algorithm experimented on the robot manipulator 

Katana when interacting with a human. 

Fig. 12. Dependences of angle joint variation �Θ(t) and motor current 

I(t) when according step-by-step the set point position following the 

variation of the PWM current. 
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displacement (average of 33 degrees) but for a current 

average of 68 mA ( 1 degree consumes 2 mA approximately). 

TABLE IV. VALUES OBSERVED DURING THE EXPERIMENT OF FIG.13 

Period of time, s 7.15-10.9 10.9-12.8 12.8-14.6 

Rotation, deg 61.6 19.5 15 

Average of the absolute value 

of velocity , rad·s-1 

0.0348 0.0232 0.0190 

Active value of current, mА 95.1 60.3 61 

Period of time, s 16.5-18.2 18.2-21.3 21.3-25.8 

Rotation, deg 13 31 63 

Average of the absolute value 

of velocity , rad·s-1 

0.0163 0.0219 0.0305 

Active value of current, mА 50.8 59.1 86 

IV. CONCLUSION

The objective of this preliminary work was to study the 

possibility of on-line adapting the position reference of a 

robot arm that undergoes human interactions. In this paper, 

we experimented two control algorithms on one joint of a 

manipulator Katana. 

We have shown that it is possible to control a degree of 

freedom based on the simple adaptive algorithms. Two 

control algorithms were compared. The control approach 

based on the interaction forces measured through the joint 

articular displacements is better in terms of power 

consumption. This work may be extended to the complete 

control of the manipulator. Future work will involve adapting 

a dynamic movement of the arm to a dynamic interaction of 

man. We will implement a control law in order that the robot 

adapts its movement to a rhythmic movement imposed by 

human. This adaptation algorithm will be based on rhythmic 

controllers models inspired by biology. 
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