N
N

N

HAL

open science

A Riemannian analysis of 3D nose shapes for partial
human biometrics

Hassen Drira, Ben Amor Boulbaba, Srivastava Anuj, Daoudi Mohamed

» To cite this version:

Hassen Drira, Ben Amor Boulbaba, Srivastava Anuj, Daoudi Mohamed. A Riemannian analysis of 3D
nose shapes for partial human biometrics. International Conference on Computer Vision, Sep 2009,

Japan. pp.2050-2057. hal-00667580

HAL Id: hal-00667580
https://hal.science/hal-00667580
Submitted on 8 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00667580
https://hal.archives-ouvertes.fr

A Riemannian Analysis of 3D Nose Shapes For Partial Human Biometrics

Hassen drira
LIFL (UMR USTL/CNRS 8022)
Université de Lille 1, France.

hassen.drira@lifl.fr

Anuj Srivastava
Departement of Statistics
FSU, Tallahassee, FL. 32306, USA.

http://stat.fsu.edu/~anuj/

Abstract

In this paper we explore the use of shapes of noses for
performing partial human biometrics. The basic idea is to
represent nasal surfaces using indexed collections of iso-
curves, and to analyze shapes of noses by comparing their
corresponding curves. We extend past work in Riemannian
analysis of shapes of closed curves in R? to obtain a simi-
lar Riemannian analysis for nasal surfaces. In particular,
we obtain algorithms for computing geodesics, computing
statistical means, and stochastic clustering. We demonstrate
these ideas in two application contexts : authentication and
identification. We evaluate performances on a large data-
base involving 2000 scans from FRGC v2 database, and
present a hierarchical organization of nose databases to al-
low for efficient searches.

1. Introduction

Human biometrics has become an area of tremendous
importance and potential. Although its growth in recent
years have been motivated by security applications, one can
safely expect an exponential growth in a general use of bio-
metrics in our increasingly digital society. By human bio-
metrics we mean the use of physiological characteristics, of
human body parts and their appearances, to identify indi-
vidual human beings in the course of their daily activities.
The appearances of body parts, especially in imaged data,
have a large variability and are influenced by their shapes,
colors, illumination environment, presence of other parts,
and so on. Therefore, the biometrics researchers have fo-
cused on body parts and images that try to minimize this
variability within class (subjects) and maximize it across
classes. Although several modalities, such as fingerprints,
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face images, iris, and gait, have been tried, none of them by
itself may lead to a generic solution for a large population.
Instead, an emerging consensus to develop a suite of dif-
ferent features (characteristics) and modalities, where each
feature provides certain a partial information, such that their
joint analysis may succeed for large populations. This has
led to the notion of partial biometrics — the contribution of
an individual feature/modality in identifying human beings.

The use of shapes of facial parts is an important example
of this idea. Since 2D (visible light) images of faces are
greatly susceptible to variations in the imaging environ-
ments (camera pose, illumination patterns, etc.), the resear-
chers have argued for the need to use 3D face data, typically
collected by laser scanners, for studying shapes of peoples’
faces and using this data for biometrics. The output from la-
ser scanners are minimally dependent on external environ-
mental factors and provide faithful measurements of shapes
of facial parts. Perhaps the only major remaining variabi-
lity that is manifested within the same class, i.e. within the
measurements of the same person, is the one introduced by
changes in facial expressions. Facial expressions, such as
smile, fear, and anger, etc, are prime indicators of the emo-
tional state of a person. While they are important in esti-
mating the mood of a person, for example in developing
intelligent ambient systems, they have a lesser role in bio-
metric applications. In fact, changes in facial expressions
change the shapes of facial parts to some extent. We argue
that this variability has become one of the most important
issue in 3D face recognition as described in [2] and [9]. The
other important challenge relates to data collection and im-
perfections introduced in that process. It is difficult to obtain
pristine, continuous facial surfaces, or meshes representing
such surfaces, with the current laser technology. One typi-
cally gets holes in the scanned data in locations of eyes,
lips, and outside regions. These factors lead to a decrease



in biometric performance. To handle these issues — shape
variability due to facial expressions and presence of holes
(missing data), we advocate the use of facial parts indivi-
dually, especially for partial biometrics. The use of facial
parts for biometrics is not new. For example, [16] and [3]
have studied the use of human ear for recognition. The main
advantage of using the ear, just like the nose [4], is that its
shape does not change with facial expressions. Similarly,
Faltemier et al. [5] have studied several different regions on
a facial surface and have compared their contributions. We
are not aware of any past work in an elastic (Riemannian)
analysis of facial parts.

At the outset, the shape of the nose seems like a bad
choice of feature for biometrics. The shapes of noses seem
very similar to a human observer but we will support this
choice using real data and automated techniques for shape
analysis. We reiterate that this framework may not be suf-
ficient for identifying human subjects across a vast popula-
tion, but we argue for its role in shortlisting possible hy-
potheses so that a reduced hypothesis set can be evalua-
ted using a more elaborate, multi-modal biometric system.
The stability of nose data collection, the efficiency of nasal
shape analysis, and the invariance of nasal shape to changes
in facial expressions make it an important partial biometric.

Our approach for analyzing shapes of nasal surfaces
is Riemannian. That is, we define a differentiable mani-
fold, with a suitable Riemannian metric, whose elements
represent individual noses. Our choice of representation is
based on similar ideas followed previously for full faces —
use a collection of iso-curves to represent a surface and to
compare surfaces by comparing their corresponding curves
[1, 14]. Our goals here are several : (i) Firstly, we want to
evaluate the choice of (shape of) nose as a partial metric on
a reasonably large database (involving 2000 scans), (ii) Se-
condly, we want to use Riemannian geometry to organize
the database containing noses of a large population into a
hierarchical (tree) so that efficient searches can be perfor-
med. Towards this end, we will explore the use of geodesic
distances and Karcher means for clustering and averaging
nasal surfaces.

The rest of this paper is organized as follows. In Section
2 we summarize some past work on comparing shapes of
closed curves in R? using an elastic metric, and apply this
idea to analyze shapes of nasal surfaces. Also, we apply the
classical Karcher mean computation to compute average of
nasal surfaces. In Section 3, we study the use of geodesic
distances in two biometric scenarios — identification and au-
thentification. These experiments are based on comparing
each query shape to each gallery shape. In the Section 4, we
seek to make the database search more efficient, O(log(n))
rather than n, by deriving a hierarchical database of gallery
shapes.

2. Riemannian Framework

Our approach is to analyze shapes of nasal surfaces using
shapes of iso-curves. In other words, we divide each surface
into an indexed collection of simple, closed curves in R3
and the geometry of a surface is then studied using the geo-
metries of the associated curves. Since these curves, called
nasal curves, have been defined as level curves of an intrin-
sic distance function on the surface, their geometries in turn
are invariant to the rigid transformation (rotation and trans-
lation) of the original surface. At least theoretically, these
curves jointly contain all the information about the surface
and one can go back-and-forth between the surface and the
curves without any ambiguity. In practice, however, some
information is lost when one works with a finite subset of
these curves rather than the full continum.

In recent years, there have been several papers for stu-
dying shapes of continuous curves, the earlier papers were
mainly concerned with curves in R? [11, 12]. In this paper,
we will follow the theory laid out by Joshi et al. [7, 8] for
elastic shape analysis of continuous, closed curves in R”.

2.1. Nasal Curves

Let N be a nasal surface, output of our preprocessing
step (removing spikes, filling holes, and cropping nasal re-
gion) illustrated in Figure 1. Although, in practice, IV is a
triangulated mesh, we start the discussion by assuming that
it is a continuous surface. Let D : N — R¥ be a conti-
nuous geodesic map on V. Let c) denote the level set of
D, also called a nasal curve, for the value A € D(N), i.e.
ex = {p € N|D(p) = GD(r,p) = A} C N where r de-
notes the reference point (in our case the tip of the nose)
and GD(r, p) is the length of the shortest path from r to p
on the mesh. We can reconstruct [V from these level curves
according to N = Uyc, (see figure 1).

Original 3D scan

Cropped face surface

Surface proprocessing
(filling holes, removing spikes, etc)

Acquisiion device Nasal level curves

FIGURE 1. Automatic data preprocessing and nasal curves extrac-
tion

We start by considering a closed curve 3 in R3. Since
it is a closed curve, it is natural to parametrize it using
B : S' — R3. Note that the parametrization is not assu-
med to be arc-length ; we allow a larger class of parame-
trizations for improved analysis. To analyze the shape of
(3, we shall represent it mathematically using a square-root



velocity function (SRVF), denoted by ¢(t), according to :

- B®)
£y = B
1) = e

shapes of curves becomes the IL2-metric under this repre-
sentation [7]. This point is very important as it simplifies
calculus of elastic metric to the well-known oneunder the
IL2-metric. In order to restrict our shape analysis to closed
curves, we define the set :

C=1{q: SMR?’\/ Hllatt

. The classical elastic metric for comparing

)dt =0} < L*(S',RY).
(D

Here L2(S*, R3) denotes the set of all functions from S* to
RR3 that are square integrable. The quantlty Jsr a(@®)[lq(t)||dt
denotes the total displacement in R? as one traverses along
the curve from start to end. Setting it equal to zero is equi-
valent to having a closed curve. Therefore, C is the set of all
closed curves in R3, each represented by its SRVF. Notice
that the elements of C are allowed to have different lengths.
Due to a non-linear (closure) constraint on its elements, C is
a non-linear manifold. We can make it a Riemannian mani-
fold by using the metric : for any u, v € T,(C), we define :

() = [ tule).ofe) dr @

We have used the same notation for the Riemannian metric
on C and the Euclidean metric in R? hoping that the diffe-
rence is made clear by the context.

So far we have described a set of closed curves and have
endowed it with a Riemannian structure. Next we consider
the issue of representing the shapes of these curves. It is
easy to see that several elements of C can represent curves
with the same shape. For example, if we rotate a curve in
R3, we get a different SRVF but its shape remains unchan-
ged. Another similar situation arises when a curve is re-
parametrized ; a re-parameterization changes the SRVF of
curve but not its shape. In order to handle this variability,
we define orbits of the rotation group SO(3) and the re-
parameterization group I' as the equivalence classes in C.
Here, I' is the set of all orientation-preserving diffeomor-
phisms of S! (to itself) and the elements of T" are viewed
as re-parameterization functions. For example, for a curve
B :S' — R? and a function v : S* — S', v € T, the
curve () is are- parameterization of 5. The corresponding
SRVF changes according to ¢(t) — +/~(t)q(y(t)). We set
the elements of the set :

g = {V¥()Oq(vy

to be equivalent from the perspective of shape analysis.
The set of such equivalence classes, denoted by & =
C/(SO(3) x I) is called the shape space of closed curves
in R3. S inherits a Riemannian metric from the larger space
C due to the quotient structure.

)10 € SO@3), v €T},
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FIGURE 2. Examples of geodesics between curves

The main ingredient in comparing and analysing shapes
of curves is the construction of a geodesic between any two
elements of S, under the Riemannian metric given in Eqn.
2. Given any two curves 3; and [, represented by their
SRVFs ¢; and g5, we want to compute a geodesic path bet-
ween the orbits [¢1] and [g2] in the shape space S. This task
is accomplished using a path straightening approach which
was introduced in [10]. The basic idea here is to connect
the two points [g1] and [g2] by an arbitrary initial path «
and to iteratively update this path using the negative gra-
dient of an energy function E[a] = 3 [, (¢ )) ds.
The interesting part is that the gradlent of E has been den—
ved analytically and can be used directly for updating a. As
shown in [10], the critical points of E are actually geodesic
paths in S. Thus, this gradient-based update leads to a criti-
cal point of E which, in turn, is a geodesic path between the
given points. Figure 2 shows two different surfaces of two
different subjects and some examples of geodesic paths bet-
ween level curves. The first and the last curves are the ones
extracted from the two surfaces, and the intermediate curves
denote equally-spaced points on the corresponding geode-
sic a. These curves have been scaled to the same length
to improve display of geodesics. We will use the notation
d([q1], [g2]) to denote the geodesic distance, or the length of
the geodesic in S, between representations of the two curves

B and fBa.

2.2. Nasal Surfaces

Now we extend the framework from curves to surfaces.
As mentioned earlier, we are going to represent a nose re-
gion surface S with an indexed collection of the level curves
of the D function. That is, N < {cx, A € [0, \o]}, where
c) is the level set associated with the distance D equal to \.
Through this relation, each nasal surface has been represen-
ted as an element of the set C[*0]. In our framework, the
shapes of any two noses are compared by comparing their
corresponding nasal curves. Given any two nasal surfaces
N' and N2, and their associated curves {c}, A € [0, \o]}
and {c3,\ € [0, \o]}, respectively, our idea is to compare
the curves c%\ and ci, and to accumulate these distances over
all A. For that, we define two possible metrics :

— Arithmetic mean : d, : Cl%%) x Cl0X] — Ry,

given by d, (N1, N?) = )%0 i‘):l d(c},c3).

— Geometric mean : d,, : Cl0*0l x Cl02 — R, given

by dg(N*, N?) = (T d(c}, ¢5)) /).



One advantage of a deformation-based comparisons of
shapes of surfaces is that one has the actual deformations
in addition to distances. (Also, the distances have important
physical interpretations associated with them.) In particular,
we have a geodesic path in C[%*! between the two surfaces
N' and N2. This geodesic corresponds to the optimal elas-
tic deformations of nasal curves and, thus, nasal surfaces
from one to other. Shown in Figure 3 are examples of such
geodesic paths — The first row involves nose regions of same
subject but different scans, while the other rows show geo-
desics between nose regions that belong to different people.

00060600008
2000000008

0000000C¢C
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FIGURE 3. Geodesic paths between source and target noses. First
two rows : intra-class paths, source and target with different ex-
pressions. Last three rows : inter-class paths.

2.3. Mean Nasal Shape

We can now to use our framework to calculate some sta-
tictics as the ”mean” of surfaces. The Riemannian struc-
ture defined on the manifold of nose surfaces C[%:*0! enables
us to perform such statistical analysis for computing noses
mean and variance. The Karcher mean utilizes the intrinsic
geometry of the manifold to define and compute a mean on
that manifold. It is defined as follows : Let ds(N*, N7) de-
note the length of the geodesic from N* to N7 in C[0:2ol,
In this particular case ds came from d,. To calculate the
Karcher mean of nose surfaces {N', ..., N} in Cl%*] we
define the variance function :

ViClO S RV(N) = Y A (NN 3)

i=1

The Karcher mean is then defined by :

N =arg min V(N) 4)
Neclo: ol

The intrinsic mean may not be unique, i.e. there may be a
set of points in C[**] for which the minimizer of V is obtai-
ned. To interpret geometrically, N is an element of Cl00],
that has the smallest total deformation from all given nose
surfaces.

We present a commonly used algorithm for finding Kar-
cher mean for a given set of nose surfaces. This approach,
presented in Algorithm 1, uses the gradient of V to iterati-
vely update the current mean .

Algorithm 1 Karcher Mean Algorithm

Set k = 0. Choose some time increment € < % Choose a point Ng €
(37[07)‘0] as an initial guess of the mean. (For example, one could just take
No = S1)
1- For each ¢ = 1, ..., n choose the tangeit vector f; € Ty, (cl0:2al)
which is tangent to the geodesic from Ny to N * The vector g =
=1 fi is proportional to the gradient at N, of the function V.
2- Flow for time € along the geodesic which starts at ‘N1, and has velocity
vector g. Call the point where you end up Ny 1.
3-Setk =k + 1land gotostep 1.

Since this is a gradient approach, it only ensures a local
minimizer of the variance function V. Several examples of
using the Karcher mean to compute average faces are shown
in Figures 4.
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FIGURE 4. Examples of shapes and their karcher means.

What is the motivation for using statistical means of
shapes in a biometric application ? There are many possi-
bilities. For example, one can develop a hierarchical orga-
nization of a population, where people (or observations) are
first clustered into small groups and these clusters are re-
placed by their representatives, in this case Karcher means.
Then, at the next higher level, one can cluster these means
again and find their representative, and so on.

3. Application to Human Biometrics

In this section we present some experimental results in
two different biometric scenario. These experiments use a

Karcher means
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FIGURE 5. Verification Rate at FAR=0.1% using (1 to k) curves

large subset, the first 2000 scans, of FRGC v2 dataset [13].
In order to produce results for both identification and au-
thentication scenarios and to explore effect of the presence
of facial expressions on performance, a distance matrix bet-
ween a gallery and a query datasets is computed. The gal-
lery contains 2000 sessions for 209 different subjects. The
query set is identical to the gallery. The effectiveness of d,
and d, in biometric applications generally increases with
the number of curves used. But the question is how to
choose the curves which can give best results ? Indeed, in
the nasal region, there are some areas like nasal cavities
which exhibit undesired variability. Therefore, curves pas-
sing through these cavities could be eliminated from the ex-
periment. This hypothesis will be tested and discussed in
the following experiments. The results of identification and
authentication scenarios will be presented separately.

Authentication Scenario : The first experiment involves
authentication where the performance is measured using
the verification rate (VR) for a given false acceptance rate
(FAR) and with a receiver operating characteristic (ROC)
curve that shows the trade-off between the verification and
the false accept rates.

Figure 5 (right) shows a plot of VR at FAR = 0.1%, com-
puted using both the geometric and arithmetic means. The
location of these curves on a nose are shown in the left. The
best verification rate is obtained using the first seven curves
and the geometric mean metric ; it is approximately 65.34%.
As shown in the Figure 5, the verification rate increases with
the number of used curves until £ = 7 curves are used and
then it decreases. The curves which decrease the recognition
rates pass through the nasal cavities. Moreover, we notice
that the verification rates using the geometric mean d, are
much better than those using the arithmetic mean d,. So we
choose this metric for further experiments. Figure 6 shows
the ROC curves for experiments involving different number
k of curves. For k < 7, the ROC curves using 1 — k curves
are higher for larger k. For k > 7, this trend is reversed. So,
using a larger number of curves improves the authentication

performance until the seventh curve and , after that, results
get worse.

ROC curve

FAR (%)

FIGURE 6. ROC curves using 1 to k curves

Identification Scenario : The second type of experiment
is for identification for which the performance is quoted as
a rank-one recognition rate. In this experiment the gallery
set consists of neutral faces of 209 subjects. Figure 7 shows

76.1%

—— Arithmetic Mean
® - Geometric Mean

Rank-one recognition rate (%)

FIGURE 7. Rank one recognition rates using 1 to k curves

the rank-one recognition rates obtained using both geome-
tric and arithmetic mean in the right and the locations of
these curves on a nose in the left. We make the following
remarks. First, we notice that the best recognition rate is ob-
tained when using the arithmetic mean metric d,. Actually,
we obtain 76.1% using this metric using only seven curves.
Second, we see that the recognition rate initially increases
with the number of curves, reaches a peak and then starts
decreasing, for both the metrics. The later curves which de-
crease the recognition rates are curves 8,9 and 10 and, as we
see in the Figure 7 (left), these curves pass through the nasal
cavities. Clearly, shapes of this region (made up of cavities)
are not reliable and can be excluded from the analysis.

To summarize, our method allows us to compare the
shapes of nose regions. By carefully selecting the set of
stable curves, we are able to increase identification and ve-
rification rates. However, the identification scenario costs a



lot in terms of time computation. In our case, to retrieve a
shape in a dataset of 209 nasal surfaces, we need about 4
minutes. A hierarchical database organization can be per-
formed in order to accelerate the identification process. We
study an approach to cluster the gallery dataset using our
framework.

4. Hierarchical Gallery Organization

One of the main goals for studying shapes of nose re-
gion is to conduct biometric searches where query is often
compared to a set of gallery shapes. This comparison can be
made more efficient if we can organize the gallery elements
in form of a hierarchical database, i.e. a tree, where the com-
parisons are performed only at the nodes. To construct such
a shape tree we need to be able to cluster similar shapes,
and that is the problem we study next.

4.1. Clustering Algorithm

Consider the problem of clustering n noses (in C1%*ol)
into k clusters. A general approach is to form clusters in
such a way that they minimize total “within-cluster” va-
riance [15]. Let a configuration C' consists of clusters de-
noted by C1,Co,...,Cy, and let u;s be the mean shapes
in C;s and n;s be the sizes of C;s. There are several cost
functions used for clustering, e.g the sum of traces of cova-
riances within clusters. However, the computation of means
;s of large shape clusters, and therefore their variances, is
computationally expensive, especially when they are upda-
ted at every iteration. As a solution, one often uses a varia-
tion, called pairwise clustering [6], where the variance of a
cluster is replaced by a scaled sum of distances (squared)
between its elements :

Qo) =32

n
i=1 "

d(N®, N2 |. (5

)IEEDY

NeeC; b<a,Nb€C;

We seek configurations that minimize @, ie., C* =
argmin Q(C). Notice that the metric used is the arithmetic
mean d,. We will minimize the clustering cost using a Mar-
kov chain search process on the configuration space. The
basic idea is to start with a configuration of k clusters and
reduce () by re-arranging shapes amongst the clusters. The
re-arrangement is performed in a stochastic fashion using
two kinds of moves. These moves are performed with pro-
bability proportional to the negative exponential of the Q-
value of the resulting configuration. The two types of moves
are following. (1) Move a shape : Here we select a shape
randomly and re-assign it to another cluster. Let Q;z) be
the clustering cost when a shape N; is re-assigned to the
cluster C; keeping all other clusters fixed. If N; is not a
singleton, i.e. not the only element in its cluster, then the
transfer of IV; to cluster C; is performed with probability :

.. ex 7Q(.i) T .
Pu(5,i;T) = m i = 1,2, ..k Here T
i=1 7

plays a role similar to temperature in simulated annealing.
If N; is a singleton, then moving it is not allowed in order to
fix the number of clusters at k. (2) Swap two shapes : Here
we select two shapes randomly from two different clusters
and swap them. Let QY and Q® be the Q-values of the
original configuration (before swapping) and the new confi-
guration (after swapping), respectively. Then, swapping is

: ity - _ __oxp(=Q¥/T)
performed with probability : Pg(T') = ST exp (=00 /T

In order to seek global optimization, we have adopted a
simulated annealing approach. Although simulated annea-
ling and the random nature of the search help in avoiding
local minima, the convergence to a global minimum is dif-
ficult to establish. The main steps of the algorithm is given
by Algorithm 2.

Algorithm 2 Stochastic Clustering Algorithm
For n shapes and k clusters, initialize by randomly distributing n shapes
among k clusters. Set a high initial temperature 7.

1- Compute pairwise geodesic distances between all n shapes. This re-

quires n(n — 1)/2 geodesic computations.

2- With equal probabilities pick one of the two moves :

— Move a shape : Pick a shape N; randomly. If it is not a singleton in
its cluster, then compute Q;l) forall¢ = 1,2,...,k Compute the
probability Pas(j,4;T) forall i = 1,...,k and re-assign N; to a
cluster chosen according to the probability Ppy.

— Swap two shapes : Select two clusters randomly, and select a shape
from each. Compute the probability Pg(T") and swap the two shapes
according to that probability.

3- Update the temperature using 7' = 7'/3 and return to Step 2.

4- We have used 8 = 1.0001.

It is important to note that once the pairwise distances
are computed, they are not computed again in the iterations.
Secondly, unlike k-mean clustering, the mean shapes are
never calculated in this clustering.

The algorithms for computing Karcher mean and cluste-
ring can be applied repeatedly for organizing a large data-
base of human noses into a hierarchy that allows efficient
searches during identification process. As an illustration of
this idea, we consider 500 nose scans corresponding to 50
distinct subjects. These noses form the bottom layer of the
hierarchy, called level E in Figure 8.Then, we compute Kar-
cher mean shapes (representative shapes) for each person to
obtain shapes at level D. These shapes are further clustered
together and a Karcher mean is computed for each cluster.
These mean shapes form the level C of the hierarchy. Re-
peating this idea a few times, we reach the top of the tree
whith only one shape. We obtain so the final tree shown in
Figure 8.If we follow a path from top to bottom of the tree,
we see the shapes getting more particularized to groups and
then to individuals as illustrated in Figure 8.
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FIGURE 8. Paths from top to buttom in the tree show increasing
shape resolutions

4.2. Hierarchical Shape Retrieval

Once the tree is formed, one can use this representation
of data to conduct biometric search in order to reduce com-
putation time, especially in identification scenario, which
needs a comparison of the query shape to the whole gallery
dataset. In view of this structure, a natural way is to start
at the top, compare the query with the shapes at each level,
and proceed down the branch that leads to the closest shape.
At any level of the tree, there is a number, say h, of pos-
sible shapes and our goal is to find the shape that matches
the query best. Figure 9 illustrates 2 examples of retrieval
using the hirarchical organization of the dataset. For Q1 for
example, the query nasal shape (at the top) is first compa-
red to the shapes of level B. As it is closer to shape Bi, we
proceed down the corresponding branch. There, the query
proceeds down the branch of the shape C'5 as this shape is
the closest one in this level to the query. The decision of
the retrieval is given after comparison with shapes at level
D. In this case the query is matched to the shape Ds. Ac-
tually, the shape D> is the mean shape of nasal shapes of the
same person of the query. Notice that nasal shapes of each
person at level E' are represented by their mean at level D.
The last match decides in which cluster the query belongs.
According to our tree, time computation for shape retrieval
is approximately 3-10 times faster than exhaustive compari-
son as given by table 1 for 11 examples of queries. Results
on a larger experimental set will be presented in the final
versions.

5. Conclusions

In this paper, we have proposed a geometric analysis of
3D nasal shapes for the use in partial human biometrics.

TABLE 1. Average time computation and retrieval results

Query Exhaustive | Hierarchical | Result
Qi1 €[1..9] | 755 16.05 s correct
R10, Q11 75s 16.5s incorrect

The main tool presented in this paper is the construction
of geodesic paths between arbitrary two nasal surfaces. The
length of a geodesic between any two nasal surfaces is com-
puted as the geodesic length between a set of their nasal
curves. In particular, we have presented results for compu-
ting geodesics, computing statistical means and stochastic
clustering to perform hierarchical clustering.We have de-
monstrated these ideas in two application contexts : the au-
thentication and the identifiation biometric scenarios using
nasal shapes on a large dataset involving 2000 scans, and
hierarchical organization of noses gallery to allow efficient
searches.
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