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We show that in the unconditional security model, a single quantum strong coin flip with security
guarantees that are strictly better than in any classical protocol is possible to implement with current
technology. Our protocol takes into account all aspects of an experimental implementation, including
losses, multiphoton pulses emitted by practical photon sources, channel noise, detector dark counts,
and finite quantum efficiency. We calculate the abort probability when both players are honest, as
well as the probability of one player forcing his desired outcome. For a channel length up to 21
kmand commonly used parameter values, we can achieve honest abort and cheating probabilities
that are better than in any classical protocol. Our protocol is, in principle, implementable using
attenuated laser pulses, with no need for entangled photons or any other specific resources.

PACS numbers: 03.67.-a, 03.67.Dd

I. INTRODUCTION

Coin Flipping is a fundamental cryptographic primi-
tive with numerous applications, where two distrustful
parties separated by distance wish to agree on a random
bit. There are two kinds of coin flipping: in strong coin
flipping, the players wish to share a random bit without
caring for a specific outcome, while in weak coin flipping,
each player has a preference for one of the two values
of the bit. A coin flipping protocol is called fair if the
cheating probability for both players is the same.

Blum [1] introduced the first coin flipping protocol in
1981. This protocol is asynchronous, in the sense that
the two players do not simultaneously send messages to
each other but rather in communication rounds. In the
asynchronous classical model, it is impossible to have a
coin-flipping protocol with cheating probability less than
1, unless computational assumptions are considered. In
other words, a dishonest player can always force the out-
come of the coin flip with probability 1. On the other
hand, in the synchronous (or relativistic) classical model
[2], unconditionally secure coin flipping is possible, but
the model itself is hard to implement because the secu-
rity lies solely on the simultaneity of the communication
and thus the verification of the distance between the two
players.

In the quantum model, where the two parties share
a quantum channel, the initial results for uncondition-
ally secure coin flipping were discouraging. Lo and Chau
[3] and Mayers [4] independently proved that quantum
bit commitment is impossible and so is perfect quantum
coin flipping. On the other hand, several quantum pro-
tocols have been proposed that achieve a cheating prob-
ability lower than 1. Aharonov et al. proposed the first
such protocol [5], and other protocols followed [6–9] that
nevertheless could not go below the cheating probability
bound of 3/4. On the other hand, Kitaev [10], using semi-
definite programming, proved that the cheating probabil-

ity of any fair quantum coin flipping protocol is at least
1/

√
2. Finally Chailloux and Kerenidis [11], using Mo-

chon’s result [12] for weak coin flipping with arbitrarily
small bias, bridged the gap by presenting a protocol that
has cheating probability arbitrarily close to 1/

√
2.

These results are important from a theoretical point
of view, however they assume perfect implementation of
the protocols. The situation is more subtle when we deal
with realistic conditions encountered in experimental im-
plementations, for example multiphoton pulses emitted
by practical sources, losses and channel noise, since if
taken into account they may render protocols such as
[5, 6, 11, 13, 14] completely unsecure in practice.

Recently, protocols that address some of the issues that
arise in experimental implementations have been pro-
posed. A major step was taken by Berlin et al. [15],
who proposed a protocol that is completely impervious
to losses and achieves a cheating probability of 0.9. In
their theoretical analysis however, they do not deal with
noise and thus the honest abort probability is always
zero. This protocol becomes completely unsecure in the
presence of multiphoton pulses, i.e. when the implemen-
tation is based on an attenuated laser source rather than
a perfect single-photon source. Subsequently, Berlin et
al. [16] implemented this protocol using a source of en-
tangled qubits and hence avoiding multi-photon pulses.
In order to deal with the noise present in the experi-
ment, they defined a different primitive, sequential coin
flipping, instead of a single coin flip, and conjectured that
this primitive still remains impossible classically. Finally,
based on [15], Chailloux [17] proposed an improved pro-
tocol with cheating probability 0.86, while Aharon et al
[18] described a family of loss-tolerant protocols where for
the case of two qubit, the cheating probability is 0,8975.

Barrett and Massar [19] state that, since there can be
no error-correction in a single coin flip, there should be
no quantum protocol that can tolerate noise and have a
zero honest abort probability. To circumvent this diffi-
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culty, they studied the primitive of string coin flipping,
previously introduced by Kent [20], which was neverthe-
less proven to be possible classically.

II. OUR WORK

We present an unconditionally secure quantum strong
coin flipping protocol that can be implemented using to-
day’s technology. Our goal is to take into account all
experimental parameters, including noise, which forces
us to allow some honest abort probability. We can
then achieve both honest abort and cheating probabil-
ity strictly smaller than in any classical protocol. Hänggi
andWullschleger [21] describe explicit classical and quan-
tum protocols that achieve tight bounds for the cheating
probability p, when the honest players abort with prob-
ability H. In the quantum case, the achievable bound is
p =

√
(1−H)/2, and in the classical case, the achievable

bound is equal to the quantum bound for H ≥ 1/2, and
p = 1−

√
H/2 for H < 1/2.

Our protocol uses a standard attenuated laser source
and we analyze how all practical aspects, like multi-
photon pulses, channel noise, system loss, detector dark
counts and finite quantum efficiency, affect the honest
abort and cheating probability. We prove that for a sin-
gle coin flip, if the noise is up to 2% and for channel
length up to 21km, we can achieve at the same time hon-
est abort probability (≈ 1%) and cheating probability
(≈ 0.93) strictly smaller than classically possible. We
note that, similar to quantum key distribution protocols
[22], our protocol is not completely impervious to losses,
but can tolerate up to a certain amount of losses, which
corresponds to distances in typical metropolitan area net-
works.

III. PROTOCOL

Our protocol is a refinement of the one proposed by
Berlin et al [15]; the main difference is that Alice sends a
fixed number of pulses K, and uses an attenuated laser
source to produce her states instead of a perfect single-
photon or an entangled-photon source. By restraining
the number of pulses and by allowing an honest abort
probability, the protocol can achieve a cheating proba-
bility very close to the one proven by Berlin et al, and at
the same time be more suitable for practical use.

Each photon pulse produced by the source contains a
number of photons that follows the Poisson distribution
with pi = e−µµi/i! and mean photon number µ. The
parameter a of the protocol is known from the start (we
will later see how to optimize it).

1. For i = 1, ...,K:

(a) Alice picks uniformly at random a basis αi ∈
{0, 1} and a bit ci ∈ {0, 1}.

(b) She prepares the state |ϕαi,ci⟩, such that:

|ϕαi,0⟩ =
√
a|0⟩+ (−1)αi

√
1− a|1⟩

|ϕαi,1⟩ =
√
1− a|0⟩ − (−1)αi

√
a|1⟩

and sends it to Bob.

2. Bob picks uniformly at random a measurement ba-
sis α′

i for every pulse. If his detectors do not click
for any pulse, then he aborts. Else, let j the first
pulse he detects.

3. Bob picks uniformly at random c′j ∈ {0, 1} and
sends it to Alice, together with the index j.

4. Alice reveals αj , cj .

5. If αj = α′
j , Bob checks that the outcome of his mea-

surement is indeed |ϕαj ,cj ⟩, otherwise he aborts.

6. If Bob has not aborted, then the outcome of the
protocol is b = cj + c′j .

A. Honest Player Abort

Any amount of noise in an experimental implementa-
tion results in a non-zero honest abort probability. Here,
we analyse exactly how noise and the other experimental
parameters affect the honest abort probability in order to
ensure that the protocol achieves a task which remains
impossible classically. We note that a similar analysis
can also be done for the Berlin et al. protocol. The sit-
uations in which an honest abort might occur with some
probability are the following:

1. Bob’s detectors do not click in any of the K rounds
of the coin flip. The abort probability is 1.

2. Bob’s first detection is due to a dark count. The
abort probability is 1/4, since if αj = α′

j (step 5),
he will abort with probability 1/2 (dark count is
totally random), else if αj ̸= α′

j he will not abort.

3. The noise in the channel alters the state of the pho-
ton. In this case, the abort probability is 1/2, since
he will only abort if αj = α′

j (step 5).

The total honest abort probability is then:

H = ZK(1− dB)
K + 1

4

∑K
i=1(1− dB)

i−1dBZ
i

+
[
1− ZK(1− dB)

K −
∑K

i=1(1− dB)
i−1dBZ

i
]
e
2

where Z = p0+
(
1−p0

)(
1−Fη

)
: probability that no sig-

nal arrives at Bob’s detectors; F : system transmission ef-
ficiency; η: detector finite quantum efficiency; dB : prob-
ability of detector dark count; e: probability of wrong
measurement outcome due to noise, which can be due to
imperfect state preparation, channel-induced operations
and detector errors.
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B. Malicious Alice

Alice’s optimal cheating strategy in our protocol is the
same as the one in the Berlin et al.’s protocol. We assume
Alice to be all-powerful, which means that she controls all
aspects of the implementation except Bob’s measurement
setup. It is in her best interest to replace the lossy chan-
nel with a perfect one, use a perfect single-photon source
and send no vacuum states. We also assume that Bob’s
detectors are perfect, which only increases Alice’s cheat-
ing probability and hence we provide an upper bound in
this stronger security model. Under these assumptions,
honest Bob will always succeed in measuring the first
pulse that Alice sends and disregard the following ones.
Hence, Alice’s optimal cheating strategy is to create some
entangled state, send one qubit to Bob in the first pulse,
wait for Bob to reply in step 3 and then perform some
measurement in her part of the entangled state in order
to decide what to reveal in step 4. This is no different
from the cheating in Berlin et al’s protocol, so the optimal
cheating probability for Alice is pA ≤

(
3+2

√
a(1− a)

)
/4

[15].

C. Malicious Bob

We consider Bob to be all powerful, meaning that he
controls all aspects of the implementation, except for Al-
ice’s photon source. Again, it is in Bob’s best interest to
replace the lossy and noisy channel with a perfect one,
in order to receive each time the correct state and max-
imize his cheating probability. Moreover, we assume he
has perfect detectors and we also give him the ability to
know the number of photons in each of the K pulses.
Then, Bob’s optimal strategy is to receive all K pulses
and then perform some operation on the received qubits
in order to maximize his information about Alice’s bit
cj for some pulse j. It is important to note that honest
Alice picks a new uniformly random bit cj for each pulse
j and hence Bob cannot combine different pulses in order
to increase his information about a bit cj .
To simplify our analysis, we assume that in the case

where Bob has received at least two two-photon pulses or
a pulse with 3 or more photons, then he can cheat with
probability 1. We analyze the following events (in each
event, the remaining pulses contain zero photons):

A1 : (all zero-photon pulses) The optimal cheating strat-
egy for Bob is to pick a random bit.

A2 : (at least one one-photon pulse) The optimal cheat-
ing strategy for Bob is to measure in the computa-
tional basis (Helstrom measurement)[15, 23]. It is
proven in [15] that this probability is equal to a.

A3 : (one two-photon pulse) It can be proven that for our
states the optimal measurement in a two-photon

pulse outputs the correct bit with probability equal
to a.

A4 : (one two-photon pulse, at least one 1-photon pulse)
Bob will try to benefit from the two-photon pulse
(see discussion below), and if he fails, he will con-
tinue like in A2, since the pulses are independent.

We denote as b′ Bob’s desired outcome and as P (b′|Ai)
the probability that Bob will force his preference when
event Ai has taken place. We get an upper bound for the
total probability of cheating Bob:

pB ≤
4∑

i=1

P (Ai)× P (b′|Ai) +

[
1−

4∑
i=1

P (Ai)

]
× 1

Note that an honest Alice prepares the K pulses in-
dependently, which means that a measurement on any
of them does not affect the rest. Consequently, Bob can
measure each pulse independently, without affecting the
remaining pulses. Moreover, the probability for each of
these events depends on the protocol parameter K and
on the mean photon number µ (which is controlled by
Alice).

It remains to bound P (b′|A4), i.e. the case where Bob
has received one 2-photon pulse and some single pho-
ton pulses. Bob will try to profit from the two identical
quantum states in one pulse. On one hand, he can per-
form the optimal distinguishing measurement on the two
photons, which as we said earlier gives a correct answer
with probability a. On the other hand, he can perform a
conclusive measurement on the 2-photon pulse that with
some probability will give a correct answer and with some
probability will give no answer at all (in which case Bob
can use one of the 1-photon pulses). In fact, none of these
two strategies is optimal. In general, Bob will perform
some measurement that with probability c will provide
an answer, which will be correct with probability γ, and
with probability (1− c) the measurement will provide no
answer, in which case Bob will use a single-photon pulse
to guess correctly with probability a. Hence,

P (b′|A4) = maxM{cγ + (1− c)a}

over all possible measurements of Bob.
Let M be the optimal measurement that provides with

probability c an answer that is correct with probability
γ and with probability (1− c) provides an answer that is
correct with probability γ′. On one hand, we have that
γ′ ≥ 1/2 (since Bob can always guess with probability
1/2) and on the other hand this measurement cannot be
correct with probability larger than a (since we know that
the optimal measurement has probability a). Hence, we
have x ≡ cγ + (1 − c)1/2 ≤ a from which we get that
c ≥ 2x− 1. Then, we have:

P (b′|A4) = cγ + (1− c)a ≤ x+ (2− 2x)(a− 1
2 )

≤ −2a2 + 4a− 1 (1)
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Equation (1) provides an analytical upper bound on the
cheating probability for event A4 and hence we can now
calculate the cheating probability pB .
Finally to ensure the fairness of the protocol, we ad-

just a so that pA = pB in order to have equal cheating
probabilities.

IV. RESULTS

We have introduced a strong coin flipping protocol that
takes into account all experimental parameters. In the
following simulations, we use parameter values commonly
referenced in the literature [24, 25], which can be imple-
mented using today’s technology.
The photon signals that Alice sends arrive with a prob-

ability F (transmission efficiency) at Bob’s site, and they
are detected with a probability η (detector quantum effi-
ciency). For an optical channel, F is related to the chan-
nel absorption coefficient β, the channel length L and a
distance-independent constant loss k, via the equation:
F = 10−(βL+k)/10. The values used in our simulations
are shown in the following table.

Parameter Value

Receiver constant loss [dB] k 1
Absorption coefficient [dB/km] β 0.2
Detection efficiency η 0.2
Dark counts (per slot) dB 10−5

Signal error rate e 0.01

Note that we consider the probability of a signal and
a dark count occurring simultaneously negligible.
Our protocol requires a minimum honest abort prob-

ability equal to half of the probability of noise in the
channel. We consider an acceptable honest abort proba-
bility smaller than 2%, thus by setting the honest abort
probability to fixed values up to 0.02 for different channel
lengths, we find the necessary rounds K and the optimal
mean photon number µ that minimize the cheating prob-
ability for a fair protocol.
There is an inversely proportional relation between the

honest abort probability and the optimal µ (Figure 1).
The same holds for the number of rounds K in relation to
the honest abort probability and for the same µ. When µ
is increased in order to achieve the desired honest abort
probability, the required number of rounds is reduced.
The number of rounds K depends on the honest abort
probability and ranges between 2000 and 15000.
In Figure 2 we plot our protocol’s cheating probability

versus the honest abort probability H for four different
channel lengths, and compare this to the optimal classical
cheating probability, which is equal to 1−

√
H/2 [21].

For any length up to 21 km and honest abort prob-
ability smaller than 2%, we can find a µ such that the
maximum cheating probability of our protocol is better
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Figure 1: Quantum honest abort probability vs mean photon
number µ for different channel lengths.
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Figure 2: Quantum honest abort vs cheating probability for
different channel lengths and comparison to the classical case.

than in the classical case. Figure 3 shows how the co-
efficient a of the protocol states changes in relation to
the honest abort probability, for three different channel
lengths.

V. DISCUSSION

We have shown that flipping a single coin with security
guarantees that are strictly stronger than in any classical
protocol can be achieved with present quantum technol-
ogy, and more precisely with a standard attenuated laser
source. This implies that quantum information can be
used beyond quantum key distribution (QKD), to achieve
in practice more difficult cryptographic tasks in a model
where the parties do not trust each other. We note that
implementations of such tasks will be subject to the same
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Figure 3: Quantum state coefficient vs honest abort proba-
bility.

issues related to the existence of side channels as in QKD
(eg. [26]).
We observe that the maximal communication distance

that can be achieved is significantly smaller than in QKD
[22]. In principle, we cannot expect to have the same re-
sults as in QKD, since the setting is much harder. Here,
the adversary is the other player, so no cooperation is
possible, thus excluding error-correction and privacy am-
plification. With the parameter values that we used, the
limit to the channel length is 21 km. We can increase
the channel length by improving the experimental pa-
rameters, in particular the signal error rate.
Even though Chailloux [17] proposed a protocol with

lower cheating probability than the Berlin et al., it does
not perform as well in the presence of noise.
Last, it is interesting to see if there is a way to reduce

the effect of noise to the honest abort probability with
current technology. We note that this seems hard, since
any attempt of Alice to protect the qubits, via a repeti-
tion error correcting code for example, will immediately
increase the cheating probability of Bob.
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M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys.
81, 1301 (2009).

[23] C. Helstrom, J. Stat. Phys. 1, 231 (1969).
[24] G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders,

Phys. Rev. Lett. 85, 1330 (2000).
[25] N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000).
[26] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser,

J. Skaar, and V. Makarov, Nature Photonics 4, 686
(2010).


