
HAL Id: hal-00667583
https://hal.science/hal-00667583v1

Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pose and Expression-Invariant 3D Face Recognition
using Elastic Radial Curves

Hassen Drira, Boulbaba Ben Amor, Mohamed Daoudi, Anuj Srivastava

To cite this version:
Hassen Drira, Boulbaba Ben Amor, Mohamed Daoudi, Anuj Srivastava. Pose and Expression-Invariant
3D Face Recognition using Elastic Radial Curves. British machine vision conference, Aug 2010,
Aberystwyth, United Kingdom. pp.1-11. �hal-00667583�

https://hal.science/hal-00667583v1
https://hal.archives-ouvertes.fr


DRIRA et al.: POSE AND EXPRESSION-INVARIANT 3D FACE RECOGNITION 1

Pose and Expression-Invariant 3D Face

Recognition using Elastic Radial Curves

Hassen Drira1

http://www.telecom-lille1.eu/people/drira

Boulbaba Ben Amor12

http://www.telecom-lille1.eu/people/benamor

Mohamed Daoudi12

http://www.telecom-lille1.eu/people/daoudi

Anuj Srivastava3

http://stat.fsu.edu/~anuj/

1 LIFL (UMR CNRS 8022),

University of Lille 1,

Villeneuve d’Ascq, France.

2 TELECOM Lille 1 ;

Institut TELECOM, France.
3 Department of Statistics,

Florida State University,

Florida, USA.

Abstract

In this paper we explore the use of shapes of elastic radial curves to model 3D facial

deformations, caused by changes in facial expressions. We represent facial surfaces by

indexed collections of radial curves on them, emanating from the nose tips, and com-

pare the facial shapes by comparing the shapes of their corresponding curves. Using a

past approach on elastic shape analysis of curves, we obtain an algorithm for comparing

facial surfaces. We also introduce a quality control module which allows our approach

to be robust to pose variation and missing data. Comparative evaluation using a com-

mon experimental setup on GAVAB dataset, considered as the most expression-rich and

noise-prone 3D face dataset, shows that our approach outperforms other state-of-the-art

approaches.

1 Introduction and related work

A biometric-based recognition system can be very useful in a variety of applications. While

some biometric modalities, such as fingerprints and iris, have already reached very high

level of accuracy, they have a limited use in non-cooperative scenarios. On the other hand,

the less-intrusive modalities like the face and gait have not reached the desired levels of

accuracy. Over the past three decades, the techniques for face recognition have received a

growing attention within the computer vision community. Within this problem area, the 2-D

and 3-D data represent the two different kinds of challenges.

We can classify existing 3D face recognition methods into two categories. First, some

methods, such as Moussavi et al. [11], Mahoor et al. [9] and Li et al.[8], are interested in

adopting low-level geometric features to face recognition for several reasons. They claim

that they spend less effort in extracting features unlike the methods that are based on extract-

ing high-level geometric features, e.g., shapes of facial curves [13], concave and convex

facial regions [1], partial face regions [5][10], or deformation distance metrics [7]. The

latest methods constitute the second category, and their recognition performance generally
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depends on the reliability of the feature. For this reason, it is necessary to spend effort to

extract these features and look for elaborate tools to compare them. For example, shape anal-

ysis can be a good candidate especially it has shown good performance in previous works

[13]. Our approach is to represent facial surfaces as indexed collections of radial curves in

order to handle pose and expression variations. The main differences between this work and

previous curve-based approaches are as follows. Samir et al. [13] used the level curves of the

height function to define facial curves. Since these curves are planar, they used shape anal-

ysis of planar curves to compare faces; non-linear matching problem was not studied here

(that is, the mapping between curves was fixed to be linear). The metric used was a non-

elastic metric and the shooting method was used for computing geodesics between planar

curves. Consequently, this representation is not fully invariant to rigid motions of the face.

In [14], the level curves of the surface distance function that resulted in 3D curves are used.

The authors used a non-elastic metric and a path-straightening method to compute geodesics

between these curves. Here also the matching was not studied and the correspondence of

curves and points across faces was simply linear. However, the open mouth corrupts the

shape of some level curves and this parameterization does not handle this problem. To avoid

this problem of open mouth, Drira et al. [4] proposed partial biometrics. That is, they studied

the contribution of only the nose region in 3D face recognition using a similar level curve

based approach. They used elastic matching for curves comparison. Mpiperis et al. [12]

proposed a geodesic polar parameterization of the face surface. With this parameterization,

the intrinsic surface attributes do not change under isometric deformations when the mouth

is closed. When the mouth is open it violates the isometric assumption and they modify

their geodesic polar parameterization by disconnecting the lips. Therefore, their approach

requires lips detection [3]. In [2] and [1] Berretti et al. proposed to use features derived

from the surface paths around the nose. In [2], the radial curves were extracted as features,

then matched using SVM classifiers. Experimental results on GAVAB dataset shows that this

approach is sensitive to expression variations. (Rank one recognition rate = 75.4% for non-

neutral expressions). In [1], a compact graph representation is constructed for each face. In

this way, the structural similarity between two face models is evaluated by matching their

corresponding graphs.

Figure 1: Overview of the proposed method.

In this paper, we extract radial curves as features (in a similar way than [2] and [12]).

However, we apply elastic shape analysis in order to keep the intrinsic surface attributes

under isometric deformations even when the mouth is open. In other words, our choice

of representation is based on ideas followed previously in [14] but using a collection of
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radial curves to represent a surface and not iso-curves. Our contribution in this paper is an

extension of the previous elastic shape analysis framework [6] of opened curves to surfaces

which is able to model facial deformations dues to expressions, even with an open mouth

face. We demonstrate the effectiveness of our approach by comparing the state of the art

results. However, unlike previous works dealing with large facial expressions, especially

when the mouth is open [12][3] which require lips detection, our approach mitigates this

problem without any lip detection. Indeed, besides the modeling of elastic deformations,

the proposed shape analysis-based framework solves the problem of opening of the mouth

without any need to detect lip contours as in [12] and [3]. Figure 2 illustrates the overall

proposed 3D face recognition method. First of all, the probe P and the gallery G meshes are

preprocessed. This step is essential to improve the quality of raw images and to extract the

useful part of the face. It consists of a Laplacian smoothing filter to reduce the acquisition

noise, a filling hole filter that identifies and fills holes in input mesh, and a cropping filter

that cuts and returns the part of the input mesh inside of a specified sphere. Then, a coarse

alignment is performed based on the translation vector formed by the tips of the noses. This

step is followed by a finer alignment based on the well-known ICP algorithm in order to

normalize the pose. Next, we extract the radial curves emanating from the nose tip and

having different directions on the face. Within this step, a quality control module inspects

the quality of each curve on both meshes and keeps only the good ones based on defined

criteria.

In order to improve matching and comparisons between the extracted curves, we advo-

cate the use of elastic matching. Actually, facial deformations dues to expressions can be

attenuated by an elastic matching between facial curves. Hence, we obtain algorithm for

computing geodesics between pair wise of radial curves on gallery and probe meshes. The

length of one geodesic measures the degree of similarity between one pair of curves. The

fusion of the scores on good quality common curves, produced similarity score between the

faces P and G. We detail the pipeline of all these stages contained in our method in the fol-

lowing sections. Section 3 describes surface preprocessing and alignment steps. In Section

4 we explain the radial curves extraction step and focus on the quality control module. Sec-

tion 5 presents the Riemannian framework to analyze shapes of curves and its extension to

compare facial surfaces. We demonstrate in section 6 the performance to recognize people

in presence of both expression and pose variations. The section 7 suggests some future work

and provide some concluding remarks.

2 Preprocessing and surfaces alignment

As illustrated in Figure 2, we start by preprocessing the input raw images in order to im-

prove their quality. Indeed, these images present some imperfections as holes, spikes and

includes some undesired parts (clothes, neck, ears, hair, etc.) and so on. This step consists of

a pipeline of 3D mesh processing filters. (i) Smoothing filter reduces high frequency infor-

mation (spikes) in the geometry of the mesh, making the cells better shaped and the vertices

more evenly distributed. (ii) Cropping filter cuts and returns parts of the mesh inside a de-

fined implicit function. This function is a sphere defined by the nose tip as its center and

the radius 75mm in order to avoid as much hair. (iii) Filling holes filter identifies and fills

holes in input meshes. Holes are created either because of the absorption of laser in dark

areas such as eyebrows and mustaches, occlusion or mouth opening. They are identified in

the input mesh by locating boundary edges, linking them together into loops, and then trian-
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gulating the resulting loops. After meshes preprocessing, we correct their poses to properly

compare the faces by establishing correct correspondence between sets of curves of probe

and gallery images. (iv) Coarse alignment filter fixes the probe image P onto the Gallery

image G at the nose tip. In other words, this filter performs a translation transform along the

vector defined by the two tips of the noses. This step presents a good initialization to the (v)

Fine alignment filter which performs ICP algorithm on obtained meshes. The fine alignment

filter also corrects non-frontal meshes to make them frontal.

Figure 2: Pipline of preprocessing filters and alignment procedure.

3 Radial curves extraction and quality control

Our recognition approach is based on elastic matching of radial curves extracted from facial

surfaces. After preprocessing and alignment stages, we represent each facial surface by an

indexed collection of radial curves emanating from the nose tips. To address the missing data

and large pose variations, we introduce a quality control module that inspects the quality of

extracted curves and remove bad quality ones.

3.1 Radial curves extraction

Now we introduce our mathematical representation of a facial surface. Let S be a facial

surface denoting the output of the previous preprocessing step. Although S is a triangulated

mesh, we start the discussion by assuming that it is a continuous surface. Let βα denote the

radial curve on S which makes an angle α with a reference radial curve. The reference curve

is chosen to be the vertical curve once the face has been rotated to the upright position. In

practice, each radial curve βα is obtained by slicing the facial surface by a plane Pα that

has the nose tip as its origin and makes an angle α with the plane containing the reference

curve. That is, the intersection of Pα with S gives βα . We repeat this step to extract radial

curves from the facial surface at equal angular separation. If needed, we can approximately

reconstruct S from these radial curves according to S ≈∪α βα = ∪α{S∩Pα} as illustrated in

Figure 3. This indexed collection of radial curves captures the shape of a facial surface and

forms our mathematical representation of that surface. We have chosen to represent a surface

with a collection of curves since we have better tools for elastically analyzing shapes of

curves than we have for surfaces. More specifically, we are going to utilize an elastic method
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for studying shapes of curves that is especially suited to modeling deformations associated

with changes in facial expressions. Notice that some curves can reduce the performance

of the algorithm as they have bad quality. These curves should be, first, detected and then

removed. In figure 3, we show the result of curves extraction and we show only curves that

have passed the quality filter. We give further details about that filtering next.

3.2 Quality filter for curves selection

This filter is applied on the curves after the face preprocessing step. Actually, these curves

are considered as features of the face and the distance between faces is based on these curves.

The aim of that filter is to remove curves which have bad quality. To pass the quality filter,

a curve should be continuous and having a minimum of length. The discontinuity or a

shortness of a curve results from the missing data on the face or presence of large noise.

To illustrate this idea, we show in figure 3 an example of extracted curves on a face and then

the result of quality filter on these curves. Once the quality of the features is controlled, we

proceed to faces comparison.

Figure 3: Radial curves extraction and quality filter application.

In the following sections we describe our framework to analyze shape of curves in order

to compare the selected features.

4 Facial surfaces comparisons

Let β : I → R
3, for I = [0,1], represent a facial curve generated as described above. To

analyze the shape of β , we shall represent it mathematically using a square-root velocity

function (SRVF), denoted by q(t), according to:

q(t)
.

=
β̇ (t)

√

‖β̇ (t)‖
. (1)

q(t) is a special function introduced by [6] that captures the shape of β and is particularly

convenient for shape analysis. It has been shown in [6] that the classical elastic metric for

comparing shapes of curves becomes the L
2-metric under the SRVF representation. This

point is very important as it simplifies the calculus of elastic metric to the well-known cal-

culus of functional analysis under the L
2-metric. We define the set:

C = {q : I → R
3|‖q‖= 1} ⊂ L

2(I,R3) . (2)
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With the L
2 metric on its tangent spaces, C becomes a Riemannian manifold. In particu-

lar, since the elements of C have a unit L2 norm, C is a hypersphere in the Hilbert space

L
2(I,R3). In order to compare the shapes of two radial curves, we can compute the distance

between them in C under the chosen metric. This distance is defined to be the length of the

(shortest) geodesic connecting the two points in C . Since C is a sphere, the formulas for the

geodesic and the geodesic length are already well known. The geodesic length between any

two points q1,q2 ∈ C is given by:

dc(q1,q2) = cos−1(〈q1,q2〉) , (3)

and the geodesic path α : [0,1]→ C , is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1,q2).

Figure 4: Matching and geodesic deforming radial curves in presence of expressions.

It is easy to see that several elements of C can represent curves with the same shape.

For example, if we rotate a face in R
3, and thus its facial curves, we get different SRVFs

for the curves but their shapes remain unchanged. Another similar situation arises when

a curve is re-parametrized; a re-parameterization changes the SRVF of curve but not its

shape. In order to handle this variability, we define orbits of the rotation group SO(3)
and the re-parameterization group Γ as equivalence classes in C . Here, Γ is the set of all

orientation-preserving diffeomorphisms of I (to itself) and the elements of Γ are viewed as

re-parameterization functions. For example, for a curve β : I → R
3 and a function γ ∈ Γ,

the curve β ◦γ is a re-parameterization of β . The corresponding SRVF changes according to

q(t) 7→
√

γ̇(t)q(γ(t)). We define the equivalent class containing q as:

[q] = {
√

γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

The set of such equivalence class is called the shape space S of elastic curves [6]. To

obtain geodesics and geodesic distances between elements of S , one needs to solve the op-

timization problem, which is typically done using dynamic programming. An example of
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this idea is shown in Figure 4, where we take two radial curves from two faces and compute

a geodesic path between them in S . The middle panel in the top row shows the optimal

matching for the two curves obtained using the dynamic programming, and this highlights

the elastic nature of this framework. For the left curve, the mouth is open and for the right

curve, it is closed. Still the feature points (upper and bottom lips) match each other very

well. The bottom row shows the geodesic path between the two curves in the shape space

S and this evolution looks very natural under the elastic matching. Since we have geodesic

paths denoting optimal deformations between individual curves, we can combine these de-

formations to obtain full deformations between faces.

In fact, these full deformations are geodesic paths between faces when represented as

elements of S [0,α0]. Shown in Figure 5 are examples of such geodesic paths between source

and target faces. It is clear that the geodesic in the shape space models in a natural way

the deformation from the source to the target, especially in mouth region. We present the

illustrations in both cases; case of inter-class path (source and target belong to different

persons) and intra-class path (source and target belong to the same person).

Figure 5: Examples of intra-class geodesic (top row), and inter-class geodesic (lower row).

5 Evaluation

The proposed approach for representation and matching of faces has been evaluated using the

GavabDB database. We first describe the experimental setup. Then, we test our recognition

method, discuss the results and give comparisons with state of the art approaches. Table 5

present the Time Consumed for different steps of our algorithm on a PC with a 3 Ghz Core

2 Duo processor with 3 GB memory.

Table 1: Computational cost
Step Time consumed (s)

Mesh Preprocessing 0.375 (per face)

Mesh Alignment 0.125

Curves extraction 0.485 (all curves, 2 faces)

Quality control 0.000001875 (per curve)

Curve preprocessing 0.137 (per curve)

Curve comparison 0.0318 (per curve)

Overall 7.7
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5.1 The dataset

To the best of our knowledge, GavabDB is the most expression-rich and noise-prone 3D

face dataset currently available to the public. The GavabDB consists of Minolta Vi-700

laser range scans from 61 different subjects. The subjects, of which 45 are male and 16

are female, are all Caucasian. Each subject was scanned 9 times for different poses and

expressions, namely six neutral expression scans and three scans with an expression. The

neutral scans include two different frontal scans, one scan while looking up (+35 degree),

one scan while looking down (-35 degree), one scan from the right side (+90 degree), and

one from the left side (-90 degree). The expression scans include one with a smile, one with

a pronounced laugh, and an arbitrary expression freely chosen by the subject [15]. Figure 6

shows some examples of faces in this dataset.

Figure 6: Examples of all 3D scans of the same subject from GAVAB dataset.

5.2 Experimental results

In order to assess the effectiveness of the proposed solution for face identification, we per-

formed extensive experiments. In these experiments, one of the two frontal models with the

neutral expression provided for each person is taken as a gallery model for the identification.

Table 2: Comparison of recognition rates using different methods : (a) Neutral, (b) Expressive, (c)

Neutral+expressive, (d) Rotated looking down, (e) Rotated looking up, (f) Overall, (g) Scans from right

sight, (g) Scans from left sight.

Li et al. [8] Moreno et al. [10] Mahoor et al. [9] Berretti et al. [1] Mousavi et al. [11] Our

(a) 96.67% 90.16% 95% 94% - 100%

(b) 93.33% 77.9% 72% 81% - 94.54%

(c) 94.68% - 78% 84.25% 91% 94.67%

(d) - - 85.3% 80% - 100%

(e) - - 88.6% 79% - 98.36%

(f) - - - 82.66% 81.67% 96.99%

(g) - - - - - 70.49%

(h) - - - - - 86.89%

Table 2 illustrates the results of the matching accuracy for different categories of probe

faces. We notice that the proposed approach provides a high recognition accuracy for ex-

pressive faces (94.54%). This is due to both face parameterization using radial curves and

elastic matching techniques. Actually, each curve represents a feature that caracterizes a lo-

cal region in the face contrary to the using closed level curves. Besides, the elastic matching

is able to establish a correspondence with guaranteed alignment among anatomical facial

features. Figure 4 shows an example of matching lower lips of the mouth together and also
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upper lips, although a large deformation in one face due to the opening of the mouth. Figure

7 (top row) illustrates some recognition examples of expressive and pose modified probe

faces. For each case, on the left the probe face is shown, while on the right the correctly

identified reference face (gallery) is reported. These models also provide examples of the

variability in terms of facial expression of face models included in the probe dataset. As far

as neutral expressions are concerned, the accuracy depends on the pose. We correct the pose

using one iteration of ICP algorithm as the poses are very difficult. Actually, the accuracy is

not affected when the pose is frontal or rotated looking down (the recognition rate is 100%).

Figure 7: Recognition examples. For each pair, the probe (on the left) and the retrieved (on the left) faces are

reported.

We can see in figure 7 (top row) an examples of well matched faces although its pose

(looking down). However, the accuracy is no more perfect but still very high (98.36%) for the

looking up pose. According to scans from right and left sides, the accuracy is not very high

as missing data are very important. Figure 7 (lower row) illustrates some bad matchings. For

each pair, the probe (on the left), the first closest face (on the left) are reported. To the best of

our knowledge, no earlier work included scans from left and right sights in their experimental

protocol when using GAVAB dataset. Therefore, we show in table 2 comparison with other

methods on a subset of GAVAB dataset (without these scans). Notice that the experimental

protocol is the same; one of the two frontal neutral scan is choosen as gallery, remaining

faces constitute the probe dataset. As shown in the table, our method outperforms all other

ones in terms of recognition rates.

6 Conclusion and Perspectives

In this paper we have proposed an original solution to the problem of 3D face recognition.

We have illustrated a geometric analysis of 3D facial shapes in presence of both facial ex-

pressions and pose variations. The key idea here is the representation of a face by its radial

curves, and the comparisons of those radial curves using the elastic shape analysis. We re-

ported results on GAVAB dataset and our result outperforms previous works on that dataset.

Future work will address more importance to automatically nose tip detection when the pose

is not frontal and also to the way of fusion the scores emaning from each feature.
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