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Optimal control of cell mass and maturity in a model of follicular

ovulation

Frédérique Clément∗ Jean-Michel Coron† Peipei Shang‡

Abstract

In this paper, we study optimal control problems associated with a scalar hyperbolic con-
servation law modeling the development of ovarian follicles. Changes in the age and maturity
of follicular cells are described by a 2D conservation law, where the control terms act on the
velocities. The control problem consists in optimizing the follicular cell resources so that the
follicular maturity reaches a maximal value in fixed time. Using an approximation method, we
prove necessary optimality conditions in the form of Pontryagin Maximum Principle. Then we
derive the optimal strategy and show that there exists at least one optimal bang-bang control
with one single switching time.

Keywords: Optimal control, conservation law, biomathematics
2000 MR Subject Classification: 35L65, 49J20, 92B05.

1 Introduction

This work is motivated by natural control problems arising in reproductive physiology. The
development of ovarian follicles is a crucial process for reproduction in mammals, as its biological
meaning is to free fertilizable oocyte(s) at the time of ovulation. Ovarian follicles are spheroidal,
tissular structures sheltering the oocyte. During each ovarian cycle, numerous follicles are in
competition for their survival. Few follicles reach an ovulatory size, since most of them undergo a
degeneration process, known as atresia (see for instance [26]). The follicular cell population consists
of proliferating, differentiated and apoptotic cells, and the fate of a follicle is determined by the
changes occurring in its cell population in response to an hormonal control originating from the
pituitary gland.

A mathematical model, using both multi-scale modeling and control theory concepts, has been
designed to describe the follicle selection process on a cellular basis (see [13]). The cell population
dynamics is ruled by a conservation law, which describes the changes in the distribution of cell age
and maturity.

Cells are characterized by their position within or outside the cell cycle and by their sensitivity
to the follicle stimulating hormone (FSH). This leads one to distinguish 3 cellular phases. Phase 1
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†Institut universitaire de France and Université Pierre et Marie Curie-Paris 6, UMR 7598 Laboratoire Jacques-
Louis Lions, 75005 Paris, France. E-mail: coron@ann.jussieu.fr. JMC was partially supported by the ERC
advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).
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and 2 correspond to the proliferation phases and Phase 3 corresponds to the differentiation phase,
after the cells have exited the cell cycle.

The cell population in a follicle f is represented by cell density functions ρfj,k(t, x, y) defined

on each cellular phase Qf
j,k, where j = 1, 2, 3 denotes Phase 1, Phase 2 and Phase 3, k = 1, 2, · · ·

denotes the number of the successive cell cycles (see figure 1). The cell density functions satisfy
the following conservation laws:

∂ρfj,k
∂t

+
∂(gf (uf )ρ

f
j,k)

∂x
+
∂(hf (y, uf )ρ

f
j,k)

∂y
= −λ(y, U)ρfj,k in Qf

j,k, (1.1)

where Qf
j,k = Ωf

j,k × [0, T ], with

Ωf
1,k = [(k − 1)a2, (k − 1)a2 + a1]× [0, ys],

Ωf
2,k = [(k − 1)a2 + a1, ka2]× [0, ys],

Ωf
3,k = [(k − 1)a2, ka2]× [ys, ym].

✲
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Figure 1: Cellular phases on the age-maturity plane for each follicle f . The domain consists of
the sequence of k = 1, 2, · · · cell cycles. The variable x denotes the age of the cell and y denotes
its maturity. The number ys is the threshold value at which cell cycle exit occurs and ym is the
maximal maturity. The top of the domain corresponds to the differentiation phase and the bottom
to the proliferation phase.

Let us define

Mf (t) :=
3

∑

j=1

N
∑

k=1

∫ +∞

0

∫ +∞

0
y ρfj,k(t, x, y) dx dy (1.2)

as the maturity on the follicle scale, and

M(t) :=
∑

f

Mf (t) (1.3)

as the maturity on the ovarian scale.
Two acting controls, uf (t,Mf ) and U(t,M) can be distinguished (see [12]). The global control

U(t,M) results from the ovarian feedback onto the pituitary gland and impacts the secretion of
FSH. The feedback is responsible for reducing FSH release, leading to the degeneration of all but
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those follicles selected for ovulation. The local control uf (t,Mf ) is specific to each follicle and
accounts for the modulation in FSH bioavailability related to follicular vascularization.

In Phase 1 and 3, both a global control U and a local control uf act on the velocities of aging (gf
function, locally controlled in Phase 1), and maturation (hf function, locally controlled in Phase 1
and 3) as well as on the loss term (λ apoptosis rate, globally controlled in Phase 1 and 3). Phase
2 is uncontrolled (gf = τgf , hf = λ = 0) and corresponds to completion of mitosis after a pure
delay in age a2 − a1 (no cells leave the cycle here). The increase in the cell mass occurs through
mitosis. At the time of mitosis, a mother cell gives birth to two daughter cells, which results in a
local doubling of the flux. Accordingly, the boundary between different cell cycles k = 1, 2, · · · is
expressed as (see figure 1)

gf (uf )ρ
f
1,k+1(t, ka2, y) = 2τgfρ

f
2,k(t, ka2, y), (t, y) ∈ [0, T ]× [0, ys].

One can refer to [29] for more details on the model.
The aging velocity controls the duration of the cell division cycle. Once the cell age has reached

a critical age, the mitosis event is triggered and the two daughter cells enter a new cell cycle. Hence,
there are local singularities in the subpart of the domain where y 6 ys, that correspond to the flux
doubling due to the successive mitosis events. The maturation velocity controls the time needed
to reach a threshold maturity ys, when the cell exits the division cycle definitively. After the exit
time, the cell is no more able to contribute to the increase in the follicular cell mass.

Ovulation is triggered when the ovarian maturity reaches a threshold value Ms. The stopping
time Ts is defined as

Ts := min {T |M(T ) =Ms} , (1.4)

and corresponds on the biological ground to the triggering of a massive secretion of the hypothalamic
gonadotropin releasing hormone (GnRH).

As a whole, system (1.1)-(1.3) combined with stopping condition (1.4) defines a multiscale
reachability problem. It can be associated to an optimal control problem that consists in minimizing
Ts for a given target maturity Ms.

The follicles are then sorted according to their individual maturity. The ovulatory follicles are
those whose maturity at time Ts has overpassed a threshold Ms1 such as Ms1 < Ms. The ovulation
rate can then be computed as

Ns,s1 = Card {f | Mf (Ts) >Ms1} . (1.5)

The hormonal control exerted by FSH acts directly on follicular cells to control their commitment
towards either proliferation or differentiation. In turn, the hormonal feedback exerted by the ovary
on the hypothalamo-pituitary axis ensues from the weighted contribution of all cells distributed
amongst all follicles. Hence, a hormone-driven competition process, occurring within the population
of simultaneously developing follicles, is intertwined with each cell dynamics process taking place
within a given follicle.

A concept central to the understanding of these entangled processes is that of the management
of follicular cell resources, both on the follicular (intensity of selection) and ovarian (triggering and
chronology of ovulation) scales. There is indeed a finely tuned balance between the production of
new cells through proliferation, that increases the whole cell mass, and the maturation of cells, that
increases their contribution to hormone secretion.

This concept has already been investigated on a mathematical ground. In [12], the authors
studied the characteristics associated with a follicle as an open-loop control problem. They de-
scribed the sets of microscopic initial conditions compatible with either ovulation or atresia in the
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framework of backwards reachable set theory. Since these sets were largely overlapping, their results
illustrate the prominent impact of cell dynamics control in the model. In [27], the author focused
on the issue of the selection process in a game theory approach, where one follicle plays against all
the other ones. Whether the follicle becomes atretic (doomed) or ovulatory (saved) depends on the
follicular cell mass reached at the time when all cells stop proliferating.

In this paper, we study an optimal control problem of follicular cell resources, where the
control acts directly on the velocity terms. The controllability of nonlinear hyperbolic equa-
tions (or systems) have been widely studied for a long time; for the 1D case, see, for instance
[7, 9, 11, 15, 19, 23, 24, 25, 32] for smooth solutions and [1, 3, 14, 20] for BV entropic solutions.
In particular, [8] provides a comprehensive survey of controllability of partial differential equations
including nonlinear hyperbolic systems. As far as optimal control problems for hyperbolic systems
are concerned, one can refer to [16, 17, 18, 30]. However, most of these monographs study the case
where the controls are either applied inside the domain or on the boundary. Our control problem is
quite different from the problems already studied in the literature, since the control terms appear
in the flux. To solve the problem, we make use both of analytical methods based on Pontryagin
Maximum Principle (PMP) and numerical computations.

The paper is organized as follows. In section 2, we set the optimal control problem, together
with our simplified assumptions, and we enunciate the main result. In section 3, we give some
optimal results in the case where Dirac masses are used as a rough approximation of the density.
We show that for finite Dirac masses, every measurable optimal control is a bang-bang control
with one single switching time. In addition to the theoretical results, we give some numerical
illustrations. In section 4, we go back to the original PDE formulation of the model, and we show
that there exists at least one optimal bang-bang control with one single switching time.

2 Problem statement and introductory results

2.1 Optimal control problem

We consider the following conservation law on a fixed time horizon:

ρt + ρx + ((a(y) + b(y)u)ρ)y = c(y)ρ, t ∈ (t0, t1), x > 0, y > 0, (2.1)

where

a(y) := −y2, b(y) := c1y + c2, (2.2)

and

c(y) :=

{

cs, if y ∈ [0, ys),

0, if y ∈ [ys,∞),
(2.3)

with ys, cs, c1 and c2 being given strictly positive constants. We assume that

y2s
c1ys + c2

< 1. (2.4)

Let us denote by w a positive constant such that

w ∈ (
y2s

c1ys + c2
, 1). (2.5)
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From (2.2) and (2.5), we have

a(y) + b(y)u > 0, ∀y ∈ [0, ys], ∀u ∈ [w, 1]. (2.6)

Throughout this paper the control u is assumed to satisfy the constraint

u ∈ [w, 1]. (2.7)

Let us define the exit time t̂0 as
y(t̂0) = ys, (2.8)

where y(t) is the solution to the Cauchy problem

ẏ = a(y) + b(y)w, y(t0) = 0. (2.9)

Let us point out that, by (2.6), there exists one and only one t̂0 satisfying (2.8). Note that it is
not guaranteed that the exit time t̂0 occurs before the final time t1, so that we may have t̂0 > t1.
When t > t̂0, all the cells are in Phase 3, i.e. their maturity is larger than the threshold ys. After
time t̂0 the mass will not increase any more due to (2.3).

We assume that there is no outer influx, i.e.

ρ(t, 0, y) = ρ(t, x, 0) = 0, ∀t ∈ (t0, t1), x > 0, y > 0. (2.10)

The initial condition is

ρ(0, x, y) = ρ0(x, y), x > 0, y > 0, (2.11)

where ρ0 is a positive Borel measure on R× R with a compact support included in [0, 1]× [0, ys].
For any admissible control u ∈ L∞((t0, t1); [w, 1]), we define the cost function

J(u) := −
∫ +∞

0

∫ +∞

0
y dρ(t1, x, y), (2.12)

and we want to study the following optimal control problem:

minimize J(u) for u ∈ L∞((t0, t1); [w, 1]). (2.13)

A similar minimal time problem was investigated in a much simpler ODE framework [6], where
the proliferating and differentiated cells were respectively pooled in a proliferating and a differenti-
ated compartment. The author proved by PMP that the optimal strategy is a bang-bang control,
which consists in applying permanently the minimal apoptosis rate and in switching once the cell
cycle exit rate from its minimal bound to its maximal one.

In contrast, due to the fact that c is discontinuous, we cannot apply PMP directly here. The
idea is to first consider optimal control problems for Dirac masses (see section 3), and then to pass
to the limit to get optimal control results for the PDE case (see section 4). For “discontinuous”
optimal control problems of finite dimension, one cannot derive necessary optimality conditions by
applying directly the standard apparatus of the theory of extremal problems [4, 21, 28]. The first
problem where the cost function was an integral functional with discontinuous integrand was dealt
in [2]. Later, in [31], the author studied the case of a more general functional that includes both the
discontinuous characteristic function and continuous terms. There, the author used approximation
methods to prove necessary optimality conditions in the form of PMP. One of the difficulties of our
problem is that both the integrand of the cost function and the dynamics are discontinuous.

The main result of this paper is the following theorem.
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Theorem 1. Let us assume that

t1 > t̂0, (2.14)

2ys − c1 > 0 and cs >
a(ys) + b(ys)

ys
. (2.15)

Then, among all admissible controls u ∈ L∞((t0, t1); [w, 1]), there exists an optimal control u∗ for
the minimization problem (2.13) such that

∃ t∗ ∈ [t0, t1] such that u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1). (2.16)

2.2 Simplifications with respect to the original model

To make the initial problem tractable, we have made several simplifications on the model
dynamics.

S1. We consider only one developing follicle, i.e. f = 1;

S2. There is no loss term anymore, i.e. λ = 0;

S3. The age velocity is uncontrolled, i.e. gf ≡ 1;

S4. The cell division is represented by a new gain term, i.e. c(y) defined by (2.3);

S5. The target maturity Ms can always be reached in finite time.

Simplification (S1) means that, in this problem, we are specially interested in the coupling
between the condition needed to trigger the ovulation, on the one hand, and the control of the
follicular cell dynamics, on the other hand. We consider this interaction independently of the
process of follicle selection, in the sense that we isolate the dynamics of one specific follicle, as if
we could ignore the influence of the other growing follicles.

(S2) to (S4) allow us to simplify the cell dynamics. In (S2), we neglect the cell death, which
is quite natural when considering only ovulatory trajectories, while, in (S3), we consider that the
cell age evolves as time (so that the cell duration is constant and uncontrolled). Moreover, the
cell division process is distributed over ages with (S4), so that there is a new gain term in the
model instead of the former mitosis transfer condition. Even if the way that cell proliferation is
represented is less realistic (no real mitosis), this does not impact the dynamics too much as long
as the average cell cycle duration is preserved.

Even if it is simplified, the problem studied here still captures the essential question of the com-
promise between proliferation and differentiation that characterizes terminal follicular development.
On the one hand, the follicle can benefit from a strong and quick enlargement of its cell popula-
tion. On the other hand, this enlargement occurs at the expense of the maturation of individual
cells. This compromise was instanced here as a problem of composition of velocities. We chose as
control variable the nonlocal variable uf , which is the most downstream input representing FSH
on the follicular level in the original model, since it intervenes directly in the aging and maturation
velocities. A relatively high aging velocity tends to favor cell mass production while a relatively
high maturation velocity tends to favor an increase in the average cell maturity.

As shown in section 2.4, assumptions (S2) and (S5) allow us to replace a minimal time criterion
by a criterion that consists in maximizing the final maturity. Hence, from the initial, minimal time
criterion, we have shifted, for sake of technical simplicity, to an equivalent problem where the final
time is fixed and the optimality criterion is the follicular maturity at final time. On the biological
ground, this means that for any chosen final time t1, the resulting maturity at final timeMf (t1) can
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be chosen in turn as a maturity target which would be reached in minimal time at time t1. It can
be noticed that in the initial problem (1.4), there might be no optimal solution without assumption
(S5), if the target maturity is higher than the maximal asymptotic reachable maturity.

2.3 Solution to Cauchy problem (2.1), (2.10) and (2.11)

In this section, we give the definition of a (weak) solution to the Cauchy problem







ρt + ρx + ((a(y) + b(y)u)ρ)y = c(y)ρ, t ∈ (t0, t1), x > 0, y > 0,
ρ(t, 0, y) = ρ(t, x, 0) = 0, t ∈ (t0, t1), x > 0, y > 0,
ρ(0, x, y) = ρ0(x, y), x > 0, y > 0,

(2.17)

where ρ0 : [0, 1]× [0, ys] → [0,+∞) is given.
Let us denote by ȳ the asymptotic maturity, i.e. the positive root y of a(y) + b(y)u = 0 with

control u = 1. From (2.2), we have

ȳ =
c1 +

√

c21 + 4c2
2

. (2.18)

Let u ∈ L∞((t0, t1); [w, 1]). Let us define the map

Ψ : [t0, t1]× [0, ys]× L∞((t0, t1); [w, 1]) → [0, ȳ]
(t, y0, u) 7→ Ψ(t, y0, u)

by requiring
{

∂Ψ

∂t
(t, y0, u) = a(Ψ(t, y0, u)) + b(Ψ(t, y0, u))u(t),

Ψ(t0, y0, u) = y0.
(2.19)

Let ρ0 be a Borel measure on R× R such that

ρ0 > 0, (2.20)

and the support of ρ0 is included in [0, 1]× [0, ys]. (2.21)

Let K := [0, t1 − t0 + 1] × [0, ȳ]. Let M(K) be the set of Borel measures on K, i.e. the set of
continuous linear maps from C0(K) into R. The solution to Cauchy problem (2.17) is the function
ρ : [t0, t1] →M(K) such that, for every ϕ ∈ C0(K),

∫∫

K
ϕ(α, β)dρ(t, α, β) =

∫∫

K
ϕ(x0 + t− t0,Ψ(t, y0, u)) e

∫ t

t0
c(Ψ(s,y0,u))ds dρ0(x0, y0). (2.22)

We take expression (2.22) as a definition. This expression is also justified by the fact that if ρ0 is
a L∞ function, one recovers the usual notion of weak solutions to Cauchy problem (2.17) studied
in [8, 10, 29, 30], as well as by the characteristics method used to solve hyperbolic equations (see
figure 2).
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Figure 2: Construction of a weak solution by backward tracking of the characteristics. The variables
x and y respectively denote the age and the maturity, ys is the threshold maturity and ȳ is the
asymptotic maturity. The initial mass concentrates in the shaded area [0, 1] × [0, ys]. The curve
ξ = (x, y) is the characteristic curve passing through (t, α, β) that intersects the initial plane t = t0
at (t0, x0, y0).

2.4 Minimal time versus maximal maturity

In this section, we show that the two optimal control problems enunciate either as: “mini-
mize the time to achieve a given maturity” or “achieve a maximal maturity at a given time” are
equivalent.

Let ρ0 be a nonzero Borel measure on R × R satisfying (2.20) and (2.21). Let us denote by
Mu(t) the maturity at time t for the control u ∈ L∞((t0, t1); [w, 1]) (and the initial data ρ0).

A. For fixed target time t1, suppose that the maximum of the maturity

Mu(t1) :=M (2.23)

is achieved with an optimal control u ∈ L∞((t0, t1); [w, 1]). Then we conclude that for this fixedM ,
the minimal time needed to reach M is t1 with the same control u. We prove it by contradiction.
We assume that there exists another control ũ ∈ L∞((t0, t̃1); [w, 1]) such that

M ũ(t̃1) =M, t̃1 < t1. (2.24)

We extend ũ to [t0, t1] by requiring ũ = 1 in (t̃1, t1]. Let us prove that

t ∈ [t̃1, t1] →M ũ(t) is strictly increasing. (2.25)

Let ρ̃ : [t0, t1] →M(K) be the solution to the Cauchy problem (see section 2.3)







ρ̃t + ρ̃x + ((a(y) + b(y)u)ρ̃)y = c(y)ρ̃, t ∈ (t0, t1), x > 0, y > 0,
ρ̃(t, 0, y) = ρ̃(t, x, 0) = 0, t ∈ (t0, t1), x > 0, y > 0,
ρ̃(0, x, y) = ρ0(x, y), x > 0, y > 0.

Note that a(y) + b(y) > 0 for every y ∈ [0, ȳ) and that, for every t ∈ [t0, t1], the support of ρ̃(t) is
included in [0, t1 − t0 + 1] × [0, ys). Together with (2.22) for ρ = ρ̃ and ϕ(α, β) = β, this proves
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(2.25). From (2.25) it follows that

M ũ(t1) > M ũ(t̃1) =M, (2.26)

which is a contradiction with the optimality of u.
B. For any fixed target maturityM , suppose that the minimal time needed to reachM is t1 with

control u ∈ L∞((t0, t1); [w, 1]). Then we conclude that for this fixed target time t1, the maximal
maturity at time t1 is M with the same control u. We prove it again by contradiction. We assume
that there exists another control ũ ∈ L∞((t0, t1); [w, 1]) such that

M ũ(t1) > M. (2.27)

Then by the continuity of M ũ(t) with respect to time t, there exists a time t̃1 < t1 such that

M ũ(t̃1) =M, (2.28)

which is a contradiction with minimal property of t1. This concludes the proof of the equivalence
between the two optimal control problems.

3 Optimal results for finite Dirac masses

In this section, we give results on the optimal control problem (2.13) when the initial data
ρ0 > 0 is a linear combination of a finite number of Dirac masses. For (α, β)tr ∈ R

2, we denote by
δα,β the Dirac mass at (α, β)tr. We assume that, for some positive integer N , there exist a sequence
((xk01 , x

k0
2 ))k∈{1,...,N} of elements in [0, 1]× [0, ys] and a sequence (xk03 )k∈{1,...,N} of strictly positive

real numbers such that

ρ0 :=
N
∑

k=1

xk03 δxk0
1 ,xk0

2
. (3.1)

We consider the following Cauchy problem:
{

ẋk = f(xk, u), u ∈ L∞((t0, t1); [w, 1]), t ∈ [t0, t1],

xk(t0) = xk0,
(3.2)

where

f(xk, u) =





1
a(xk2) + b(xk2)u

c(xk2)x
k
3



 , xk =





xk1
xk2
xk3



 , xk0 =





xk01
xk02
xk03



 . (3.3)

It is easy to check that the maximal solution to Cauchy problem (3.2) is defined on [t0, t1].
One can also easily check that the solution to Cauchy problem (2.17), as defined in section 2.3,

is

ρ(t) =
N
∑

k=1

xk3(t)δxk
1(t),x

k
2(t)

. (3.4)

The cost function J defined in (2.12) now becomes

J(u) =
N
∑

k=1

−xk2(t1)xk3(t1). (3.5)

One of the goals of this section is to prove that there exists an optimal control for this optimal
control problem and that, if (2.14) and (2.15) hold, every optimal control is bang-bang with only
one switching time. More precisely, we prove the following two theorems.
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Theorem 2. The optimal control problem (2.13) has a solution, i.e., there exists u∗ ∈
L∞((t0, t1); [w, 1]) such that

J(u∗) = inf
u∈L∞((t0,t1);[w,1])

J(u).

Theorem 3. Let us assume that (2.14) and (2.15) hold. Then, for every optimal control u∗ for
the optimal control problem (2.13), there exists t∗ ∈ (t0, t1) such that

u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1). (3.6)

This section is organized as follows. In subsection 3.1 we prove Theorem 2. In subsection 3.2
we prove a PMP (Theorem 4) for our optimal control problem. In subsection 3.3 we show how to
deduce Theorem 3 from Theorem 4.

3.1 Proof of Theorem 2

For sake of simplicity, we give the proof of Theorem 2 only in the case where N = 1. The case
where N > 1 can be treated similarly, except that the notations are more complicated. To simplify
the notations we also delete the k = 1 index.

Let (un)n∈N ⊂ L∞((t0, t1); [w, 1]) be a minimizing sequence of the functional J :

lim
n→∞

J(un) = inf
u∈L∞((t0,t1);[w,1])

J(u).

We have, using (3.2), (3.3) and (3.5),

J(un) = −
∫ t1

t0

(

a(xn2 ) + b(xn2 )u
n + c(xn2 )x

n
2

)

xn3 dt− x02x
0
3, (3.7)

where xn2 and xn3 are solutions to the Cauchy problem

ẋn2 = a(xn2 ) + b(xn2 )u
n, xn2 (t0) = x02, (3.8)

ẋn3 = c(xn2 )x
n
3 , xn3 (t0) = x03. (3.9)

Since (un)n∈N are in L∞((t0, t1); [w, 1]), there exists u∗ ∈ L∞((t0, t1); [w, 1]) and a subsequence

(unk)k∈N such that unk
∗
⇀ u∗ in L∞(t0, t1) as k → +∞. For sake of simplicity, we still denote the

subsequence by (un)n∈N.
Let x2 and x3 be the solutions to the Cauchy problem

ẋ2 = a(x2) + b(x2)u∗, x2(t0) = x02, (3.10)

ẋ3 = c(x2)x3, x3(t0) = x03. (3.11)

Similarly to (3.7), one has

J(u∗) = −
∫ t1

t0

(

a(x2) + b(x2)u∗ + c(x2)x2
)

x3 dt− x02x
0
3. (3.12)

By (2.2), (3.8) and using the property w 6 un 6 1, there exists a constant C such that

‖xn2‖W 1,∞ 6 C, ∀n ∈ N. (3.13)

In (3.13) and until the end of the proof of Theorem 2, we denote by C different positive constants
which are independent of n. It follows from the Arzelà-Ascoli theorem and (3.13) that there exists
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x̃2 ∈ C0([t0, t1]) and a subsequence (xnl

2 )l∈N such that xnl

2 → x̃2 in C0([t0, t1]) as l → +∞. Now,
we choose the corresponding subsequence (unl)l∈N and again, we write (un)n∈N instead of (unl)l∈N
and (xn2 )n∈N instead of (xnl

2 )l∈N. We have

un
∗
⇀ u∗ in L∞(t0, t1) as n→ +∞, (3.14)

xn2 → x̃2 in C0([t0, t1]) as n→ +∞. (3.15)

By solving (3.8), we have

xn2 (t) = x02 +

∫ t

t0

(

a(xn2 ) + b(xn2 )u
n
)

ds, ∀t ∈ [t0, t1]. (3.16)

Using (3.14) and (3.15) and letting n→ +∞ in (3.16), we obtain

x̃2(t) = x02 +

∫ t

t0

(

a(x̃2) + b(x̃2)u∗
)

ds, ∀t ∈ [t0, t1],

which together with (3.10) shows that

x̃2(t) = x2(t), ∀t ∈ [t0, t1]. (3.17)

From (3.15) and (3.17), we have

xn2 → x2 in C0([t0, t1]) as n→ +∞. (3.18)

Let us only treat the case where

x2(t1) > ys, (3.19)

(the case x2(t1) = ys can be treated similarly and the case x2(t1) < ys is simpler). By (3.19), there
exists t̂ ∈ [t0, t1) such that

x2(t̂ ) = ys. (3.20)

Moreover, by (2.6), this t̂ is unique. From (3.18) and (3.19), we have, for n large enough, which
will be from now on always assumed,

xn2 (t1) > ys. (3.21)

Hence, as for x2, there exists one and only one t̂n ∈ [t0, t1) such that

xn2 (t̂n) = ys. (3.22)

Let us prove that
t̂n → t̂ as n→ +∞. (3.23)

In order to prove (3.23), we may assume, without loss of generality, the existence of t̃ ∈ [t0, t1] such
that

t̂n → t̃ as n→ +∞. (3.24)

Letting n→ +∞ in (3.18), and using (3.22) together with (3.24), we get that

x2(t̃ ) = ys. (3.25)
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Since t̂ is characterized by (3.20), (3.23) follows from (3.24) and (3.25).
From (2.3), (3.9) and (3.11), we have

xn3 (t) = x03 e
cs(t−t0), ∀t ∈ [t0, t̂n] and x

n
3 (t) = x03 e

cs(t̂n−t0), ∀t ∈ [t̂n, t1], (3.26)

x3(t) = x03 e
cs(t−t0), ∀t ∈ [t0, t̂ ] and x3(t) = x03 e

cs(t̂−t0), ∀t ∈ [t̂, t1]. (3.27)

From (3.23), (3.26) and (3.27), we get that

xn3 → x3 in C0([t0, t1]) as n→ +∞. (3.28)

Finally, combining (3.7), (3.12), (3.14), (3.18) and (3.28), we get

lim
n→+∞

J(un) = J(u∗),

which shows that u∗ is an optimal control. This concludes the proof of Theorem 2.

3.2 Pontryagin Maximum Principle

In this section we prove a PMP for our optimal control problem. For sake of simplicity, we
denote, from now on,

p(x, u) := −(a(x2) + b(x2)u)x3, q(x) := −cs x2 x3, ∀x = (x1, x2, x3)
tr ∈ R

3. (3.29)

Let us denote by χ : R → R the characteristic function of (−∞, ys), i.e.

χ(x2) =

{

1, ∀x2 ∈ (−∞, ys),

0, ∀x2 ∈ [ys,+∞).
(3.30)

Hence, the cost function J for our optimal control problem problem (2.13) is

J(u) =

∫ t1

t0

(

p(x, u) + q(x)χ(x2)
)

dt− x02x
0
3. (3.31)

Let us define the Hamiltonian

H : (R3)N × R× (R3)N → R

(x, u, ψ) = ((x1, x2, . . . , xN ), u, (ψ1, ψ2, . . . , ψN )) 7→ H(x, u, ψ)

by

H(x, u, ψ) :=

N
∑

k=1

〈f(xk, u), ψk〉 −
N
∑

k=1

(

p(xk, u) + q(xk)χ(xk2)
)

. (3.32)

In (3.32) and in the following 〈a, b〉 denotes the usual scalar product of a ∈ R
3 and b ∈ R

3. Let us
also define the Hamilton-Pontryagin function H : (R3)N × (R3)N → R by

H(x, ψ) := max
u∈[w,1]

H(x, u, ψ). (3.33)

Our goal in this section is to prove the following theorem.
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Theorem 4. Let u∗ ∈ L∞((t0, t1); [w, 1]) be an optimal control for the optimal control problem
(2.13). Let xk∗ = (xk∗1, x

k
∗2, x

k
∗3)

tr, k = 1, · · · , N , be the corresponding optimal trajectory, i.e. xk∗1 ∈
W 1,∞(t0, t1), x

k
∗2 ∈W 1,∞(t0, t1), x

k
∗3 ∈W 1,∞(t0, t1) are solutions to the following Cauchy problems

ẋk∗1 = 1, xk∗1(t0) = xk01 , (3.34)

ẋk∗2 = a(xk∗2) + b(xk∗2)u∗, xk∗2(t0) = xk02 , (3.35)

ẋk∗3 = c(xk∗2)x
k
∗3, xk∗3(t0) = xk03 . (3.36)

If ys ∈
{

xk∗2(t); t ∈ [t0, t1]
}

, let t̂k ∈ [t0, t1] be the exit time for the k-th Dirac mass, i.e. the
unique time t̂k ∈ [t0, t1] such that xk∗2(t̂k) = ys. If ys /∈

{

xk∗2(t); t ∈ (t0, t1]
}

, let t̂k = t1 + 1.
Then, there exists N vector functions ψk = (ψk

1 , ψ
k
2 , ψ

k
3 )

tr, such that ψk
1 ∈ W 1,∞(t0, t1), ψ

k
2 ∈

W 1,∞(((t0, t̂k) ∪ (t̂k, t1)) ∩ (t0, t1)) and ψ
k
3 ∈W 1,∞(t0, t1) such that

ψ̇k
1 = 0, (3.37)

ψ̇k
2 = −(a′(xk∗2) + b′(xk∗2)u∗)ψ

k
2 − (a′(xk∗2) + b′(xk∗2)u∗)x

k
∗3

− csx
k
∗3χ(x

k
∗2) in ((t0, t̂k) ∪ (t̂k, t1)) ∩ (t0, t1), (3.38)

ψ̇k
3 = −csχ(xk∗2)ψk

3 − (a(xk∗2) + b(xk∗2)u∗)− csx
k
∗2 χ(x

k
∗2), (3.39)

ψk
1 (t1) = ψk

3 (t1) = 0, (3.40)

and

• if t̂k < t1,

ψk
2 (t̂k + 0)− ψk

2 (t̂k − 0) ∈
[cs x

k
∗3(t̂k)(ys + ψk

3 (t̂k))

a(ys) + b(ys)
,
cs x

k
∗3(t̂k)(ys + ψk

3 (t̂k))

a(ys) + b(ys)w

]

, (3.41)

ψk
2 (t1) = 0, (3.42)

• if t̂k = t1,

−ψk
2 (t1) ∈

[

0,
cs x

k
∗3(t1)ys

a(ys) + b(ys)w

]

. (3.43)

Moreover the following condition holds

H(xk∗(t), u∗(t), ψ
k(t)) = H(xk∗(t), ψ

k(t)) for almost every t ∈ (t0, t1). (3.44)

Proof of Theorem 4. For sake of simplicity, we give the proof only for one Dirac mass (N = 1)
and, again, we omit the index k = 1. For more than one Dirac mass, the proof is similar. Our
proof is inspired from [31].

Step 1. Let (wi)i∈N∗ be a sequence of elements in C∞(R) such that

0 6 wi,

∫

R

wi(x) dx = 1, supportwi ⊂ [−1/i, 0], ∀i ∈ N
∗, (3.45)

and, for some C > 0,
|w′

i(x)| 6 Ci2, ∀x ∈ R, ∀i ∈ N
∗, (3.46)
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(clearly such a sequence does exist). Then, we define a sequence of functions (χi)i∈N∗ from R into
R as follows:

χi(x) :=

∫

R

χ(y)wi(x− y) dy =

∫ ys

−∞
wi(x− y) dy =

∫ +∞

x−ys

wi(z) dz, ∀i ∈ N
∗, ∀x ∈ R. (3.47)

One easily sees that the functions χi thus defined possess the following properties (compare to [31,
Lemma 1 and Lemma 2]):

0 6 χi(x2) 6 χ(x2), ∀i ∈ N
∗, ∀x2 ∈ R, (3.48)

χi(x2) → χ(x2) as i→ ∞, ∀x2 ∈ R, (3.49)

0 6 χi(x2) 6 1, ∀i ∈ N
∗, ∀x2 ∈ R, (3.50)

χi = 1 in (−∞, ys − (1/i)] and χi = 0 in [ys,+∞), ∀i ∈ N
∗. (3.51)

Let u∗ be an optimal control for the optimal control problem (2.13) and let x∗ be the associated
trajectory. Let (zi)i∈N∗ be a sequence of elements of C1([t0, t1]) such that the following conditions
hold:

zi → u∗ in L2(t0, t1) as i→ +∞, (3.52)

sup
t06t6t1

|zi(t)| 6 2, i = 1, 2, · · · . (3.53)

It is again obvious that such a sequence of functions (zi)i∈N∗ does exist.
Let us first prove the following lemma which will be used later.

Lemma 5. There exists C > 0 such that, for every u ∈ L∞((t0, t1); [w, 1]) and every x02 ∈ [0, ys],
the following holds

∫ t1

t0

(χ(x2(t))− χi(x2(t))) dt 6
C

i
, ∀i ∈ N

∗, (3.54)

where x2 is the solution to the following Cauchy problem:

ẋ2 = a(x2) + b(x2)u, x2(t0) = x02.

Proof of Lemma 5. The case where x2(t1) < ys is trivial, we treat the case where x2(t1) > ys.
Then, there exists one and only one t̂ ∈ [t0, t1) and one and only one t̄i ∈ [t0, t1) depending on i
such that

x2(t̂ ) = ys, x2(t̄i) = max ( ys − (1/i), x02 ). (3.55)

Using (3.48) to (3.51), we obtain

∫ t1

t0

(χ(x2(t))− χi(x2(t))) dt =

∫ t̂

t̄i

(χ(x2(t))− χi(x2(t))) dt 6 t̂− t̄i. (3.56)

By (3.55), we have

ys = x02 +

∫ t̂

t0

(

a(x2) + b(x2)u
)

dt,

max ( ys − (1/i), x02 ) = x02 +

∫ t̄i

t0

(

a(x2) + b(x2)u
)

dt,
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which together give
∫ t̂

t̄i

(

a(x2) + b(x2)u
)

dt 6
1

i
. (3.57)

By (2.6), there exists σ > 0 such that

a(x2) + b(x2)u > σ, ∀x2 ∈ [0, ys], ∀u ∈ [w, 1]. (3.58)

From (3.57), by choosing C =
1

σ
, we get

0 < t̂− t̄i 6
C

i
, (3.59)

which, together with (3.56) concludes the proof of Lemma 5.

Let fi : R
3 × R → R

3 be defined by

fi(x, u) :=





1
a(x2) + b(x2)u
csχi(x2)x3



 , ∀x = (x1, x2, x3)
tr ∈ R

3, ∀u ∈ R. (3.60)

Let us also define Ji : L
∞((t0, t1); [w, 1]) → R by

Ji(u) :=

∫ t1

t0

(

p(x, u) + q(x)χi(x2)
)

dt+
1√
i

∫ t1

t0

|u(t)− zi(t)|2 dt− x02x
0
3, (3.61)

where x : [t0, t1] → R
3 is the solution to the Cauchy problem

ẋ = fi(x, u), x(t0) = x0. (3.62)

We consider the following optimal control problem

minimize Ji(u) for u ∈ L∞((t0, t1); [w, 1]). (Pi)

For any i = 1, 2, · · · , problem (Pi) is a “smooth” optimal control problem. By a classical result in
optimal control theory (see, e.g., [22, Corollary 2, p. 262]), there exists an optimal control ui for
problem (Pi). Let xi be the optimal trajectory corresponding to the control ui for dynamics (3.62).
We have the following lemma.

Lemma 6. The following holds as i→ +∞

ui → u∗ in L2(t0, t1), (3.63)

xi → x∗ in C0([t0, t1];R
3), (3.64)

χi(xi2) → χ(x∗2) in L
1(t0, t1). (3.65)

Proof of Lemma 6. Since ui is an optimal control for the optimal control problem (Pi) and
u∗ ∈ L∞((t0, t1); [w, 1]) is an admissible control for this problem, we have

Ji(ui) 6 Ji(u∗), ∀i ∈ N
∗.
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By (3.61),

∫ t1

t0

(

p(xi(t), ui(t)) + q(xi(t))χi(xi2(t))
)

dt+
1√
i

∫ t1

t0

|ui(t)− zi(t)|2 dt

6

∫ t1

t0

(

p(x̄∗(t), u∗(t)) + q(x̄∗(t))χi(x̄∗2(t))
)

dt+
1√
i

∫ t1

t0

|u∗(t)− zi(t)|2 dt, (3.66)

where xi = (xi1, xi2, xi3)
tr and x̄∗ = (x̄∗1, x̄∗2, x̄∗3)

tr are solutions to the Cauchy problems

ẋi = fi(xi, ui), xi(t0) = x0, (3.67)

˙̄x∗ = fi(x̄∗, u∗), x̄∗(t0) = x0. (3.68)

Since u∗ is an optimal control for the optimal control problem (2.13) and ui is an admissible control
for this problem, we have, for every i ∈ N

∗,

∫ t1

t0

(

p(x∗(t), u∗(t)) + q(x∗(t))χ(x∗2(t))
)

dt 6

∫ t1

t0

(

p(x̃i(t), ui(t)) + q(x̃i(t))χ(x̃i2(t))
)

dt, (3.69)

where x∗ = (x∗1, x∗2, x∗3)
tr and x̃i = (x̃i1, x̃i2, x̃i3)

tr are solutions to the Cauchy problems

ẋ∗ = f(x∗, u∗), x∗(t0) = x0, (3.70)

˙̃xi = f(x̃i, ui), x̃i(t0) = x0. (3.71)

By (3.48) and note that q 6 0, the inequality

∫ t1

t0

q(x̃i(t))χ(x̃i2(t)) dt 6

∫ t1

t0

q(x̃i(t))χi(x̃i2(t)) dt (3.72)

holds for every i ∈ N
∗. Combining (3.69) and (3.72), we obtain

∫ t1

t0

(

p(x∗(t), u∗(t)) + q(x∗(t))χ(x∗2(t))
)

dt 6

∫ t1

t0

(

p(x̃i(t), ui(t)) + q(x̃i(t))χi(x̃i2(t))
)

dt. (3.73)

By (3.66) and (3.73), we have

1√
i

∫ t1

t0

|ui(t)− zi(t)|2 dt

6

∫ t1

t0

(

p(x̄∗(t), u∗(t)) + q(x̄∗(t))χi(x̄∗2(t))
)

dt−
∫ t1

t0

(

p(x∗(t), u∗(t)) + q(x∗(t))χ(x∗2(t))
)

dt

+

∫ t1

t0

(

p(x̃i(t), ui(t)) + q(x̃i(t))χi(x̃i2(t))
)

dt−
∫ t1

t0

(

p(xi(t), ui(t)) + q(xi(t))χi(xi2(t))
)

dt

+
1√
i

∫ t1

t0

|u∗(t)− zi(t)|2 dt. (3.74)

By definition of f and fi in (3.3) and (3.60), we have

x̃i2(t) = xi2(t) and x̄∗2(t) = x∗2(t), ∀t ∈ [t0, t1]. (3.75)
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Using (3.29), (3.51), (3.74) and (3.75), one has

1√
i

∫ t1

t0

|ui(t)− zi(t)|2 dt 6C

∫ t1

t0

|x̄∗3(t)− x∗3(t)| dt + C

∫ t1

t0

|x̃i3(t)− xi3(t)| dt

+ C

∫ t1

t0

(

χ(x∗2(t))− χi(x∗2(t))
)

dt

+
1√
i

∫ t1

t0

|u∗(t)− zi(t)|2 dt. (3.76)

In (3.76) and until the end of the proof of Theorem 4, we denote by C different positive constants
which are independent of i. From (3.48), (3.68), (3.70) and (3.75), we have

∫ t1

t0

|x̄∗3(t)− x∗3(t)| dt =
∫ t1

t0

|x03 e
∫ t

t0
csχi(x∗2(s)) ds − x03 e

∫ t

t0
csχ(x∗2(s)) ds| dt

6 C

∫ t1

t0

∫ t

t0

(

χ(x∗2(s))− χi(x∗2(s))
)

ds dt. (3.77)

Applying Lemma 5 to (3.77), we get

∫ t1

t0

|x̄∗3(t)− x∗3(t)| dt 6
C

i
. (3.78)

Similarly, we can prove
∫ t1

t0

|x̃i3(t)− xi3(t)| dt 6
C

i
. (3.79)

Combining (3.76), (3.78) and (3.79), and noticing (3.52), we get

∫ t1

t0

|ui(t)− zi(t)|2 dt→ 0 as i→ +∞. (3.80)

From (3.52) and (3.80), we get that

‖ui − u∗‖L2(t0,t1) → 0 as i→ +∞. (3.81)

Thus, property (3.63) is proved.
Let us now prove (3.64). Using in particular (3.63), one easily sees that

xi1(t) = x∗1(t), ∀i ∈ N
∗, ∀t ∈ [t0, t1], (3.82)

xi2 → x∗2 in C0([t0, t1]) as i→ +∞. (3.83)

Moreover, the same proof as that of (3.28) shows that

xi3 → x∗3 in C0([t0, t1]) as i→ +∞.

Finally, let us prove (3.65). From (3.51) and (3.83),

(x∗2(t) 6= ys) ⇒
(

lim
i→+∞

χi(xi2(t)) = χ(x∗2(t))

)

, ∀t ∈ [t0, t1]. (3.84)

But, as we have already seen in section 3.1, there exists at most one t̂ ∈ [t0, t1] such that x∗2(t̂) = ys.
Property (3.65) follows from (3.48), (3.84) and Lebesgue’s dominated convergence theorem. This
concludes the proof of Lemma 6.
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Step 2. We now deduce necessary optimality conditions for the optimal control problem (2.13)
in the form of PMP. Suppose that xi and ui is an optimal pair for problem (Pi). The Hamiltonian
and the Hamilton-Pontryagin function for problem (Pi) are respectively

Hi(t, x, u, ψ) = 〈fi(x, u), ψ〉 − (p(x, u) + q(x)χi(x2))−
1√
i
|u− zi(t)|2, (3.85)

Hi(t, x, ψ) = max
u∈[w,1]

Hi(t, x, u, ψ). (3.86)

By the PMP -see, e.g., [22, Theorem 2, p. 319] or [4, Section 6.5]-, there exists an absolutely
continuous function ψi : [t0, t1] → R

3 such that

ψ̇i
a.e.
= −

[∂fi
∂x

(xi(t), ui(t))
]tr
ψi +

∂

∂x
(p(xi, u) + q(xi)χi(xi2)) , (3.87)

ψi(t1) = 0, (3.88)

and
Hi(t, xi(t), ui(t), ψi(t)) = Hi(t, xi(t), ψi(t)) for almost every t ∈ (t0, t1). (3.89)

Let us denote ψi = (ψi1, ψi2, ψi3)
tr. From (3.29), (3.60), (3.87) and (3.88), we have

ψ̇i1 = 0, (3.90)

ψ̇i2 = −(a′(xi2) + b′(xi2)ui)ψi2 − cs χ
′
i(xi2)xi3 ψi3 − (a′(xi2) + b′(xi2)ui)xi3

− cs χi(xi2)xi3 − cs xi2χ
′
i(xi2)xi3, (3.91)

ψ̇i3 = −cs χi(xi2)ψi3 − (a(xi2) + b(xi2)ui)− cs xi2 χi(xi2), (3.92)

ψi1(t1) = ψi2(t1) = ψi3(t1) = 0. (3.93)

Let ψ1 : [t0, t1] → R be defined by

ψ1(t) = 0, ∀t ∈ [t0, t1]. (3.94)

From (3.90), (3.93) and (3.94), one has

ψi1(t) = ψ1(t), ∀t ∈ [t0, t1]. (3.95)

Let ψ3 ∈W 1,∞(t0, t1) be the solution to the following Cauchy problem:

ψ̇3 = −csχ(x∗2)ψ3 − (a(x∗2) + b(x∗2)u∗)− csx∗2 χ(x∗2), ψ3(t1) = 0. (3.96)

From (3.63), (3.64), (3.65), (3.92), (3.93) and (3.96), one easily gets that

ψi3 → ψ3 in C0([t0, t1]) as i→ +∞. (3.97)

We now deal with ψi2. By (3.45) and (3.47), we have

support χ′
i ⊂ [ys − (1/i), ys]. (3.98)

Moreover, from (3.45), (3.46) and (3.47), we obtain

|χ′
i(x2)| 6 Ci, ∀x2 ∈ [ys − (1/i), ys], (3.99)
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Theorem 4 in the case where x∗2(t0) = x02 = ys or x∗2(t1) < ys follows directly from the standard
PMP. Hence, we may assume that

x∗2(t0) < ys 6 x∗2(t1). (3.100)

Let us first treat the case where

x∗2(t0) < ys < x∗2(t1). (3.101)

Then, again, there exists one and only one t̂ ∈ (t0, t1) such that

x∗2(t̂ ) = ys. (3.102)

Using (3.64) and (3.102), one also gets that, at least if i is large enough, which, from now on, will
always be assumed, there exists one and only one t̂i ∈ (t0, t1) and one and only one t̄i ∈ (t0, t1)
such that

xi2(t̂i) = ys, xi2(t̄i) = ys − (1/i). (3.103)

Using (3.63) and (3.64), and proceeding as in the proof of (3.23), one has

t̂i → t̂ and t̄i → t̂ as i→ +∞. (3.104)

From (3.99) and (3.103), we get

|χ′
i(xi2(t))| 6 Ci, ∀t ∈ [t̄i, t̂i]. (3.105)

From (3.98) and (3.103), we have

χ′
i(xi2(t)) = 0, t ∈ [t0, t1] \ [t̄i, t̂i]. (3.106)

Proceeding as in the proof of Lemma 5, one has

0 < t̂i − t̄i 6
C

i
. (3.107)

From (3.64), (3.91), (3.93), (3.97), (3.105), (3.106) and (3.107), we get

‖ψ̇i2‖L∞((t0,t̄i)∪(t̂i,t1))
6 C, (3.108)

‖ψi2‖L∞(t0,t1) 6 C. (3.109)

From (3.108) and (3.109), and extracting if necessary a subsequence, we get the existence of ψ2 ∈
W 1,∞((t0, t̂ ) ∪ (t̂, t1)), such that, as i→ +∞,

ψi2 → ψ2 in C0([t0, t̂− ε] ∪ [t̂+ ε, t1]), ∀ε > 0. (3.110)

Letting i→ +∞ in (3.91), one gets, using (3.63), (3.64), (3.98), (3.106) and (3.110),

ψ̇2 = −
(

a′(x∗2) + b′(x∗2)u∗
)

ψ2 − (a′(x∗2) + b′(x∗2)u∗)x∗3

− csx∗3χ(x∗2) in (t0, t1) \ {t̂ }. (3.111)

Moreover, from (3.93) and (3.110), we have

ψ2(t1) = 0. (3.112)
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We now prove the gap condition (3.41). Let us integrate (3.91) from t̄i to t̂i, we get

ψi2(t̂i)− ψi2(t̄i) = A(i) +B(i), (3.113)

with

A(i) := −
∫ t̂i

t̄i

((a′(xi2) + b′(xi2)ui) (ψi2 + xi3) + cs χi(xi2)xi3) dt, (3.114)

B(i) := −
∫ t̂i

t̄i

cs xi3 (xi2 + ψi3)χ
′
i(xi2) dt. (3.115)

From (3.64), (3.104), (3.108), (3.109) and (3.114), one gets that

A(i) → 0 as i→ +∞. (3.116)

For B(i), we perform the change of variable τ = xi2(t). Using (3.103) and (3.115), we get

B(i) = −
∫ ys

ys−(1/i)

cs xi3(x
−1
i2 (τ)) (τ + ψi3(x

−1
i2 (τ)))

a(τ) + b(τ)u(x−1
i2 (τ))

χ′
i(τ) dτ. (3.117)

Let us point out that, from (3.45), (3.47) and (3.51), one has

∫ ys

ys−(1/i)
χ′
i(τ) dτ = −1, χ′

i 6 0. (3.118)

From (3.58), (3.64), (3.97), (3.117), (3.118), one gets that

cs x∗3(t̂ )(ys + ψ3(t̂ ))

a(ys) + b(ys)
6 lim inf

i→+∞
B(i) 6 lim sup

i→+∞
B(i) 6

cs x∗3(t̂ )(ys + ψ3(t̂ ))

a(ys) + b(ys)w
,

which, together with (3.104), (3.108), (3.110), (3.113) and (3.116), gives (3.41).
Let us now treat the case where

x∗2(t1) = ys. (3.119)

One adapts the proof given above in the following way.

• If, for some i→ +∞, xi2(t1) 6 ys − (1/i), then one gets ψ2(t1) = 0.

• If, for some i→ +∞, xi2(t1) > ys, then, proceeding as above, one gets

−ψ2(t1) ∈
[

cs x∗3(t̂ )ys
a(ys) + b(ys)

,
cs x∗3(t̂ )ys

a(ys) + b(ys)w

]

. (3.120)

• If, for some i→ +∞, ys − (1/i) < xi2(t1) 6 ys, one just need to replace t̄i by t1 in the above
proof. Then, one replaces (3.118) by

∫ xi2(t1)

ys−(1/i)
χ′
i(τ) dτ 6 −1, χ′

i 6 0,

and one gets (3.120).
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Let us now prove the maximum condition (3.89). By (3.63), extracting if necessary a subse-
quence of the ui’s and still denoting by (ui)i∈N∗ the extracted sequence, there exists a Borel subset
N0 of (t0, t1) of Lebesgue measure 0 such that

lim
i→+∞

ui(t) = u∗(t), ∀t ∈ (t0, t1) \ N0. (3.121)

Let i ∈ N
∗. By (3.89), there exists a Borel subset Ni of (t0, t1) of Lebesgue measure 0 such that

Hi(t, xi(t), ui(t), ψi(t)) = Hi(t, xi(t), ψi(t)), ∀t ∈ (t0, t1) \ Ni. (3.122)

Let
N := {t̂ } ∪ (∪i∈N∗Ni) .

Then N is a Borel subset of (t0, t1) of Lebesgue measure 0. Let u ∈ [w, 1]. By (3.122),

Hi(t, xi(t), ui(t), ψi(t)) > Hi(t, xi(t), u, ψi(t)), ∀i ∈ N
∗, ∀t ∈ (t0, t1) \ N . (3.123)

Let ψ := (ψ1, ψ2, ψ3)
tr. Letting i → +∞ in (3.123) and using (3.53), (3.64), (3.84), (3.85), (3.95),

(3.97), (3.110) and (3.121), one gets that

H(x∗(t), u∗(t), ψ(t)) > H(x∗(t), u, ψ(t)), ∀t ∈ (t0, t1) \ N ,

which gives (3.44). This concludes the proof of Theorem 4.

3.3 Proof of Theorem 3

In this section, we use the necessary optimality conditions given in Theorem 4 in order to prove
Theorem 3. From now on, we assume that the target time t1 satisfies t1 > t̂0 so that all the cells
will exit from Phase 1 into Phase 3 before time t1. We give a proof of Theorem 3 in the case where
N = 1 in section 3.3.1. In section 3.3.3, we study the case where N > 1; in this case we need
additionally to analyze the dynamics between different exit times t̂k, k = 1, 2, · · · , N , to obtain
that there exists one and only one switching time and that the optimal switching direction is from
u = w to u = 1. In both cases N = 1 or N > 1, we give some numerical illustrations, respectively
in section 3.3.2 and section 3.3.4.

3.3.1 Proof of Theorem 3 in the case N = 1

The Hamiltonian (3.32) becomes

H(x, u, ψ) = ψ1 + (a(x2) + b(x2)u)ψ2 + c(x2)x3ψ3 + (a(x2) + b(x2)u)x3 + c(x2)x2x3

= (a(x2) + c(x2)x2)x3 + ψ1 + a(x2)ψ2 + c(x2)x3 ψ3 + b(x2)(x3 + ψ2)u. (3.124)

Let u be an optimal control for the optimal control problem (2.13) and let x = (x1, x2, x3)
tr be the

corresponding trajectory. Note that, by (2.2), b(x2) > 0. Then, by (3.33), (3.44) and (3.124), one
has, for almost every t ∈ (t0, t1),

u(t) = 1 if x3(t) + ψ2(t) > 0, (3.125)

u(t) = w if x3(t) + ψ2(t) < 0. (3.126)
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Let us recall that, under assumption (2.14) of Theorem 3, there exists one and only one t̂ ∈ [t0, t1)
such that

x2(t̂ ) = ys. (3.127)

Then

x2(t) > ys, ∀t ∈ (t̂, t1]. (3.128)

We study the case where t̂ > t0, the case t̂ = t0 being obvious. Thanks to (3.41), we get

(x3 + ψ2)(t̂+ 0)− (x3 + ψ2)(t̂− 0) > cs x3(t̂ )
ys + ψ3(t̂ )

a(ys) + b(ys)
. (3.129)

By (3.35) and (3.39), we get

d(x2 + ψ3)

dt
= −(x2 + ψ3) csχ(x2), (3.130)

and then, using also (3.30), (3.40), (3.127) and (3.128), we obtain

ys + ψ3(t̂ ) = (x2 + ψ3)(t̂ ) = (x2 + ψ3)(t1) > ys. (3.131)

Combining (3.129) with (3.131), we get

(x3 + ψ2)(t̂− 0) 6 (x3 + ψ2)(t̂+ 0)− cs x3(t̂ )
ys

a(ys) + b(ys)
. (3.132)

When t 6= t̂, from (2.3), (3.30), (3.36) and (3.38), we obtain

d(x3 + ψ2)

dt
= −(a′(x2) + b′(x2)u) (x3 + ψ2). (3.133)

Hence, using also (2.2), we have

(x3 + ψ2)(t̂+ 0) = (x3 + ψ2)(t1) e
−

∫ t1
t̂

(2x2(s)−c1u(s)) ds. (3.134)

Using the first inequality of (2.15), (3.42), (3.128) and (3.134), we get

(x3 + ψ2)(t̂+ 0) 6 x3(t1). (3.135)

Noticing that x3(t̂+ 0) = x3(t1) and using (3.132) and (3.135), we get

(x3 + ψ2)(t̂− 0) 6 x3(t1)(1− cs
ys

a(ys) + b(ys)
). (3.136)

From the second inequality of (2.15) and (3.136), we get

(x3 + ψ2)(t̂− 0) < 0. (3.137)

which, together with (3.133), gives us

(x3 + ψ2)(t) < 0, t ∈ [t0, t̂ ). (3.138)

Moreover, by (3.42), we have
(x3 + ψ2)(t1) = x3(t1) > 0,

which together with (3.133), gives

(x3 + ψ2)(t) > 0, t ∈ (t̂, t1]. (3.139)

Taking t∗ = t̂ and combining (3.138) and (3.139), with (3.125) and (3.126), we conclude the proof
of Theorem 3 in the case where N = 1.
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3.3.2 Numerical illustration in the case N = 1

For one Dirac mass, the optimal switching time is unique. Assumption (2.15) is not necessary
to guarantee that the optimal control is a bang-bang control with only one switching time. It
is only used to guarantee that the optimal switching time coincides with the exit time. We give
a numerical example to show that when cs is“small”, there is no switch at all and the optimal
control is constant (u = 1), while when cs is “large”, there is a switch occuring at the exit time
(see figure 3).

The default parameter values are specified in Table 1 for the numerical studies.

t0 initial time 0.0
t1 final time 17.0
c1 slope in the b(y) function 11.892
c2 origin ordinate in the b(y) function 2.288
ys threshold maturity 6.0
w minimal bound of the control 0.5

Table 1: Default parameter values
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Figure 3: Value of the cost function J with respect to the switching time (t) and cs parameter
in the case of one Dirac mass. When cs is “small”, there is no switching time (t = 0) and the
optimal control is constant (u = 1), while, when cs is “large”, the optimal control strategy consists
in switching from u = w to u = 1 at a time coinciding with the exit time. The initial values are
specified in the insert.
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3.3.3 Proof of Theorem 3 in the case N > 1

Now, the Hamiltonian (3.32) becomes

H(x, u, ψ) =
N
∑

k=1

(

(a(xk2) + c(xk2)x
k
2)x

k
3 + ψk

1 + a(xk2)ψ
k
2 + c(xk2)x

k
3ψ

k
3 + b(xk2)(x

k
3 + ψk

2 )u
)

. (3.140)

Reordering if necessary the xk’s, we may assume, without loss of generality, that

x102 < x202 < . . . < xk02 < . . . < xN0
2 . (3.141)

Let u be an optimal control for the optimal control problem (2.13) and let x = (x1, . . . , xk, . . . xN ),
with xk = (xk1, x

k
2, x

k
3)

tr, be the corresponding trajectory. From (3.141), we have

t̂N < t̂N−1 < . . . t̂k < . . . < t̂1. (3.142)

Let Φ : [t0, t1] → R be defined by

Φ(t) :=
N
∑

k=1

b(xk2(t))(x
k
3(t) + ψk

2 (t)). (3.143)

Noticing that b(xk2) > 0, by (3.33), (3.44), (3.140) and (3.143), one has, for almost every t ∈ (t0, t1),

u = w, if Φ(t) < 0, (3.144)

u = 1, if Φ(t) > 0. (3.145)

We take the time-derivative of (3.143) when t 6= t̂k, k = 1, · · · , N . From (2.2), we obtain

Φ̇(t) =

N
∑

k=1

(c1(x
k
2)

2 + 2c2x
k
2)(x

k
3 + ψk

2 ). (3.146)

Similarly to the above proof for one Dirac mass, we can prove that, under assumption (2.15), we
have, for each k = 1, · · · , N ,

(xk3 + ψk
2 )(t) < 0, when t ∈ (t0, t̂k), (3.147)

(xk3 + ψk
2 )(t) > 0, when t ∈ (t̂k, t1). (3.148)

By (3.142), (3.143), (3.147) and (3.148), and note that b(xk2) > 0, we get

Φ(t) < 0, when t ∈ (t0, t̂N ), (3.149)

Φ(t) > 0, when t ∈ (t̂1, t1). (3.150)

The key point now is to study the dynamics of Φ between different exit times t̂k. Let k ∈ {1, · · · , N−
1} and let us assume that

Φ(t) = 0, for some t ∈ (t̂k+1, t̂k). (3.151)

From (3.143) and (3.151), we get

xk3(t) + ψk
2 (t) = −

∑

i 6=k

b(xi2(t))

b(xk2(t))
(xi3(t) + ψi

2(t)). (3.152)
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From (3.147) and (3.148), for every t ∈ (t̂k+1, t̂k),

xi3(t) + ψi
2(t) < 0, when i 6 k − 1, (3.153)

xi3(t) + ψi
2(t) > 0, when i > k + 1. (3.154)

From (2.2), (3.146) and (3.152), we get

Φ̇(t) =
∑

i6k−1

xi3 + ψi
2

b(xk2)

(

c21x
i
2x

k
2 + 2c22 + c1c2(x

i
2 + xk2)

)

(xi2 − xk2)

+
∑

i>k+1

xi3 + ψi
2

b(xk2)

(

c21x
i
2x

k
2 + 2c22 + c1c2(x

i
2 + xk2)

)

(xi2 − xk2). (3.155)

From (3.141), we get

xi2(t)− xk2(t) < 0, when i 6 k − 1, (3.156)

xi2(t)− xk2(t) > 0, when i > k + 1. (3.157)

Using (3.153) to (3.157), we get

Φ̇(t) > 0 whenever Φ(t) = 0, ∀t ∈ (t̂k+1, t̂k). (3.158)

Combining (3.144), (3.145), (3.149), (3.150) and (3.158) together, we get the existence of t∗ ∈ (t0, t1)
such that

u∗ = w in (t0, t∗) and u∗ = 1 in (t∗, t1).

This concludes the proof of Theorem 3.

3.3.4 Numerical illustration in the case N > 1

The optimal control is not unique for more than one Dirac mass. Let us consider the case of
two Dirac masses as an example. The optimal switching time may happen either at the first exit
time or at the second exit time (see figure 4), or between the two exit times (see figure 5).
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Figure 4: Value of the cost function J with respect to the switching time (t) in the case of two
Dirac masses and a “large” value of cs (cs =1.0). In the left panel, the three-part curve represents
the value of the cost function obtained after switching from u = w to u = 1 at time t. Blue
dashed curve: switching time occurring before the first exit time; green solid curve: switching
time occurring in between the two exit times; red dashed curve: switching time occurring after the
second exit time. The initial values are specified in the insert. The right panel is a zoom on the
green solid curve displayed on the left panel. There are two optimal switching times which coincide
with the two exit times.
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Figure 5: Value of the cost function J with respect to the switching time (t) in the case of two
Dirac masses and a “large” value of cs (cs =0.8). In the left panel, the three-part curve represents
the value of the cost function obtained after switching from u = w to u = 1 at time t. Blue
dashed curve: switching time occurring before the first exit time; green solid curve: switching
time occurring in between the two exit times; red dashed curve: switching time occurring after the
second exit time. The initial values are specified in the insert. The right panel is a zoom on the
green solid curve displayed on the left panel. There is one single optimal switching time, which
occurs in between the two exit times.
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4 Optimal control in the PDE case

In this section, we study the optimal control in the PDE case. We give the proof of Theorem 1.
We first give an explicit expression for the cost function J defined in (2.12).

Let us define a new map

e : [0, ys]× L∞((t0, t1); [w, 1]) → [t0, t1]
(y0, u) 7→ e(y0, u)

by requiring

Ψ(e(y0, u), y0, u) = ys, (4.1)

where Ψ is defined by (2.19). Note that, under assumption (2.14), one has, for every y0 ∈ [0, ys],
the existence of t ∈ [t0, t1] such that

Ψ(t, y0, u) = ys. (4.2)

Again, (3.58) implies that there exists at most one t ∈ [t0, t1] such that (4.2) holds. This shows
that e is well defined. Moreover, proceeding as in the proof of (3.23) and using standard results on
ordinary differential equations together with (3.58) gives the following lemma.

Lemma 7. Let (yn0 )n∈N be a sequence of elements in [0, ys] and (un)n∈N be a sequence of elements
in L∞((t0, t1); [w, 1]). Let us assume that, for some y0 ∈ [0, ys] and for some u ∈ L∞((t0, t1); [w, 1]),

yn0 → y0 as n→ +∞,

un
∗
⇀ u in L∞(t0, t1) as n→ +∞.

Then
e(yn0 , u

n) → e(y0, u) as n→ +∞.

Let now ρ0 be a Borel measure on R×R such that (2.20) and (2.21) hold. Using (2.22), (2.12)
becomes

J(u) = −
∫∫

[0,1]×[0,ys]
Ψ(t1, y0, u) e

cse(y0,u) dρ0(x0, y0). (4.3)

In order to emphasize the dependence of J on the initial data ρ0, from now on we write J(ρ0, u)
for J(u).

It is well known that there exists a sequence ((xi,n0 , yi,n0 , λi,n0 ))16i6n, n∈N of elements in [0, 1] ×
[0, ys]× (0,+∞) such that, if

ρn0 :=
n
∑

i=1

λi,n0 δ
xi,n
0 ,yi,n0

, (4.4)

then

lim
n→+∞

∫∫

[0,1]×[0,ys]
ϕ(x0, y0) dρ

n
0 (x0, y0) =

∫∫

[0,1]×[0,ys]
ϕ(x0, y0)dρ0(x0, y0), ∀ϕ ∈ C0([0, 1]× [0, ys]). (4.5)
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From Theorem 2 and Theorem 3, there exists tn∗ ∈ [t0, t1] such that, if un∗ : [t0, t1] → [w, 1] is defined
by

un∗ = w in [t0, t
n
∗ ) and u

n
∗ = 1 in (tn∗ , t1], (4.6)

then

J(ρn0 , u
n
∗ ) 6 J(ρn0 , u), ∀u ∈ L∞((t0, t1); [w, 1]). (4.7)

Extracting a subsequence if necessary, we may assume without loss of generality the existence of
t∗ ∈ [t0, t1] such that

lim
n→+∞

tn∗ = t∗. (4.8)

Let us define u∗ : [t0, t1] → [w, 1] by

u∗ = w in [t0, t∗) and u∗ = 1 in (t∗, t1]. (4.9)

Then, using (4.6), (4.8) and (4.9), one gets

Ψ(t1, ·, un∗ ) → Ψ(t1, ·, u∗) in C0([0, ys]) as n→ +∞. (4.10)

Moreover, from (4.6), (4.8) and (4.9), one has

un∗
∗
⇀ u∗ in L∞(t0, t1) as n→ +∞. (4.11)

From Lemma 7 and (4.11), one gets

e(·, un∗ ) → e(·, u∗) in C0([0, ys]) as n→ +∞. (4.12)

From (4.3), (4.5), (4.10) and (4.12) and a classical theorem on the weak topology (see, e.g., [5, (iv)
of Proposition 3.13, p. 63]), one has

J(ρn0 , u
n
∗ ) → J(ρ0, u∗) as n→ +∞. (4.13)

Let now u ∈ L∞((t0, t1); [w, 1]). From Lemma 7, (4.3) and (4.5), one gets

J(ρn0 , u) → J(ρ0, u) as n→ +∞. (4.14)

Finally, letting n→ +∞ in (4.7) and using (4.13) together with (4.14), one has

J(ρ0, u∗) 6 J(ρ0, u),

which concludes the proof of Theorem 1.

References

[1] Fabio Ancona and Andrea Marson. On the attainable set for scalar nonlinear conservation
laws with boundary control. SIAM J. Control Optim., 36(1):290–312, 1998.

[2] Aram V. Arutyunov. On necessary optimality conditions in a problem with phase constraints.
Sov. Math., Dokl, 31(174–177), 1985.

28



[3] Alberto Bressan and Giuseppe Maria Coclite. On the boundary control of systems of conser-
vation laws. SIAM J. Control Optim., 41(2):607–622, 2002.

[4] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical theory of control, vol-
ume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences
(AIMS), Springfield, MO, 2007.

[5] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universi-
text. Springer, New York, 2011.

[6] Frédérique Clément. Optimal control of the cell dynamics in the granulosa of ovulatory follicles.
Math. Biosci, 6(123–142), 1998.

[7] Jean-Michel Coron. Local controllability of a 1-D tank containing a fluid modeled by the
shallow water equations. ESAIM Control Optim. Calc. Var., 8:513–554, 2002. A tribute to J.
L. Lions.

[8] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2007.

[9] Jean-Michel Coron, Oliver Glass, and Zhiqiang Wang. Exact boundary controllability for 1-D
quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control Optim.,
48(5):3105–3122, 2009/10.

[10] Jean-Michel Coron, Matthias Kawski, and Zhiqiang Wang. Analysis of a conservation law
modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B,
14(4):1337–1359, 2010.

[11] Jean-Michel Coron and Zhiqiang Wang. Controllability for a scalar conservation law with
nonlocal velocity. J. Differential Equations, 252:181–201, 2012.

[12] Nki Echenim, Frédérique Clément, and Michel Sorine. Multiscale modeling of follicular ovula-
tion as a reachability problem. Multiscale Model. Simul., 6(3):895–912, 2007.

[13] Nki Echenim, Danielle Monniaux, Michel Sorine, and Frédérique Clément. Multi-scale model-
ing of the follicle selection process in the ovary. Math. Biosci., 198(1):57–79, 2005.

[14] Olivier Glass. On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc.
(JEMS), 9(3):427–486, 2007.

[15] Martin Gugat. Boundary controllability between sub- and supercritical flow. SIAM J. Control
Optim., 42(3):1056–1070, 2003.

[16] Martin Gugat. Optimal switching boundary control of a string to rest in finite time. Z. Angew.
Math. Mech., 88(4):283–305, 2008.

[17] Martin Gugat, Michael Herty, Axel Klar, and Günter Leugering. Optimal control for traffic
flow networks. J. Optim. Theory Appl., 126(3):589–616, 2005.

[18] Martin Gugat, Michael Herty, and Veronika Schleper. Flow control in gas networks: exact
controllability to a given demand. Math. Methods Appl. Sci., 34(7):745–757, 2011.

29



[19] Martin Gugat and Günter Leugering. Global boundary controllability of the Saint-Venant
system for sloped canals with friction. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(1):257–
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