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M. Amara∗ and R.-M. Galéra
Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France
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Magnetic susceptibility anisotropy and high sensitivity magnetostriction measurements are used
to investigate the symmetry of CeB6 ordered states. The antiferromagnetic state is confirmed as
tetragonal, but no deviation from the cubic symmetry is observed in the so-called antiferroquadrupo-
lar phase, where only volume effects are detected. In this phase, the temperature dependence of
the strain field-susceptibilities is typical of non-ordered quadrupoles. Moreover, while an anti-
ferroquadruplar order should be cubic, this symmetry is incompatible with the 〈 1

2

1

2

1

2
〉 ordering

wave-vector. The antiferroquadrupolar description of CeB6 phase II is clearly inconsistent and an
alternative model, based on a unidimensional representation of the cube, has to be sought for.

In rare-earth compounds, the degrees of freedom of
the 4f ions are collectively involved at low temperature
to form ordered states. The most common kind of order
is the magnetic one that exists in a number of varieties.
The orbital order is a less common situation, where only
the orbital degeneracy of the 4f ion is involved, with-
out the stabilization of magnetic moments. It requires
the orbital degeneracy to survive the crystal-field effect,
which means the 4f ions sites are of high symmetry. As
the highest symmetry is that of the octaedra, cubic sys-
tems are the most favorable scene for the development
of orbital related effects [1]. There, the lifting of the
degeneracy is equivalent to the emergence of 4f elec-
tric quadrupole moments and the associated order are
referred to as ”quadrupolar”. By analogy with the fer-
romagnetism, the order that doesn’t change the crystal
periodicity is called ferroquadrupolar. One can also con-
sider a state where the 4f quadrupoles are changing from
site to site, thus defining an ”antiferroquadrupolar” or-
der (AFQ), analog to the antiferromagnetism. For more
than two decades, the most cited example of such an an-
tiferroquadrupolar order has been CeB6 phase II.
This system crystallizes within the CaB6-type structure
and displays complex magnetic phase diagrams [2, 3].
CeB6 orders antiferromagnetically at TN = 2.4 K (phase
III) and its most intriguing feature is the occurrence of a
non-magnetic state (phase II) below TQ= 3.2 K, before
entering the paramagnetic state (phase I). In phase II, a
magnetic field induced 〈1

2

1

2

1

2
〉 antiferromagnetism is de-

tected via neutron diffraction [4]. Latter X-ray scattering
experiments [5–8] have confirmed a non-magnetic 〈1

2

1

2

1

2
〉

wave-vector, even in zero field.
Inelastic neutron scattering [9] results are consistent with
a crystal-field splitting of the Ce3+, J = 5/2, multiplet
resulting in a Γ+

8 quadruplet ground state well separated
(530 K) from the Γ+

7 doublet. As this ground state has
an orbital degeneracy, Effantin et al. [4] interpreted the
puzzling properties of phase II as resulting from an AFQ
state.
Up to now, no solidly based model has been given for the

microscopic organization of this phase. Some authors
suggest a Γ+

3 AFQ ordering [10] while, for others, it is of
the Γ+

5 type. The recurrent scheme is a Γ+
5 AFQ state

[11], where a single quadrupolar component, Pxy, is prop-
agated by the [ 1

2

1

2

1

2
] wave-vector. This model doesn’t

preserve the cubic symmetry and, due to the coupling
of the quadrupoles with the lattice, a Γ+

3 ferroquadrupo-
lar component and a macroscopic distortion should si-
multaneously develop. Facing such inconsistencies and a
confusing mass of experimental data, we thought that a
crucial clarification would come from an accurate inves-
tigation of phase II symmetry.
This can be achieved from macroscopic experiments on
a single crystal. For a rare-earth based system, mag-
netic measurements are first to consider. In cubic crys-
tals, an accurate determination of the first-order mag-
netic susceptibility can reveal a symmetry lowering :
any deviation from the cubic symmetry will result in
an anisotropic susceptibility. Due to the magnetoelastic
coupling, the lattice necessarily reflects a symmetry low-
ering. The detection of the associated strain can be very
sensitive, capacitance dilatometer being able to detect
relative changes as small as 10−8. The difficulty, when
investigating a sample undergoing a symmetry lowering,
is that it divides into domains, mixing their properties.
This can be solved using a magnetic field of appropri-
ate direction, in order to coerce the sample to a single
domain state. If the anisotropy of the susceptibility has
been previously determined, the optimal field direction is
easily defined. All the reported experiments where made
using single crystals in the shape of rectangular platelets
(6x4x1 mm3) previously used for neutron scattering ex-
periments [12].
The investigation of the magnetic susceptibility is based
on magnetization measurements along the three main cu-
bic directions ([001], [110] and [111]) in fields up to 8 T.
The susceptibilities, χ001, χ110 and χ111, are extracted
using the Arrott method [13] applied to the descend-
ing field data : only the field selected domains should
contribute to the magnetization. Then, considering the
tetragonal and trigonal symmetry lowerings [14] cases,
the measured susceptibility can be related to the normal
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FIG. 1. Magnetic susceptibilities of CeB6 along the three high
symmetry directions of the cube, as deduced from Arrott’s
plots in descending field.

susceptibilities [14], χ‖ and χ⊥, respectively parallel and
perpendicular to the preserved, fourfold or threefold, axis
of the system. One can thus identify the symmetry both
via hierarchical and quantitative relations between χ001,
χ110 and χ111.
Fig. 1 shows the thermal dependence of these three sus-
ceptibilities at temperatures below 4.5 K. The transition
between phases I and II is difficult to discern, both phases
displaying a paramagnetic decrease of the susceptibility
with the temperature. Within the precision of the mea-
surements, typically 2%, no difference between the three
susceptibilities and, therefore, no deviation from the cu-
bic symmetry can be detected. In the antiferromagnetic
state, the three susceptibilities are well separated, with
a dominant χ001, an intermediate χ110 and a minimal
χ111. This sequence is expected in case of a tetrago-
nal symmetry lowering, with a maximum susceptibility
along the fourfold axis (χ‖ > χ⊥). In quantitative terms,

this translates into χ110 = 1

4
χ001 +

3

4
χ111, which is pre-

cisely what is observed on Fig. 1. This is consistent with
the multiaxial antiferromagnetic models [4] with mag-
netic moments perpendicular to the fourfold axis.
Beyond the susceptibility analysis, one can further track
a symmetry lowering using a high sensitivity dilatome-
ter. For this purpose, we used the magnetostriction
setup of the ”Institut Néel”, which is based on a ca-
pacitance cell that can be rotated in a 0-6 T horizontal
magnetic field, in the 2-300 K temperature range. The
sensitivity, in terms of relative change in length, is bet-
ter than 10−7. The alignment of the sample inside the
setup is defined by the the choice of the crystal horizontal
plane, which contains [mnp], the probed crystal’s direc-
tion, and [ijk] the direction of the applied field. For a
reference length l0, a current length l, the relative change
in length, and its geometrical conditions, can be noted as
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FIG. 2. Relative changes in length along [001] (a and b) and
[111] (c) while rotating a constant field in the (110) plane in
the ranges of phase III (a), phase II (b and c) and phase I (b
and c). The zero angle α correspond to a field aligned with
the measured crystal direction. The vertical lines indicate
high symmetry directions in the (110) plane.

: mnpλijk = ∆l/l0 = (l − l0)/l0.
In the following, the default reference length l0 is taken
at T = 5 K and in zero field. All the striction phenoma
are analyzed in terms of cubic normal strain modes [15].
For the most common cases of a tetragonal or trigonal
symmetry lowering, the strain mnpλ of a single domain
depends on three quantities: εα, the volume strain, εγ ,
the tetragonal strain, and the trigonal one εε.
To detect a symmetry lowering, one can take advantage
of the adjustable field direction : rotating the sample in
a constant field will successively select different domains,
inducing changes in the probed sample length. Fig. 2
shows such measurements while rotating the field in the
(110) plane, where all high symmetry axes of the cube are
represented. In Fig. 2 (a) and 2 (b), the probed sample
direction is [001], which is ideal for detecting a tetragonal
mode. Fig. 2 (a) shows what happens in the antiferro-
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magnetic phase, under a 0.5 T applied field : spectacular,
square like, changes in the sample length are observed.
This is expected in case of a tetragonal symmetry lower-
ing with maximum susceptibility along the fourfold axis
: one goes from a single domain with [001] fourfold axis,
for low α values, to a α = ±90◦ state where the two other
domains are selected, with fourfold axes [010] and [100].
The amplitude of the jump is directly related to the εγ

spontaneous strain of the antiferromagnetic state. Fig.
2 (b) gives the angular dependence under the maximum
field (6 T) in phases II (T = 3.2 K) and phase I (T =
6 K). These curves show no anomaly but a continuous,
sine-type, change in the [001] length, which is typical of
the paramagnetic state. The twisted phase II curve is an
effect of higher-order susceptibilities in conjunction with
a slight sample’s misorientation. Fig. 2 (c) shows the
angular variations, in phases II and I, of the [111] length,
which is adapted to detect a trigonal mode. Here again,
the continuous, undulating curves give no evidence of do-
mains. Higher-order effects are clearly present in phase
II, with a resulting double bump around α = 90◦.
The temperature dependence of the strain modes has
been derived from a sequence of mnpλijk measurements
under a constant (0.5 T) field (Fig. 3). It is only within
the antiferromagnetic range that a spontaneous, tetrago-
nal, strain is detected. The corresponding small accident
on the trigonal curve is the result of an imperfect sam-
ple alignment : a small fraction of the tetragonal strain
is detected. In absence of a trigonal mode, the volume
effect εα (inset of Fig. 3) can be safely derived from the
length of a threefold axis : both transitions are visible,
with a more pronounced thermal expansion in phase II,
while phase III shows a substantial negative effect. This
agrees with previous measurements by Sera et al. [16].
The magnetic and magnetostriction data are consistent
with a cubic symmetry in phases II and I. In this cu-
bic context, the magnetostriction setup can be used to
probe the magnetoelastic susceptibilities of the system
with respect to a field enforced tetragonal (field along
a fourfold axis) or trigonal (field along a threefold axis)
symmetry lowering. This is the parastriction analysis
of the paramagnetic state magnetoelastic properties [17].
At the lowest order, the strains vary quadratically with
the applied field : εµ = χµH2, where χµ is a magne-
toelastic susceptibility and µ states for γ or ε. In the
harmonic treatment of 4f magnetoelasticity, χµ is pro-
portional to the quadrupolar field-susceptibility χµ

Q of the
same symmetry. χµ(T ) can be deduced by linearizing the
constant temperature strain as function of the squared
applied field. Fig. 4 shows examples of such curves in
phase II (T = 2.7 K) and at the field crossing from phase
I into phase II (T = 5 K). It appears that the latter has
a surprisingly large volume dependence on the applied
field (Fig. 4, upper part). On the εγ parastriction curve,
the transition from phase I to II is almost unnoticeable,
whereas for the ε mode, the negative slope is amplified in
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FIG. 3. Temperature variation of the γ and ε strains, as
obtained from measurements under a 0.5 T magnetic field.
The inset shows the volume α strain deduced from the length
of [111], in zero field.

phase II at T = 5 K (Fig. 4, lower part). No hysteresis
is observed in these curves, which confirms the absence
of domain effects. In both phases, the absolute value of
the susceptibility decreases with the temperature. This
is expected if the degrees of freedom responsible for the
field induced strains are not ordered. Quadrupoles are
considered as the dominant actors in the parastriction of
cubic rare-earth compounds, which results in a quadratic
Curie-like behaviour for χµ(T ). To test this behaviour,
1/

√
χµ is represented as a function of T in Fig. 5. In both

phases, the curves seem indeed to vary linearly with the
temperature. In phase II, the data for the γ and ε modes
are almost superimposed. As these measurements mix
elastic and magnetic properties, such an identity for dif-
ferent symmetry modes is fortuitous.
No symmetry lowering is detected in phase II, which

discards non cubic models as the one of Ref. [11].
While a true AFQ state needs to be cubic, the paras-
triction results give evidence against the ordering of the
quadrupoles. This is consistent with the elastic constants
measurements [10], probes of the quadrupoles stress-
susceptibilities, which, at least for the trigonal mode, be-
have as if quadrupoles where not ordered. Nevertheless,
we can deepen the analysis by specifying the character-
istics of a cubic AFQ order. As the transition at TQ

is second order, the ordered state should involve a single
quadrupolar representation, Γ+

3 (γ) or Γ+
5 (ε), for a single

wave-vector star. To obtain a high symmetry structure,
stable down to 0 K (above 2.5 Tesla), all the rare-earth
ions should be equivalent by symmetry.
Considering the Γ+

3 representation, the emergence of a
4f quadrupole is equivalent to a local tetragonal symme-
try lowering : in a polar representation, the 4f electronic
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distribution is stretched (or squeezed) along one of the
fourfold axes of the cube. There are then three sym-
metry equivalent Γ+

3 modes for the 4f ion. As for the
Γ+

5 representation, the quadrupoles develop with a local
trigonal symmetry lowering, which means that there are
four possible 4f modes, one for each threefold axis. The

cubic symmetry is preserved if all the modes, three for
Γ+

3 or four for Γ+

5 , are equally represented in the cubic
AFQ cell. The smallest cell one can consider is built from
the 8 sites at the vertexes of a cube, which is enough to
describe structures with 〈1

2
00〉, 〈1

2

1

2
0〉 and 〈1

2

1

2

1

2
〉 wave-

vectors. On this cell, it is clearly impossible to equally
represent the three Γ+

3 modes : there exists no cubic Γ+

3

AFQ structure for these wave-vectors. This is not the
case for Γ+

5 and cubic AFQ states are possible for the
〈1
2
00〉 and 〈1

2

1

2
0〉 wave-vectors. However, this is strictly

impossible for 〈1
2

1

2

1

2
〉, the only wave-vector that is de-

tected in phase II. This star reduces to a single branch
which defines only two 4f modes, with opposite sign. An
object that alternates in sign from site to site, while pre-
serving the cubic symmetry, necessarily belongs to a uni-
dimensional representation of the cube. Among the even
Oh group representations, only Γ+

2 allows a change in
sign. To find an electric multipole transforming accord-
ing to Γ+

2 , one has to go up to 64 poles, which means
a sixth-order operator in J components. For J = 5/2,
these hexacontatetrapoles cancel : no 4f electric multi-
pole can describe the cubic 〈1

2

1

2

1

2
〉 ordering of CeB6.

To solve this puzzle, one has to consider alternative ob-
jects, transforming according to one of the unidimen-
sional representations of Oh. In a cage system, as sug-
gested by Kasuya [18], one may consider the dynamic
decentering of the 4f ion, already present above TQ as a
Jahn-Teller effect. Below TQ there might be a symmetry
breaking in the spatial distribution of the Ce ion, that
would alternate from site to site. In contrast with the 4f
electronic configuration, the related electric multipoles
can be of odd parity : in addition to Γ+

2 , they may also
transform according to the Γ−

1 or Γ−
2 representations.

The authors are indebted to Dr L.P. Regnault, who
provided us with the sample and critically read the
manuscript.
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