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Abstract
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1 Introduction and Preliminaries

Stable stochastic processes with gradient perturbations on Rd, d ≥ 2, i.e.
with the in�nitesimal generator

L = ∆α/2 + b · ∇, (1)

where α ∈ (0, 2), constitute an important class of jump processes, intensely
studied in recent years. Their most celebrated case are the Ornstein-Uhlenbeck
stable processes with b(x) = λx, λ ∈ R. They have important physical and
�nancial applications and form a part of Lévy-driven Ornstein-Uhlenbeck
processes, cf. [10, 33]. The motivations of this paper were to:

(i) establish the theory of the Martin representation for singular L-harmonic
non-negative functions

(ii) study boundary limit properties of L-harmonic functions and to obtain
a Relative Fatou Theorem for them

(iii) develop the theory of Hardy spaces of L-harmonic functions.

All these topics are fundamental for the knowledge of L-harmonic func-
tions. The topics (i), (ii) and (iii) are well developed for fractional Laplacians.
The Martin representation was established in this case in [3], [32] and [8].
The Relative Fatou Theorem was proved for α-harmonic functions on Lips-
chitz domains in [30], see also the survey [4, Chapter 3] and [22]. Also some
important variants of stable processes such as relativistic and truncated sta-
ble processes were studied from the point of view of topics (i) and (ii), see
[4, Section 3.4], [23] and [25]. Nevertheless, the methods of these extensions
do not apply to the operator L of the form (1). The theory of Hardy spaces
for α-harmonic functions was developed in [31] and recently in [5, 29]. It was
never discussed for any versions of stable processes. Let us notice that all
our results are also true for Ornstein-Uhlenbeck stable processes.

On the other hand, in the case of di�usion operators, Hardy spaces and
Fatou-type theorems for harmonic functions were widely studied in the lit-
erature, see [15, 34, 35, 2, 37, 14, 21, 26, 1] for the results on the classical
Laplacian ∆ =

∑d
i=1 ∂

2/∂x2
i , and [36, 28] for the Laplacian with various

perturbations.
Let us mention that the methods of this article give also interesting new

results for operators di�erent from L. In the case of Laplacians with gradient
perturbations, i.e. α = 2, we get new perturbation formulas for the Green
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function and the Martin and Poisson kernels (Section 3.4). For relativistic
α-stable processes we have a representation theorem for Hardy spaces, see
Remark 2.

The potential theory of stable stochastic processes with gradient per-
turbations was started in the Ornstein�Uhlenbeck case by T. Jakubowski
[19, 20]. Next, in the general context of gradient perturbations and α > 1,
with a function b from the Kato class Kα−1

d it was developed by K. Bogdan
and T. Jakubowski [6, 7]. This work is a natural continuation of the research
presented in [7].

In particular, we send the reader to [7] for the de�nitions of the frac-
tional Laplacian, C1,1 domains, Green functions and Poisson kernels, with
respect to both operators ∆α/2 and L. The de�nitions of α-harmonic, regu-
lar α-harmonic and singular α-harmonic functions can be found e.g. in the
monography [4, page 61] and are analogous for L-harmonic functions.

Throughout this paper, like in [7], we suppose 1 < α < 2, unless stated
otherwise. We consider an open set D of class C1,1 and a vector �eld b ∈ Kα−1

d

on Rd i.e.

lim
ε→0

sup
x∈Rd

∫
|x−z|<ε

|b(z)||x− z|α−1−ddz = 0.

The potential theory objects related to the operator L de�ned in (1) will
be denoted with a tilde ,̃ while those related to the operator ∆α/2 will be
denoted without it. In particular G̃D is the Green function of L on D and
GD is the Green function of ∆α/2 on D. We �x throughout this paper a point
x0 ∈ D and de�ne the Martin kernel of D by

MD(x,Q) = lim
y→Q

GD(x, y)

GD(x0, y)
, x ∈ D,Q ∈ ∂D.

The L-Martin kernel is de�ned by

M̃D(x,Q) = lim
y→Q

G̃D(x, y)

G̃D(x0, y)
, x ∈ D,Q ∈ ∂D

and we show in Section 3 its existence.
The starting point of the research contained in this paper are the following

mutual estimates of Green functions and Poisson kernels for L and ∆α/2 (see
[7, Theorem 1 and (72)]).
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Comparability Theorem. There exists a constant C = C(α, b,D) such
that for all x, y ∈ D and z ∈ (D)c,

C−1GD(x, y) ≤ G̃D(x, y) ≤ CGD(x, y), (2)

C−1PD(x, z) ≤ P̃D(x, z) ≤ CPD(x, z). (3)

One of the main elements of the proof of (2) is the following perturbation
formula, that will be also very useful in our present work.

Perturbation formula for Green functions. [7, Lemma 12] Let x, y ∈
Rd, x 6= y. We have

G̃D(x, y) = GD(x, y) +

∫
D

G̃D(x, z)b(z) · ∇zGD(z, y)dz. (4)

We start our paper by proving in Section 2.1 a generalization of the Com-
parability Theorem: according to Lemma 1, the constant C in the estimates
(2) may be chosen the same for sets Dr su�ciently close to D. The same
phenomenon holds also for the Poisson kernels P̃D(x, y) and PD(x, y). In
Section 2 we also prove the α-harmonicity of the �rst partial derivatives of
the Green function GD(·, z) and a uniform integrability result, that will be
needed in proving the main results of the paper, contained in Sections 3 and
4.

In Section 3 we develop the Martin theory of L-harmonic functions. We
prove the existence of the L-Martin kernel which is L-harmonic (Theorems
8 and 12). Next we obtain the Martin representation of singular L-harmonic
non-negative functions on D, see Theorem 13.

The formula (4) allows us to prove very useful perturbation formulas for
Martin kernels (17), Poisson kernels (20) and singular α-harmonic functions
(31). In Section 3.4, (4) and (17) are proved in the di�usion case α = 2. Also
a perturbation formula (36) for the L-Poisson kernel is derived.

Section 4 is devoted to important �ne boundary properties of singular L-
harmonic-functions. First we prove the Relative Fatou Theorem (Theorem
23). We provide a direct proof of it based on the perturbation formula for
singular α-harmonic functions (31). An alternative proof based on compara-
bility of L-harmonic and α-harmonic functions(Corollary 15) is also given.

Next we establish the representation theorem of Hardy spaces of L-
harmonic functions. The results on the L-Hardy spaces constitute a stable
counterpart for the results on the di�usions with a gradient perturbation
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proved by T. Luks in [28]. By the same methods one can prove the represen-
tation theorem of Hardy spaces of relativistic α-harmonic functions (Remark
2).

2 Preparatory results

In this section we prove some results, interesting independently, that will
be useful in proving the main results of the paper, coming in the next sections.

2.1 Uniform comparability of Green functions and Pois-

son kernels

In what follows, Rd denotes the Euclidean space of dimension d ≥ 2, dy
stands for the Lebesgue measure on Rd. Without further mention we will
only consider Borelian sets, measures and functions in Rd. By x ·y we denote
the Euclidean scalar product of x, y ∈ Rd. Writing f ≈ g we mean that there
is a constant C > 0 such that C−1g ≤ f ≤ Cg. As usual, a ∧ b = min(a, b)
and a ∨ b = max(a, b). We let B(x, r) = {y ∈ Rd : |x− y| < r}. For U ⊂ Rd

we denote
δU(x) = dist(x, U c) ,

the distance to the complement of U .

In what follows D is a bounded C1,1 domain.

For r ≥ 0 de�ne
Dr = {x ∈ D : δD(x) > r} .

When r is su�ciently small, then Dr is also a C1,1 domain, see [31, Lemma
5].

In the sequel we will often use the estimates of the Green function ([27],
[11], see also [18]) of a C1,1 domain

GD(y, z) ≈ |y − z|α−d
(
δD(y)α/2δD(z)α/2

|y − z|α
∧ 1

)
, (5)

and of the Martin kernel ([12])

MD(x,Q) ≈ δD(x)α/2

|x−Q|d
. (6)
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Moreover, in the stable case, the estimates (5) are uniform when we con-
sider the sets Dr su�ciently close to D, i.e. there exist constants c, r0 > 0
depending only on D and α such that for all r ∈ [0, r0] and x, y ∈ Dr we
have

c−1|y − z|α−d
(
δDr(y)α/2δDr(z)α/2

|y − z|α
∧ 1

)
≤ GDr(y, z) (7)

≤ c|y − z|α−d
(
δDr(y)α/2δDr(z)α/2

|y − z|α
∧ 1

)
.

We will now show analogous uniformity of constants for the processes with
a gradient perturbation.

Lemma 1. (i) There exist constants c, r0 > 0 depending only on D and α
such that for all r ∈ [0, r0] and x, y ∈ Dr we have

c−1GDr(x, y) ≤ G̃Dr(x, y) ≤ cGDr(x, y).

(ii)There exist constants C, r0 > 0 depending only on D and α such that
for all r ∈ [0, r0], x ∈ Dr and y ∈ Dc

r we have

C−1PDr(x, y) ≤ P̃Dr(x, y) ≤ CPDr(x, y).

Proof. In order to show (i) we follow the proof of the Theorem 1 in [7]. We
analyse below its crucial points.

1. Comparison of Green functions G̃S(x, y) and GS(x, y) for "small"
sets S, [7, Lemma 13], based on estimates from [7, Lemma 11]. Thanks to
property (7), we see that the comparison of Green functions G̃Sr(x, y) and
GSr(x, y) for small sets S holds with a common constant c, when r ∈ [0, r0].

2. Harnack inequalities for L and the Boundary Harnack Principle, [7,
Lemmas 15, 16]. Thanks to 1., we get them uniformly with respect to r ∈
[0, r0].

3. Now the proof of (i) for any C1,1 domain D is the same as in Section
5 of [7].

The part (ii) is implied by (i), applying the Ikeda-Watanabe formula
for the Poisson kernel P̃D, see [7, Lemma 6 and (39)]. Recall that the Lévy
system for the process X̃t is given by the Lévy measure of the α-stable process
Xt.
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2.2 Derivatives of the Poisson kernel and of the Green

function for ∆α/2

In this section we prove useful gradient estimates for the Poisson kernel
of α-stable processes, 0 < α < 2. Next, for 1 < α < 2, we study the
α-harmonicity of the Green function.

Consider a ball B = B(ξ0, r) ⊂ B ⊂ D and let PB be the Poisson kernel
of B

PB(x, y) = Cd
α

[
r2 − |x− ξ0|2

|y − ξ0|2 − r2

]α/2
|x− y|−d, x ∈ B, y ∈ B̄c (8)

and equal to 0 elsewhere. By [9, Lemma 3.1],

|∇xPB(x, y)| ≤ (d+ α)
PB(x, y)

r − |x− ξ0|
, x ∈ B, y ∈ (B)c. (9)

We will now show analogous estimate for arbitrary open sets.

Lemma 2. Suppose 0 < α < 2. Let U be an arbitrary open set in Rd and
let PU(x, y) be the Poisson kernel of ∆α/2 for U . Then we have

|∇xPU(x, y)| ≤ (α + d)
PU(x, y)

δU(x)
, x ∈ U , y ∈ (U)c. (10)

Proof. For x ∈ U denote Bx = B(x, δU(x)). In view of [8, (29)] we have

PU(x, y) = PBx(x, y) +

∫
Bcx

PBx(x, z)PU(z, y)dz.

By (9) and bounded convergence we have

|∇xPU(x, y)| ≤ |∇xPBx(x, y)|+ |∇x

∫
Bcx

PBx(x, z)PU(z, y)dz|

≤ (d+ α)
PBx(x, y)

δU(x)
+

∫
Bcx

|∇xPBx(x, z)|PU(z, y)dz ≤ (d+ α)
PU(x, y)

δU(x)
.
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From (9) and the dominated convergence theorem it follows, that if f is
α-harmonic in D then

∂

∂xi
f(x) =

∫
Bc

∂

∂xi
PB(x, y)f(y) dy, i = 1, . . . , d. (11)

The esitmate (9) and (11) gives ([9, Lemma 3.2])

Lemma 3. Let U be an arbitrary open set in Rd and let α ∈ (0, 2). For
every nonnegative function u on Rd which is α-harmonic in U , we have

|∇u(x)| ≤ d
u(x)

δU(x)
, x ∈ U . (12)

Since GU(·, y) is α-harmonic in U \ {y}, for every y ∈ U we obtain

|∇xGU(x, y)| ≤ d
GU(x, y)

δU(x) ∧ |x− y|
, x, y ∈ U, x 6= y . (13)

In the next proposition we will prove that the derivatives of GD are also
α-harmonic.

Proposition 4. Suppose that α ∈ (1, 2).
(a) Fix z ∈ D. Then the partial derivative ∂

∂xj
GD(x, z) is singular α-

harmonic in x on D \ {z}.
(b) Fix x ∈ D. Then the partial derivative ∂

∂xj
GD(x, z) is regular α-

harmonic in z on D \B(x, r) for every r > 0.

Proof. (a) Let x ∈ D \ {z}. Consider a ball B = B(ξ0, r) ⊂ B̄ ⊂ D \ {z}
and let PB be the Poisson kernel of B (see (8). The function x → GD(x, z)
is α-harmonic on D \ {z} containing B̄. There exists s0 > 0 such that for
s ∈ R satisfying 0 < |s| < s0

GD(x+ sej, z) =

∫
B(ξ0+sej ,r)c

PB(ξ0+sej ,r)(x+ sej, y)GD(y, z)dy

=

∫
B(ξ0+sej ,r)c

PB(ξ0,r)(x, y − sej)GD(y, z)dy

=

∫
B(ξ0,r)c\(z+Rej)

PB(ξ0,r)(x, y)GD(y + sej, z)dy
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and consequently,

GD(x+ sej, z)−GD(x, z)

s
=

∫
Bc\(z+Rej)

PB(x, y)
GD(y + sej, z)−GD(y, z)

s
dy.

(14)
Now we take limit when s → 0 in the formula (14). In order to justify the
passage with the limit under the integral on the right-hand side of (14) we
use (5) and (13).

Let 0 < s < s0 be �xed. Choose δ > 0 such that B(z, δ) ⊂ D2s0 and
B(z, 2δ) ∩ B(ξ0, r) = ∅. For y ∈ D ∩ (B(ξ0, r)

c \ (z + Rej)) we consider the
following cases.

1. y ∈ D2s and |y − z| ≥ δ. By the gradient estimates and (5) we have∣∣∣∣GD(y + sej, z)−GD(y, z)

s

∣∣∣∣ ≤ 1

s

∫ s

0

|∇GD(y + tej, z)|dt

≤ C

s

∫ s

0

δD(y + tej)
α/2−1dt ≤ C(δD(y)− s)α/2−1 ≤ C(δD(y)/2)α/2−1.

2. y ∈ D \D2s, so |y − z| ≥ δ. Then δD(y) ≤ 2s and we get

GD(y + sej, z)

s
≤ C

δD(y + sej)
α/2

s
≤ C

(δD(y) + s)α/2

s

≤ C3α/2sα/2−1 ≤ CδD(y)α/2−1,

and similarly GD(y,z)
s
≤ CδD(y)α/2−1.

3. y ∈ B(z, δ) and |y − z| > 2s. We have∣∣∣∣GD(y + sej, z)−GD(y, z)

s

∣∣∣∣ ≤ 1

s

∫ s

0

|∇GD(y + tej, z)|dt

≤ C

s

∫ s

0

|y + tej − z|α−1−ddt ≤ C(|y − z| − s)α−1−d ≤ C|y − z|α−1−d.

4. y ∈ B(z, δ) and |y − z| ≤ 2s. Then

GD(y + sej, z)

s
≤ C|y + sej − z|α−ds−1 ≤ C|y + sej − z|α−d|y − z|−1

≤ C|y + sej − z|α−1−d + C|y − z|α−1−d,

and GD(y,z)
s
≤ C|y − z|α−1−d.

9



We remark that in all cases the constants do not depend on s ∈ (0, s0) and
y ∈ D ∩ (B(ξ0, r)

c \ (z + Rej)). The argument is identical for s ∈ (−s0, 0).
We �nally obtain∣∣∣∣GD(y + sej, z)−GD(y, z)

s

∣∣∣∣ ≤ C(δD(y)α/2−1+|y+sej−z|α−1−d+|y−z|α−1−d),

and the last term is uniformly in s integrable against PB(ξ0,r)(x, y)dy when
1 < α < 2. It now follows from (14) that

∂

∂xj
GD(x, z) =

∫
Bc
PB(x, y)

∂

∂yj
GD(y, z)dy,

so the function x→ ∂
∂xj
GD(x, z), x ∈ D, is singular α-harmonic on D \ {z}.

(b) It su�ces to consider the case B(x, r) ⊂ D. We use the fact that the
function GD(x, z) is regular α-harmonic in z on V = D \B(x, r), see e.g. [3,
p. 231]. Thus, for z ∈ V = D \B(x, r)

GD(x, z) =

∫
V c
PV (z, w)GD(x,w)dw =

∫
B(x,r)

PV (z, w)GD(x,w)dw.

It follows that

GD(x+ sej, z)−GD(x, z)

s
=

=

∫
B(x,r)\(x+Rej)

PV (z, w)
GD(x+ sej, w)−GD(x,w)

s
dw.(15)

Let 0 < |s| < r/2 and w ∈ B(x, r) \ (x + Rej). We estimate the quotient
GD(x+sej ,w)−GD(x,w)

s
, similarly to the proof of the part (a)3. and 4., separately

for |w − x| > 2|s| and |w − x| ≤ 2|s|. We obtain∣∣∣∣GD(x+ sej, w)−GD(x,w)

s

∣∣∣∣ ≤ C(|x+ sej − w|α−1−d + |x− w|α−1−d).

The last term is uniformly in s integrable against PV (z, w)dw on B(x, r). By
(15) we conclude that

∂

∂xj
GD(x, z) =

∫
V c
PV (z, w)

∂

∂xj
GD(x,w)dw.
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Remark 1. It would be interesting to discuss the question of α-harmonicity
of ∂f

∂xj
for any non-negative function f singular α-harmonic on D. Already

the example f(x) = MB(x,Q), Q ∈ ∂B and B is a ball, shows that the
α-harmonicity of ∂f

∂xj
must be rede�ned when ∂f

∂xj
is a distribution.

2.3 A uniform integrability result

One of the important results of [7] is

Lemma 5. GD(y, w)/[δ(w) ∧ |y − w|] is uniformly in y integrable against
|b(w)|dw.

In the next lemma we will show a similar property for the family of functions
GD2−n

(x,w)MD(w,Q)δD2−n
(w)−1.

Lemma 6. Let x ∈ D be �xed. There exists N = N(D, x) ∈ N such that the
functions

GD2−n
(x,w)MD(w,Q)δD2−n

(w)−1

are uniformly in Q ∈ ∂D and n > N integrable against |b(w)|dw.

Proof. In view of the properties of D and of the estimates of GD2−n
(x,w)

and MD(w,Q), we can choose N = N(D, x) ∈ N su�ciently large, such that
for all n > N we have

GD2−n
(x,w)MD(w,Q)

δD2−n
(w)

≤
c1D2−n

(w)δD(w)α/2

δD2−n
(w)1−α/2|w −Q|d|w − x|d−α

≤ c̃1D2−n
(w)

(
|w − x|α−d +

δD(w)α/2

δD2−n
(w)1−α/2|w −Q|d

)
,

where c and c̃ depends only on D,α and x. The �rst term in the parentheses
is integrable against |b(w)|dw independently of Q, n, so we only need to
consider the second one. For w ∈ D2−N and Q ∈ ∂D we have

δD(w)α/2

δD2−n
(w)1−α/2|w −Q|d

≤ diam(D)α/22(N+1)(d+1−α/2),

and for w ∈ D2−n \D2−N , Q ∈ ∂D we get

δD(w)α/2

δD2−n
(w)1−α/2|w −Q|d

=
(δD2−n

(w) + 2−n)α/2

δD2−n
(w)1−α/2|w −Q|d

11



≤ 2α/2
(
|w −Q|α−d−1 +

2−nα/2

δD2−n
(w)1−α/2|w −Q|d

)
.

Since 1D2−n
(w)|w−Q|α−d−1 is uniformly in Q, n integrable against |b(w)|dw,

we can restrict our attention to the function

Hn(w,Q) =
2−nα/21D2−n

(w)

δD2−n
(w)1−α/2|w −Q|d

Let R > N , R ∈ N. For k,m, n ∈ N, k ≥ R, m ≥ N , n > N we de�ne

W n
k,m(Q,R) =

{
w ∈ D2−n :

1

2k+1
< δD2−n

(w) ≤ 1

2k
,

1

2m+1
< |w −Q| ≤ 1

2m

}
,

W n
k (Q,R) =

{
w ∈ D2−n :

1

2k+1
< δD2−n

(w) ≤ 1

2k
, |w −Q| > 1

2N

}
.

We note that W n
k,m(Q,R) = ∅ for k < m or m ≥ n. W n

k,m(Q,R) can be

covered by c1(2k−m)d−1 balls of radii 2−k, where c1 = c1(D). For r > 0
denote

Kr = sup
z∈Rd

∫
B(z,r)

|b(w)||z − w|α−d−1dw.

Then Kr → 0 as r ↓ 0. We have∫
Wn
k,m(Q,R)

Hn(w,Q)|b(w)|dw

≤ (2k+1)1−α/2(2m+1)d2−nα/2c1(2k−m)d−1 sup
z∈D

∫
B(z,2−k)

|b(w)|dw

≤ (2k+1)1−α/2(2m+1)d2−nα/2c1(2k−m)d−1(2k)α−d−1K2−k

≤ c2K2−R(2k)α/2−12m2−nα/2,

where c2 = c2(D, b, α). Furthermore, W n
k (Q,R) can be covered by c3(2k)d−1

balls of radii 2−k, where c3 = c3(D), and thus∫
Wn
k (Q,R)

Hn(w,Q)|b(w)|dw

≤ (2k+1)1−α/22Nd2−nα/2c3(2k)d−1 sup
z∈D

∫
B(z,2−k)

|b(w)|dw

12



≤ (2k+1)1−α/22Nd2−nα/2c3(2k)d−1(2k)α−d−1K2−k

≤ c4K2−R(2k)α/2−12−nα/2,

where c4 = c4(D, b, α). Let AnR =
{
w ∈ D2−n : δD2−n

(w) ≤ 2−R
}
. Then

AnR =
∞∑
k=R

W n
k (Q,R) +

n−1∑
m=N

∞∑
k=R∨m

W n
k,m(Q,R),

and we obtain ∫
AnR

Hn(w,Q)|b(w)|dw

≤ c4K2−R2−nα/2
∞∑
k=R

(2k)α/2−1 +
n−1∑
m=N

∞∑
k=R∨m

c2K2−R(2k)α/2−12m2−nα/2

≤ c5K2−R

(
2−nα/2(2R)α/2−1 +

n−1∑
m=N

(2n−m)−α/2

)
≤ c6K2−R ,

where c6 = c6(D, b, α). For w ∈ D2−n \ AnR we have

Hn(w,Q) < 2−nα/2(2R)1−α/2
(

1

2R
+

1

2n

)−d
< 4dR,

so Bn
R(Q) :=

{
w : Hn(w,Q) > 4dR

}
⊂ AnR for all Q ∈ ∂D and n > N .

Therefore

lim
R→∞

sup
Q∈∂D,n>N

∫
BnR(Q)

Hn(w,Q)|b(w)|dw ≤ lim
R→∞

c6K2−R = 0.

3 Martin kernel and Martin representation

3.1 Existence and Perturbation formula for the L-Martin

kernel

Lemma 7. For all x ∈ D and Q ∈ ∂D we have

lim
y→Q

∇xGD(x, y)

GD(x0, y)
= ∇xMD(x,Q).

13



Proof. Let z ∈ D,Q ∈ ∂D and choose r > 0 such that B(z, r) ⊂ D
and B(z, r) ∩ B(Q, r) = ∅. Since GD(·, y) is α-harmonic in B(z, r) for
y ∈ B(Q, r) ∩D, by (11), we have

∇xGD(x, y)

GD(x0, y)
= ∇x

∫
B(z,r)c

PB(z,r)(x,w)
GD(w, y)

GD(x0, y)
dw

=

∫
B(z,r)c

∇xPB(z,r)(x,w)
GD(w, y)

GD(x0, y)
dw, x ∈ B(z, r).

Furthermore, by (9) and (5),

|∇xPB(z,r)(x,w)|GD(w, y)

GD(x0, y)
≤ C

PB(z,r)(x,w)

r − |x− z|
GD(w, y)

δD(y)α/2
.

We now use the estimate [7, (25)] and by considering the cases δD(w) > |w−y|
and δD(w) ≤ |w− y| we get GD(w,y)

δD(y)α/2
≤ C|w− y|α/2−d. Hence the last term is

uniformly in y ∈ B(Q, r/2) ∩D integrable against dw, and thus

lim
y→Q

∫
B(z,r)c

∇xPB(z,r)(x,w)
GD(w, y)

GD(x0, y)
dw

=

∫
B(z,r)c

∇xPB(z,r)(x,w)MD(w,Q)dw = ∇xMD(x,Q).

The last equality follows from (11) and the α-harmonicity of the Martin ker-
nel.

Alternative proof. Lemma 7 can be also justi�ed by using the classical
theorem of the derivation of function sequences. As

lim
y→Q

GD(z, y)

GD(x0, y)
= MD(z,Q),

we need to show that the functions
∇GD(z, y)

GD(x0, y)
converge locally uniformly

w.r. to z when y → Q. We will show that they satisfy the Cauchy condition
locally uniformly in z, i.e. for any z0 ∈ D and ε > 0 there exist η > 0 and
δ > 0 such that

sup
z∈B(z0,η)

sup
y,y′∈B(Q,δ)∩D

∣∣∣∣∇GD(z, y)

GD(x0, y)
− ∇GD(z, y′)

GD(x0, y′)

∣∣∣∣ < ε. (16)

14



By Proposition 4(b), the function ∇zGD(z, y) is regular α-harmonic in y on
D \B(z, r0), for any z in a neighborhood of z0 contained in D \B(Q, ε0) and
a su�ciently small r0. Then (16) follows from a local version of BHP, see [3,
Lemma 3].

Theorem 8. Let x ∈ D and Q ∈ ∂D. Let MD(x,Q) be the Martin kernel of
D for ∆α/2. Denote

lD(x,Q) = MD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇zMD(z,Q)dz

The function lD(x,Q) is well de�ned for x ∈ D and Q ∈ ∂D and l(x,Q) > 0.
Moreover the following limit exists and equals:

lim
y→Q

G̃D(x, y)

G̃D(x0, y)
=

lD(x,Q)

lD(x0, Q)
.

Thus the Martin kernel of D for L = ∆α/2 + b · ∇ exists and equals

M̃D(x,Q) =
1

lD(x0, Q)

[
MD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇zMD(z,Q)dz

]
.

(17)

Proof. We divide the perturbation formula (4) for the Green function G̃D(x, y)
by GD(x0, y) and let y → Q.

The exchange of limy→Q and
∫
D
is justi�ed by Lemma 11 of [7], see the

formula (49) in its proof. Note that by the Boundary Harnack Principle,
GD(x0, y) ≈ GD(x, y) when y ∈ B(Q, ε0), a su�ciently small ball around Q.
We also use the estimates (5), (13) and (2).

The exchange of limy→Q and ∇z is justi�ed by Lemma 7. Finally

lim
y→Q

G̃D(x, y)

GD(x0, y)
= MD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇MD(z,Q) = lD(x,Q).

The strict positivity of the function lD(x,Q) follows from (2), which implies
that there exists a > 0 such that

lD(x,Q) ≥ aMD(x,Q) > 0. (18)

Now we consider the quotient

G̃D(x, y)

G̃D(x0, y)
=

G̃D(x, y)

GD(x0, y)

GD(x0, y)

G̃D(x0, y)
→ lD(x,Q)

lD(x0, Q)
,

when y → Q.

15



Directly from the de�nition of M̃D(x,Q) and (2) we obtain the following
corollary.

Corollary 9. There is a constant c such that for all x ∈ D and Q ∈ ∂D,

c−1MD(x,Q) ≤ M̃D(x,Q) ≤ cMD(x,Q). (19)

3.2 Properties of the L-Martin kernel

Lemma 10. Consider a C1,1 domain U ⊂ U ⊂ D.
(i) (Perturbation formula for the Poisson kernel) For all x ∈ U, z ∈
(U)c

P̃U(x, z) = PU(x, z) +

∫
U

G̃U(x,w)b(w) · ∇PU(w, z)dw. (20)

(ii) Let Q ∈ ∂D. We have the following expression for the L-Poisson integral
of the Martin kernel MD:

P̃UMD(x,Q) :=

∫
Uc
P̃U(x, y)MD(y,Q)dy

= MD(x,Q) +

∫
U

G̃U(x, z)b(z) · ∇MD(z,Q)dz, x ∈ U. (21)

Proof. In the following we apply the Ikeda-Watanabe formula for the Poisson
kernels P̃U and PU . By (4) and Fubini's theorem, for any x ∈ U and z ∈ U c,

P̃U(x, z) =

∫
U

Ad,α
G̃U(x, y)

|z − y|d+α
dy

=

∫
U

Ad,α
|z − y|d+α

[
GU(x, y) +

∫
U

G̃U(x,w)b(w) · ∇GU(w, y)dw

]
dy

= PU(x, z) +

∫
U

G̃U(x,w)b(w) · ∇PU(w, z)dw.

For the necessary exchanges of order of integration and derivation in the
last formula, we apply (13), (2), Lemma 5 and bounded convergence the-
orem. In order to prove (ii), we use (i) and insert the formula (20) in∫
Uc
P̃U(x, y)MD(y,Q)dy. We obtain∫

Uc
P̃U(x, y)MD(y,Q)dy = MD(x,Q) +

∫
U

G̃U(x, z)b(z) · ∇MD(z,Q)dz

In the last equality the use of Fubini theorem and the exchange of
∫
and ∇

are justi�ed by (10), (6), Lemma 5 and bounded convergence.
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Lemma 11. The Martin kernel M̃D(·, ·) is jointly continuous on D × ∂D.

Proof. By Theorem 8 and the continuity of MD(·, ·), it su�ces to show the
joint continuity on D × ∂D of the function

f(x,Q) =

∫
D

G̃D(x, z)b(z) · ∇MD(z,Q)dz.

Let z ∈ D. By (11) and the α-harmonicity of MD(·, Q), for r > 0 su�ciently
small, we have

∇MD(z,Q) = ∇
∫
B(z,r)c

PB(z,r)(z, w)MD(w,Q)dy

=

∫
B(z,r)c

∇PB(z,r)(z, w)MD(w,Q)dw.

From (9) and (6) it follows, that ∇PB(z,r)(z, w)MD(w,Q) is uniformly in Q
integrable against dw. This implies that ∇MD(z, ·) is continuous on ∂D for
every z ∈ D. Let now x ∈ D and choose r > 0 such that B(x, r) ⊂ D. By
(2), (5), (12) and (6), for all y ∈ B(x, r), z ∈ D and Q ∈ ∂D, we have

G̃D(y, z)|∇MD(z,Q)| ≤ CδD(z)α−1

|y − z|d−α|z −Q|d
≤ C

|y − z|d−α|z −Q|d+1−α . (22)

Hence, G̃D(y, z)|∇MD(z,Q)| is uniformly in y ∈ B(x, r) and Q ∈ ∂D inte-
grable against |b(z)|dz, which gives the continuity of f(·, ·).

Theorem 12. For every Q ∈ ∂D the Martin kernel M̃(x,Q) is a singular
L-harmonic function of x on D.

Proof. Fix Q ∈ ∂D. By (17),

lD(x0, Q)M̃D(x,Q) = MD(x,Q)+

∫
D

G̃D(x, z)b(z)·∇MD(z,Q)dz, x ∈ D.

Thus, we need to show that the following function is singular L-harmonic on
D:

l(x) = MD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇MD(z,Q)dz.

De�ne

ln(x) = MD(x,Q) +

∫
D1/n

G̃D1/n
(x, z)b(z) · ∇MD(z,Q)dz.

17



We have G̃D1/n
(x, z)↗ G̃D(x, z) as n→∞ and, by (22),∫

D

G̃D(x, z)|b(z)||∇MD(z,Q)|dz <∞.

By the Lebesgue dominated convergence theorem we get limn ln(x) = l(x).
By Lemma 10

ln(x) =

∫
Dc

1/n

P̃D1/n
(x, y)MD(y,Q)dy,

so the functions ln(x) are L-harmonic on D1/n. Fix open B ⊂⊂ D and let
x ∈ B. For n big enough we have B ⊂⊂ D1/n and hence,

l(x) = lim
n
ln(x) = lim

n

∫
Bc
P̃B(x, y)ln(y)dy.

Also, by Lemma 1 we get ln(y) ≤ cMD(y,Q), where c > 0 depends only on
D and α. Furthermore, P̃B(x, y) ≤ CPB(x, y), where C depends only on B
and α. Hence, ∫

Bc
P̃B(x, y)MD(y,Q)dy ≤ CMD(x,Q),

and the Lebesgue dominated convergence theorem gives the desired conclu-
sion.

Alternative proof of Theorem 12. First consider a C1,1 domain U = Dr. We
note that

G̃D(x,w) = G̃U(x,w) +

∫
Uc
P̃U(x, z)G̃D(z, w)dz. (23)
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By (21), (20), (23) and Fubini's theorem

P̃U lD(x,Q) =

∫
Uc
P̃U(x, z)lD(z,Q)dz

=

∫
Uc
P̃U(x, z)MD(z,Q)dz

+

∫
Uc
P̃U(x, z)

∫
D

G̃D(z, w)b(w) · ∇MD(w,Q)dwdz

= MD(x,Q) +

∫
Uc

∫
U

G̃U(x,w)b(w) · ∇PU(w, z)dwMD(z,Q)dz

+

∫
D

[∫
Uc
P̃U(x, z)G̃D(z, w)dz

]
b(w) · ∇MD(w,Q)dw

= MD(x,Q) +

∫
U

G̃U(x,w)b(w) · ∇MD(w,Q)dw

+

∫
D

[G̃D(x,w)− G̃U(x,w)]b(w) · ∇MD(w,Q)dw

= MD(x,Q) +

∫
D

G̃D(x,w)b(w) · ∇MD(w,Q)dw = lD(x,Q).

Thus the function lD(x,Q) is regular L-harmonic on each set U = Dr for
r su�ciently small. By the strong Markov property, it has the mean value
property on each open set U ⊂ Ū ⊂ D.

3.3 L-Martin representation

Theorem 13. For every nonnegative �nite measure ν on ∂D the function u
given by

u(x) =

∫
∂D

M̃D(x,Q)dν(Q), (24)

is singular L-harmonic on D. Conversely, if u is nonnegative singular L-
harmonic on D, then there exists a unique nonnegative �nite measure ν on
∂D verifying (24).

Proof. The L-harmonicity of the Martin integral (24) and the uniqueness of
the representation follow from Theorem 12, Lemma 11, (6), (19) and Fubini
theorem, in the same way as in the case of the Martin representation for
α-harmonic functions in [3, proof of Theorem 1]. We will now focus on the
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existence part. By L-harmonicity of u and by (20) we have for each n

u(x) =

∫
Dc

1/n

P̃D1/n
(x, y)u(y)dy =

=

∫
Dc

1/n

u(y)

[
PD1/n

(x, y) +

∫
D1/n

G̃D1/n
(x,w)b(w) · ∇PD1/n

(w, y)dw

]
dy.

Denote

u∗n(x) =

∫
Dc

1/n

PD1/n
(x, y)u(y)dy.

By (10), [7, (72)] and Lemma 5 we have∫
Dc

1/n

∫
D1/n

G̃D1/n
(x,w)|b(w)||∇PD1/n

(w, y)|u(y)dwdy

≤ C

∫
D1/n

G̃D1/n
(x,w)|b(w)| u(w)

δD1/n
(w)

dw <∞,

where C = C(α, b,D1/n) > 0. Hence, by Fubini theorem

u(x) = u∗n(x) +

∫
D1/n

G̃D1/n
(x,w)b(w) ·

∫
Dc

1/n

∇PD1/n
(w, y)u(y)dydw.

The function u∗n is α-harmonic on D1/n, so it is di�erentiable. In order to
justify the exchange of

∫
and ∇ in the last integral we �x w ∈ D1/n. Then

by (10) and [7, (72)], for ε > 0 su�ciently small and all w′ ∈ B(w, ε) and
y ∈ Dc

1/n we have

|∇w′PD1/n
(w′, y)u(y)| ≤ C

u(y)

δD1/n
(y)α/2

,

where C = C(α, b,D1/n, ε) > 0. Since the last term is integrable on Dc
1/n, by

the dominated convergence we obtain

u(x) = u∗n(x) +

∫
D

G̃D1/n
(x,w)b(w) · ∇u∗n(w)dw. (25)

We now study the sequence u∗n(x) in the same way as K. Bogdan [3] in
the proof of the existence part of the ∆α/2−Martin representation, with the

20



di�erence that in our case the function u under the integral de�ning u∗n is
not α-harmonic.

Like in [3, (2.27)] we have

u∗n(x) =

∫
Dc

1/n

PD1/n
(x, y)u(y)dy =

∫
Dc

1/n

∫
D1/n

u(y)Ad,α
GD1/n

(x, ξ)

|ξ − y|d+α
dξdy

Set µn(dξ) = Ad,αGD1/n
(x0, ξ)

∫
D1/n

u(y)
|ξ−y|d+αdydξ. Lemma 1 implies that

µn(Rd) =

∫
Dc

1/n

PD1/n
(x0, y)u(y)dy ≤ C

∫
Dc

1/n

P̃D1/n
(x0, y)u(y)dy = cu(x0) <∞

(recall that if u was α-harmonic, then µn(Rd) = u(x0)). We obtain

u∗n(x) =

∫
D1/n

GD1/n
(x, ξ)

GD1/n
(x0, ξ)

µn(dξ).

The only other property of the function u intervening in the proof of the
existence part of the ∆α/2−Martin representation in [3] is

lim
n

∫
Dc

1/n

u(y)dy = 0

and it also holds in our case: the L-harmonic function u is integrable on
Dc

1/n for every n. The sequence (µn) of simultaneously bounded �nite mea-

sures with support contained in D̄ is tight. We choose a subsequence µnk
converging to a �nite (perhaps zero) measure µ. This choice is common for
all x. Without loss of generality, we may suppose that (nk) is a subsequence
of (2−n). The limit measure µ satis�es

supp(µ) ⊂ ∂D.

Exactly as in the proof of the existence part of the ∆α/2−Martin represen-
tation in [3], we deduce that for all x ∈ D the limit

lim
k
u∗nk(x) = u∗(x)

exists and

u∗(x) =

∫
∂D

MD(x,Q)dµ(Q). (26)
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Furthermore, in view of (11), for x ∈ D1/n and r > 0 su�ciently small we
have

∇u∗n(x) = ∇
∫
B(x,r)c

PB(x,r)(x, y)u∗n(y)dy =

∫
B(x,r)c

∇PB(x,r)(x, y)u∗n(y)dy.

By Lemma 1 and (9) we have

|∇PB(x,r)(x, y)u∗n(y)| ≤ C
PB(x,r)(x, y)

r − |x|
u(y),

and by the dominated convergence we get ∇u∗nk(x)→ ∇u∗(x) as k →∞. We

also have G̃D1/n
(x,w) ↗ G̃D(x,w). In order to justify the passage with the

limit under the integral sign in (25) with nk instead of n we observe that the
functions G̃D1/nk

(x,w)b(w) ·∇u∗nk(w) are uniformly integrable on D. Clearly,

by Lemma 1 we have c−1u∗n(w) ≤ u(w) ≤ cu∗n(w), where c does not depend
on n, thus u∗n(w) ≤ cu∗(w). By the gradient estimates we get

G̃D1/n
(x,w)|b(w)||∇u∗n(w)| ≤ G̃D1/n

(x,w)|b(w)| u
∗(w)

δD1/n
(w)

,

and the uniform integrability follows from (26), Lemma 1 and Lemma 6.
Therefore

u(x) = u∗(x) +

∫
D

G̃D(x,w)b(w) · ∇u∗(w)dw, (27)

which, using (26), becomes

u(x) = (28)

=

∫
∂D

MD(x,Q)dµ(Q) +

∫
D

G̃D(x,w)b(w) · ∇
∫
∂D

MD(w,Q)dµ(Q)dw.

By the gradient estimates and dominated convergence we also get

∇
∫
∂D

MD(w,Q)dµ(Q) =

∫
∂D

∇MD(w,Q)dµ(Q), w ∈ D.

De�ne a measure ν on ∂D by ν(dQ) = lD(x0, Q)dµ(Q). As the function
Q→ lD(x0, Q) is continuous positive, the measure ν is �nite positive on ∂D.
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Using Fubini theorem in (28) and the perturbation formula for M̃D from
Theorem 8, we obtain

u(x) =

∫
∂D

M̃D(x,Q)dν(Q).

Corollary 14. (Perturbation formula for singular L-harmonic func-
tions) Let v(x) ≥ 0 be a singular L-harmonic function on D with the Martin
representation

v(x) =

∫
∂D

M̃D(x,Q)dν(Q), x ∈ D. (29)

De�ne a singular α-harmonic function v∗ on D by

v∗(x) =

∫
∂D

MD(x,Q)
dν(Q)

l(x0, Q)
, x ∈ D (30)

Then the following formula holds

v(x) = v∗(x) +

∫
D

G̃D(x,w)b(w) · ∇v∗(w)dw. (31)

Proof. Observe that by (18) there exists δ > 0 such that

lD(x0, Q) > δ > 0

for all Q ∈ ∂D. Thus the measure dµ(Q) = dν(Q)
lD(x0,Q)

is �nite and the function
v∗ is well de�ned. By the unicity of the Martin representation and the formula
(26), the function v∗ de�ned by (30) is the same as the function v∗ de�ned by
a limit procedure and associated to v in the proof of the Theorem 13. Hence
the formula (27) holds for v and v∗. It is equivalent to (31).

Corollary 15. Let v(x) ≥ 0 be a singular L-harmonic function on D. The
functions v and v∗ are comparable: there exists c > 0 such that for all x ∈ D

c−1v∗(x) ≤ v(x) ≤ cv∗(x). (32)

Proof. We use the Martin representations (29), (30), the Corollary 9 and the
fact that lD(x0, Q) > δ > 0 for all Q ∈ ∂D.
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3.4 Perturbation formulas in the di�usion case

In the present article we exploit the perturbation formulas in the case
of the singular operator L = ∆α/2 + b · ∇, 1 < α < 2. In this short chap-
ter we make a parenthesis and brie�y discuss the case α = 2 and d ≥ 3,
corresponding to the di�usion operator

L =
1

2
∆ + b · ∇

on Rd, d ≥ 3. The potential theory for such di�usion generators was studied
by Cranston and Zhao[13], and more recently by Ifra and Riahi[17], Kim and
Song[24] and Luks[28]. Our methods allow to enrich this theory by some new
perturbation formulas.

We suppose that b ∈ K1
d. Recall that Cranston and Zhao[13] worked under

this condition and a complementary second condition |b|2 ∈ K1
d−1; Kim and

Song[24] supressed the condition on |b|2 and considered signed measures in
the place of b.

Proposition 16. Let L = 1
2
∆ + b · ∇ with b ∈ K1

d. Then the following

perturbation formula for the L-Green function G̃D holds if x, y ∈ Rd, x 6= y.

G̃D(x, y) = GD(x, y) +

∫
D

G̃D(x, z)b(z) · ∇zGD(z, y)dz. (33)

Proof. Note that by [24, Theorem 6.2], we have the estimate

G̃D(x, y) ≤ C|x− y|2−d, x, y ∈ Rd. (34)

The proof of the Proposition is the same as the proof of [7, Lemma 12] in
the case 1 < α < 2, with (34) replacing [7, Lemma 7].

Let us mention that a perturbation formula for the L-Green function was
proposed in [17], but under a restrictive assumption of boundedness of the
Kato norm ‖b‖ of b. A simpler direct proof of the estimate (34) without
using the precise estimates [24, Theorem 6.2] should be available.

Next we obtain a perturbation formula for the Martin kernel of Laplacians
with a gradient perturbation.
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Proposition 17. Let L = 1
2
∆ + b · ∇ with b ∈ K1

d. Then the following

perturbation formula for the L-Martin kernel M̃D holds if x ∈ D and Q ∈ ∂D.

M̃D(x,Q) =
1

lD(x0, Q)

[
MD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇zMD(z,Q)dz

]
(35)

where lD(x0, Q) is a continuous function on ∂D, equal

lD(x0, Q) = MD(x0, Q) +

∫
D

G̃D(x0, z)b(z) · ∇zMD(z,Q)dz > 0.

Proof. We follow the proof of the Theorem 8 in the case α = 2.

The next perturbation formula concerns the L-Poisson kernel P̃D(x,Q).

Proposition 18. Let L = 1
2
∆ + b · ∇ with b ∈ K1

d. Then the following

perturbation formula for the L-Poisson kernel P̃D holds if x ∈ D and Q ∈ ∂D.

P̃D(x,Q) = PD(x,Q) +

∫
D

G̃D(x, z)b(z) · ∇zPD(z,Q)dz. (36)

Proof. Observe that by the formula (33) the function G̃D has the same dif-
ferentiability properties as the function GD. In particular the inner normal

derivative ∂G̃D
∂n

(x,Q) exists for x ∈ D and Q ∈ ∂D. It is known (see [17,
page 173]) and possible to prove by the Green formula that

P̃D(x,Q) =
∂G̃D

∂n
(x,Q).

The formula (36) then follows by di�erentiating of the formula (33) in the
direction of the inner normal unit vector n. We omit the technical details.

Let us �nish this section by some remarks. The formula P̃D(x,Q) =
∂G̃D
∂n

(x,Q) implies, like in the Laplacian case, that the L-Martin and the
L-Poisson kernels are related by the formula

M̃D(x,Q) =
P̃D(x,Q)

P̃D(x0, Q)
. (37)

On the other hand, if we insert the formula MD(x,Q) = PD(x,Q)
PD(x0,Q)

into (36),

we obtain using (35)

P̃D(x,Q) = PD(x0, Q)lD(x0, Q)M̃D(x,Q).
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Evaluating the last equation at x0 we obtain a formula for the function
lD(x0, Q) intervening in the perturbation formula (35)

lD(x0, Q) =
P̃D(x0, Q)

PD(x0, Q)

and another proof of the formula (37).

4 Boundary properties of L-harmonic functions

We prove in this section two important boundary properties of L-harmonic
functions: the Relative Fatou Theorem and the representation theorem of
Hardy spaces. As in the preceding sections, we consider a nonempty bounded
C1,1 domain D.

4.1 Relative Fatou Theorem

Recall the Relative Fatou Theorem in the α-stable case. It was proved in
[30] for Lipschitz sets D.

Theorem 19. Let g and h be two non-negative singular α-harmonic func-
tions on D, with Martin representations

g(x) =

∫
∂D

MD(x,Q)dµ(g)(Q), h(x) =

∫
∂D

MD(x,Q)dµ(h)(Q), x ∈ D.

Then, for µ(h)-almost all Q ∈ ∂D,

lim
x→Q

g(x)

h(x)
= f(x)

where f is the density of the absolute continuous part of µ(g) in the decom-
position µ(g) = fdµ(h) + µ

(g)
sing with respect to the measure µ(h), and x → Q

non-tangentially.

Our objective in this section is to prove an analogous limit property for
non-negative singular L-harmonic functions u and v on D.

If we denote the integral part of the perturbation formula (31) by

Iv∗(x) =

∫
D

G̃D(x,w)b(w) · ∇v∗(w)dw
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then we have
u = u∗ + Iu∗ , v = v∗ + Iv∗

where u∗ and v∗ are singular α-harmonic non-negative functions. We
write

u(x)

v(x)
=
u∗(x)

v∗(x)

1 + Iu∗ (x)
u∗(x)

1 + Iv∗ (x)
v∗(x)

(38)

The limit boundary behaviors of the quotients u(x)
v(x)

and u∗(x)
v∗(x)

will be re-

lated if we control the limit behavior of the quotients Iu∗ (x)
u∗(x)

and Iv∗ (x)
v∗(x)

. Thus

we start with discussing the properties of the quotient Ih(x)
h(x)

for a singular
α-harmonic non-negative function h.

Lemma 20. Let the Martin representation h(x) =
∫
∂D
M(x,Q)dµ(h)(Q) for

some non-negative �nite measure µ on ∂D. Then, if Q 6∈ supp(µ(h))

lim
x→Q

h(x) = 0

and if Q ∈ supp(µ(h)) and x→ Q non-tangentially

lim
x→Q

h(x) = +∞.

Proof. The limit in the case Q 6∈ supp(µ(h)) follows easily from the Martin
representation of h and the Lebesgue theorem. In the case Q ∈ supp(µ(h))
we use the following result of Wu [37].

Let f be a ∆-harmonic function on D, corresponding via the Martin
representation to a �nite measure µ = µ(h) on ∂D. If Q ∈ suppµ, then

lim inf
x→Q

f(x) > 0,

provided x→ Q non-tangentially. We have, on D of class C1,1

f(x) =

∫
∂D

P∆
D (x, y)µ(dy) ≤ c

∫
∂D

δD(x)

|x− y|d
µ(dy)

= cδD(x)1−α
2

∫
∂D

δD(x)
α
2

|x− y|d
µ(dy) ≤ CδD(x)1−α

2

∫
∂D

MD(x, y)µ(dy)
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Consequently

h(x) ≥ 1

C

f(x)

δD(x)1−α
2

and the second part of the Lemma follows.

Lemma 21. The quotient Ih(x)
h(x)

is bounded. More exactly, there exists c > 0
such that

c−1 ≤ 1 +
Ih(x)

h(x)
≤ c. (39)

Proof. Observe that by Corollary 15 and the formula (31), the quotient Iv∗ (x)
v∗(x)

is bounded. More exactly, there exists c > 0 such that

c−1 ≤ 1 +
Iv∗(x)

v∗(x)
≤ c.

As the function lD(x0, Q) is bounded, any singular α-harmonic non-negative
function h is of the form v∗ for a singular L-harmonic non-negative function
v.

By (2), if we denote

Jh(x) =

∫
D

GD(x,w)b(w) · ∇h(w)dw

then
Ih(x) ∼ Jh(x)

In particular, by Lemma 21, the quotient Jh(x)/h(x) is bounded. We prove
a much stronger property of this quotient in the following lemma.

Lemma 22. Let h be a non-negative singular α-harmonic function on D,
with the Martin representation h(x) =

∫
∂D
MD(x,Q)dµ(h)(Q) for a �nite

measure µ(h) on ∂D. Then, when Q ∈ supp(µ(h)) and x→ Q non-tangentially,
we have

lim
x→Q

Jh(x)

h(x)
= 0.
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Proof. We will show that GD(x,w)h(w)
h(x)δD(w)

is uniformly integrable in x ∈ D against

the measure |b(w)|dw. Let ε > 0. Since Jh(x)/h(x) is bounded it su�ces to
show that there is δ > 0 such that∫

F

GD(x,w)h(w)

h(x)δD(w)
|b(w)|dw ≤ ε, (40)

provided λ(F ) < δ. Here, λ denotes the Lebesgue measure on Rd. First, we
note that∫

F

GD(x,w)h(w)

h(x)δD(w)
|b(w)|dw

=

∫
F

∫
∂D

GD(x,w)MD(w,Q)

h(x)δD(w)
dµ(h)(Q)|b(w)|dw

=

∫
∂D

MD(x,Q)

h(x)

(∫
F

GD(x,w)MD(w,Q)

MD(x,Q)δD(w)
|b(w)|dw

)
dµ(h)(Q). (41)

The function GD(x,w)GD(w,y)
GD(x,y)δ(w)

is uniformly integrable in x, y ∈ D against |b(w)|dw
(see the proof of [7, Lemma 11]). Hence, there exists δ > 0 such that for
λ(F ) < δ, ∫

F

GD(x,w)GD(w, y)

GD(x, y)δD(w)
|b(w)|dw < ε, x, y ∈ D,

and consequently∫
F

GD(x,w)MD(w,Q)

MD(x,Q)δD(w)
|b(w)|dw =

∫
F

lim
D3y→Q

GD(x,w)GD(w, y)

GD(x, y)δD(w)
|b(w)|dw

= lim
D3y→Q

∫
F

GD(x,w)GD(w, y)

GD(x, y)δD(w)
|b(w)|dw ≤ ε.

Now, (40) follows from (41) and Martin representation of h. For Q ∈
suppµ(h), limD3x→Q h(x) =∞ from the Lemma 20. Hence, by uniform inte-
grability,

lim
D3x→Q

|Jh(x)|
h(x)

≤ c lim
D3x→Q

∫
D

GD(x,w)h(w)

h(x)δD(w)
|b(w)|dw

= c

∫
D

lim
D3x→Q

GD(x,w)h(w)

h(x)δD(w)
|b(w)|dw = 0.
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Now, we return to the Relative Fatou Theorem for L-harmonic functions.
Let u and v be two non-negative singular L-harmonic functions on D. By
Theorem 13, they have a Martin representation

u(x) =

∫
∂D

M̃D(x,Q)dµ(Q), v(x) =

∫
∂D

M̃D(x,Q)dν(Q), x ∈ D

where µ and ν are two Borel �nite measures concentrated on ∂D.
We decompose the measure µ into its absolutely continuous and singular

parts with respect to the measure ν

dµ = f dν + dµsing

with a non-negative function f ∈ L1(ν) and ν(supp(µsing)) = 0.

Theorem 23. (Relative Fatou Theorem) For ν-almost every point Q ∈
∂D we have

lim
x→Q

u(x)

v(x)
= f(Q) (42)

when x→ Q non-tangentially.

Proof. We will use the Relative Fatou Theorem for the singular α-harmonic
functions u∗ and v∗ de�ned according to (30).

Let Q ∈ supp(ν) \ supp(µ). Then, if x→ Q, v∗(x)→∞ and u∗(x)→ 0,

so limx→Q
u∗(x)
v∗(x)

= 0. The formulas (39) and (38) imply that in this case

lim
x→Q

u(x)

v(x)
= 0.

Let us consider the case Q ∈ supp(ν) ∩ supp(µ). As

dµ(Q)

lD(x0, Q)
= f

dν(Q)

lD(x0, Q)
+
dµsing(Q)

lD(x0, Q)
,

the Relative Fatou Theorem for the singular α-harmonic functions u∗ and v∗

says that for ν-almost every point Q ∈ ∂D

lim
x→Q

u∗(x)

v∗(x)
= f(Q)

when x→ Q non-tangentially. The formula (42) then follows by the formula
(38) and the Lemma 22.

30



Alternative proof. It is possible to prove the Theorem 23 in a di�erent
way. The idea of another proof is to use the Corollary 15 and to follow
the basic steps of the proof of the Relative Fatou Theorem for α-harmonic
functions of K. Michalik and M. Ryznar[30], as explained in the survey [4,
Section 3.3].
Step 1. The estimates of the L-Martin kernel M̃D are the same as in [4,
Lemma 3.6, Corollary 3.7 and Lemma 3.8] thanks to the Corollary 9.
Step 2. The limit behaviour of an L-harmonic function. Similarly as for
singular α−harmonic functions(see Lemma 20), when the domain D is of
class C1,1, we have, thanks to the Corollary 15

lim
x→Q

v(x) = +∞

for ν-almost all Q, provided the limit is nontangential.
Step 3. Nontangential Maximal Estimate for L-harmonic functions. Using
[4, Lemma 3.10], the Corollary 15 and the fact that l(x0, Q) > δ > 0 for all
Q ∈ ∂D, we obtain that for any x ∈ D, Q ∈ ∂D such that |x−Q| ≤ tδD(x)
with a t > 0 there exists a constant C = C(t, Q) such that

u(x)

v(x)
≤ C sup

r>0

µ(B(Q, r))

ν(B(Q, r))
.

Step 4. Showing that u(x)
v(x)
→ Q for ν-almost all Q. This �nal step of the

proof, explained in [4, page 70], is common for singular α-harmonic and
L-harmonic functions.

4.2 L-Hardy spaces

We recall �rst the analytic construction of Hardy spaces of singular α-
harmonic functions discussed in [31]. Let M(∂D) denote the family of all
�nite signed Borel measures on ∂D and for µ ∈ M(∂D) let ‖µ‖ denote the
total variation norm of µ. Choose a constant r0 > 0 such that the C1,1

characteristics of Dr, 0 < r < r0 may be �xed independently of r (see [31,
Lemma 5] for details). In particular we may assume that the sets Dr verify
the ball condition with the same radius r0. For 0 < r < r0 let πr : ∂D 7→ ∂Dr

be the orthogonal projection, i.e., πr(x) means the closest point to x on ∂Dr.
Let σ be the (d− 1)-dimensional Hausdor� surface measure on ∂D and set

N(x) = MD[σ](x) =

∫
∂D

MD(x, y)σ(dy).
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The Hardy space Hp
α(D), p ≥ 1, is de�ned as the family of all singular

α-harmonic functions u on D such that

‖u‖Hp
α

:= sup
0<r<r0

(∫
∂D

∣∣∣∣ u(πr(x))

N(πr(x))

∣∣∣∣p σ(dx)

)1/p

<∞.

The following representation theorem is a consequence of [31, Theorem 2 and
Theorem 3].

Theorem 24. Let u be singular α-harmonic on D. Then

1. u ∈ H1
α(D) if and only if u = MD[µ] for some µ ∈ M(∂D). Further-

more, µ is unique and there exists a positive constant C = C(α,D)
such that

C−1‖µ‖ ≤ ‖u‖H1
α
≤ C‖µ‖.

2. u ∈ Hp
α(D) for a given p > 1 if and only if u = MD[f ] for some

function f ∈ Lp(∂D, σ). Furthermore, f is unique and there exists a
positive constant C = C(α,D) such that

C−1‖f‖p ≤ ‖u‖Hp
α
≤ C‖f‖p.

We point out that Theorem 24 holds for all α ∈ (0, 2). We will now prove
analogous version of the representation theorem for singular L-harmonic
functions on D with α ∈ (1, 2). Set Ñ(x) = M̃D[σ](x). We de�ne the Hardy
space H̃p

α(D), p ≥ 1, as the family of all singular L-harmonic functions u on
D verifying

‖u‖H̃p
α

:= sup
0<r<r0

(∫
∂D

∣∣∣∣ u(πr(x))

Ñ(πr(x))

∣∣∣∣p σ(dx)

)1/p

<∞.

We note that, since ∂D is compact, H̃p
α(D) ⊂ H̃1

α(D) for all p > 1. Fur-
thermore, in view of Corollary 9, Ñ ≈ N , and hence there exists a constant
c = c(α, b,D) > 0 such that for every Borel function u on D we have

c−1‖u‖Hp
α
≤ ‖u‖H̃p

α
≤ c‖u‖Hp

α
. (43)

Theorem 25. Let u be singular L-harmonic on D. Then

1. u ∈ H̃1
α(D) if and only if u = M̃D[µ] for some µ ∈ M(∂D). Further-

more, µ is unique and there exists a positive constant C = C(α, b,D)
such that

C−1‖µ‖ ≤ ‖u‖H̃1
α
≤ C‖µ‖.
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2. u ∈ H̃p
α(D) for a given p > 1 if and only if u = M̃D[f ] for some

functions f ∈ Lp(∂D, σ). Furthermore, f is unique and there exists a
positive constant C = C(α, b,D) such that

C−1‖f‖p ≤ ‖u‖H̃p
α
≤ C‖f‖p.

Proof. Suppose �rst that u = M̃D[µ] for some µ ∈ M(∂D). Then by the
Hahn decomposition µ = µ+ − µ− and Corollary 14 we get the perturbation
formula

u(x) = u∗(x) +

∫
D

G̃D(x,w)b(w) · ∇u∗(w)dw,

where u∗(x) =
∫
∂D
MD(x,Q)/lD(x0, Q)dµ(Q). Furthermore, as in Corol-

lary 15 we obtain u ≈ u∗. Since lD(x0, ·) is bounded and separated from 0, it
follows from Theorem 24 that u∗ ∈ H1

α(D) and C−1‖µ‖ ≤ ‖u∗‖H1
α
≤ C‖µ‖.

By (43) we then get C−1‖µ‖ ≤ ‖u‖H̃1
α
≤ C‖µ‖ and hence u ∈ H̃1

α(D).

Conversely, suppose that u ∈ H̃1
α(D). De�ne

ur(x) =

∫
D\Dr

P̃Dr(x, y)|u(y)|dy.

By the strong Markov property, ur increases as r ↓ 0 and we may de�ne
v = limr↓0 ur. By the monotone convergence and the Harnack inequality (see
[7, Lemma 15]) we obtain that either v is �nite and L-harmonic on D or
v ≡ ∞ on D. In order to show that v <∞ we follow [31, proof of Theorem
3]. Fix x ∈ D and let 0 < s < r < r0. By (6), Corollary 9 and the estimates
of the classical Poisson kernel of the Laplacian (see the proof of Lemma 20)
we have Ñ(πs(y)) ≤ Csα/2−1, y ∈ ∂D, where C = C(α, b,D). Furthermore,
δDr(πs(y)) = r − s, δDr(x) ≤ δD(x) and |x − πs(y)| ≥ δDr(x) ≥ 1/2δD(x)
for su�ciently small r. For such r, by Lemma 1 and by the estimates of the
Poisson kernel for ∆α/2 with a constant common for all Dr ([31, (15)]) we
obtain

P̃Dr(x, πs(y)) ≤ CδDr(x)α/2

δDr(πs(y))α/2(1 + δDr(πs(y)))α/2|x− πs(y)|d
≤ CδD(x)α/2−d

(r − s)α/2
,

where C = C(α, b,D). Therefore

ur(x) ≤ C

∫ r

0

∫
∂D

P̃Dr(x, πs(y))Ñ(πs(y))

∣∣∣∣ u(πs(y))

Ñ(πs(y))

∣∣∣∣σ(dy)ds
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≤ CδD(x)α/2−d
∫ r

0

sα/2−1

(r − s)α/2

∫
∂D

∣∣∣∣ u(πs(y))

Ñ(πs(y))

∣∣∣∣σ(dy)ds

≤ CδD(x)α/2−d‖u‖H̃1
α

∫ r

0

sα/2−1

(r − s)α/2
ds ≤ CδD(x)α/2−d‖u‖H̃1

α
.

Hence, v is �nite, singular L-harmonic and non-negative on D. By The-
orem 13, v = M̃D[ν] for some non-negative measure ν ∈ M(∂D). Since
|u| ≤ ur ≤ v, the function v−u is also singular L-harmonic and non-negative
on D, so v − u = M̃D[µ] for some non-negative µ ∈M(∂D). Therefore

u = v − (v − u) = M̃D[ν]− M̃D[µ] = M̃D[ν − µ].

This gives the �rst part of the theorem.
To prove the second part �x p > 1. If u = M̃D[f ] for some f ∈ Lp(∂D, σ),

then u∗ = M̃D[f/lD(x0, ·)] and as in the proof of the �rst part, using The-
orem 24 and (43) we conclude that C−1‖f‖p ≤ ‖u‖H̃p

α
≤ C‖f‖p and u ∈

H̃p
α(D). Conversely, if u ∈ H̃p

α(D), then u ∈ H̃1
α(D) and by the �rst

part, u = M̃D[µ] for some µ ∈ M(∂D). Hence, u∗ = MD[µ/lD(x0, ·)].
Since u ≈ u∗, by (43) we get u∗ ∈ Hp

α(D) and Theorem 24 implies that
µ(dx) = f(x)σ(dx) for some f ∈ Lp(∂D, σ). This ends the proof.

In the proof of the Theorem 25 we used strongly the interplay between a L-
harmonic function u and its α-harmonic counterpart u∗. Using the unicity of
the Martin representations for L and ∆α/2 we obtain the following Corollary.

Corollary 26. Let p ≥ 1. The Hardy spaces Hp
α(D) and H̃p

α(D) are topolog-
ically isomorphic. More exactly, the mapping

u(x)→ ũ(x) = u(x) +

∫
D

G̃D(x,w)b(w) · ∇u(w)dw

is a bijection between Hp
α(D) and H̃p

α(D) and

‖u‖Hp
α
≈ ‖ũ‖H̃p

α
.

Proof. The corollary follows from Theorem 24, Theorem 25, Corollary 14 and
its generalization for signed measures given in the proof of Theorem 25.

In view of Corollary 26 we can say that the space H̃p
α(D) is equal to a

perturbed space Hp
α(D).
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Remark 2. By similar methods as to prove the Theorem 25, we can ob-
tain the representation theorem for Hardy spaces of relativistic α-harmonic
functions.

We observe that, according to [16], stable and relativistic Green functions
and Poisson kernels are comparable on bounded C1,1 domains. Consequently,
the Martin kernels are also comparable. A careful reading of the proofs of all
these estimates allows one to see that common constants may be chosen for
sets Dr su�ciently close to D.

The Martin representation of singular relativistic α-stable non-negative
functions was proved in [23].
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