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Shape Identification for Distributed Parameter Systems and
Temperature Profiles in Tokamaks

Emmanuel WITRANT1 and Sylvain BŔEMOND2

Abstract— Simple physical models are often difficult to obtain
for nonhomogeneous transport phenomena that involve com-
plex couplings between several distributed variables, such as
temperature profiles in tokamak plasmas. Model-based current
or combustion control approaches necessitate plasma models
with real-time computation capabilities. This may prevent
the use of classical knowledge-based physical models and
motivates dedicated identification methods to exploit the large
available experimental data. Based on distributed temperature
measurements, this paper proposes a parameter-dependent
identification method that first relates the normalized profiles
distribution to a specific shape description thanks to a three-
hidden-layers neural network architecture. The amplitude of
the profiles is then constrained by the global energy conserva-
tion (0D) with an identified time constant. The shape param-
eters and time constant are related to the global parameters
using appropriate scaling laws. Experimental results illustrate
the efficiency of the proposed identification method to estimate
TORE SUPRA temperature profiles.

I. Introduction

Distributed parameter systems (DPS) constitute a class of
systems which are particularly difficult to model accurately.
They are often described by classical transport equations (i.e.
convection-diffusion models) with time-varying coefficients
and additional nonlinear terms. Their dynamics may strongly
depend on the operating conditions and/or unmodeled cou-
pling with other transport phenomena. Modeling is further
complicated when space-dependent inputs are considered,
which motivates the identification method proposed in this
paper. Complex irrigation systems, car traffic, large antennas
waveguides, fluids on surfaces or tokamak plasmas provide
particularly challenging examples for such systems.

Most DPS identification methods rely on the spatial dis-
cretization of the partial differential equation (PDE) asso-
ciated with the transport model to compute the convection
and diffusion components when the system is affine (linear
dependence) in the exogenous inputs. Orthogonal collocation
[1], [2] and Galerkin’s method [3] are generally used for
this discretization. Identification of time-invariant linear DPS
can be performed using orthogonal functions with the results
proposed in [4], where some identifiability requirements are
discussed. The case of parameter estimation for non-linear
DPS is considered in [5] for systems with boundary inputs.
The problem becomes more complicated for time-varying
non-affine systems with distributed uncertain inputs, such as
the tokamak plasmas.
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Indeed, electron/ ion temperature profiles in tokamak
plasmas result from heat transfer processes for which reliable
physical models are still not fully available. The global
thermal energy dynamics is yet reasonably well represented
by 0D energy confinement time scaling laws derived as linear
regression on engineering quantities of existing tokamaks
[6]. The 1D transfer (along the small tokamak radius) of
the plasma heat through the so-called plasma equilibrium
magnetic surfaces is often described using a diffusive-like
non linear PDE with more or less ad-hoc diffusivity coef-
ficients, as it is now recognized that transport of particles
and heat within the tokamak plasmas is ruled by more
complex turbulence processes. As a result, such a description
provides a poor modeling benefit for a significant increase in
complexity and computation time as far as control-oriented
modeling, especially plasma current profile control, is con-
cerned. Model-based control of the plasma current profile, a
very active research area due to the key effect of this profile
on both plasma stability and performance (see for example
[7], [8], [9], [10] and references therein), yet requires some
1D modeling of the effect of tokamak actuators variables.
This is especially relevant for the heating systems effect on
plasma temperature, as the electrical resistivity and mostnon-
inductive current drive sources efficiencies strongly depend
on the plasma temperature.

From an engineering point of view and for real-time
model-based control purposes, we may then be more inter-
ested in establishing a simplified model that strongly relies
on experimental measurements and guarantees the global
physical consistency (such as 0D mass or energy conserva-
tion) than obtaining a precise PDE model. This is the main
motivation of the proposed identification method, where the
normalized spatial distribution of the DPS is first reduced
to shape parameters (identification of a sigmoid distribution
in the plasma temperature case). These parameters are then
related by scaling laws to global parameters (such as the
plasma current, electrons density or toroidal magnetic field)
that are easily known for some given operating conditions.
Finally, the 0D conservation dynamics is introduced by
constraining the integral of the shape (corresponding to the
total energy or mass of the system) to be consistent with the
boundary inputs and outputs of the system, with an identified
time constant.

The proposed approach can be compared with classical
identification methods as follows. Instead of discretizing
in space and identifying the parameter dependencies, the
state is estimated with a set of parameter dependent (time-
varying) functions that ensure the continuity and uniformity



of the spatial distribution. This is achieved thanks to a space-
dependent basis of functions that describes the DPS shape
at each sampling time. The estimated model is then based
on the identification of a finite set of time-varying shape
parameters, which determines the dynamics of a sum of time
and space dependent functions. This identification method is
consequently well suited to model complex systems when
distributed measurements are available and to capture the
main input/output relationships for real-time applications
(such as control-oriented models [11] or model-predictive
control [12]).

This paper is organized as follows. The main hypotheses
and a global description of the identification process are
given in Section II. The spatial distribution, steady-state
behavior and transient dynamics estimations are presentedin
Sections III to V, respectively. The efficiency of the proposed
model is discussed in Section VI, thanks to experimental
measurements of Tore Supra temperature profiles.

II. Hypotheses and Method Overview

The class of systems considered is DPS that involve
transport phenomena, such as convection or diffusion. Such
systems are generally modeled with nonlinear PDEs relating
the dynamics of the distributed variable of interestv(x, t)
(the plasma temperature profile along the normalized small
tokamak radiusx in our case) to a set of controlled en-
gineering parameters or known disturbancesu(t) (such as
the radio-frequency wave heating antenna power) thanks to
an evolution law ˙v = f (v, u, x, t) (this operator describes
a transport phenomena with distributed and/or boundary
inputs).

The following hypotheses are made on the transport phe-
nomena and available signals:

H1) the transport phenomena is supposed to have smooth
transitions (f (·) continuously differentiable);

H2) distributed measurements ofv(x, t) are available to
identify the system (observable state);

H3) the exogenous inputsu(t) are known;
H4) the normalized profilesv(x, t)/v(0, t) exhibit some

shape similaritythat can be described by a functional
basis (possibly non-linear) involving a limited number
of time-varying parameters;

H5) stochastic disturbances are supposed to affect the sys-
tem’s input over a sufficient frequency range.

H1) excludes the shock waves from the analysis, as such
transport phenomena would need a more dedicated identifi-
cation approach.H2) is a reasonable assumption considering
the fact that distributed measurement devices are available
for large scale plants (such as Tokamaks). The need for dis-
tributed measurements may be removed if the system satisfies
some traditional observability conditions.H3) restricts the
use of global parameters to be known at each sampling time.
H4) is clearly the most restrictive hypothesis and will be
discussed below.H5) relates to singular perturbation theory
and is necessary to ensure that the signal is sufficiently rich
to identify a relevant model.

v(x, tk)/v̂0(tk)

{α j , β j , γ j}(tk)

{α j , β j , γ j}(uss, ϑs)

uss(tkss)

h(v̂0, ut, ϑt)

ut(tkt)

Fig. 1. Three hidden layer identification approach.

The proposed modeling approach relies on ashape de-
scription of the state profile. Instead of determining a
lumped-parameter model at specific locations (as it is done
with traditional finite elements techniques), we use the gen-
eral nonlinear black-box structure (see [13] for a survey on
nonlinear black-box modeling):

v̂(x, t)
v̂0(t)

=

n
∑

j=1

α j(t)κ(β j(t), γ j(t), x)) (1)

where v̂(x, t) is the identified estimate ofv(x, t), v̂0(t) is the
reference normalizing amplitude (i.e. ˆv0(t) = v̂(0, t) in the ex-
ample considered), andα j(t), β j(t) andγ j(t) are, respectively,
the amplitude, slope and translation of the mother basis
function that has a shape determined byκ(β j(t), γ j(t), x)) (i.e.
a Gaussian or sigmoid distribution). The desired estimation
precision is obtained by settingn sufficiently large and the
key issue is to choose, based on the visual observation of
the measurements profiles, an appropriate class of functions
κ(·) to ensures that the spatial distribution can be estimated
with a minimum number of parameters. The advantage of
this identification procedure is then limited by the abilityto
find a functional basisκ that involve less parameters than
traditional approaches (which relates toH4).

The identification method is based on athree hidden layers
network, presented on Fig. 1 (see [14] and related references
for examples of distributed system identification using neural
networks). The first two layers identify the shape parameters
of the normalized profile ˆv(x, t)/v̂0(t), while the dynamics is
introduced in the third layer along witĥ̇v0(t). We distinguish
here the steady state behavior, which corresponds to small
variations around an equilibrium and almost constant inputs
uss(tkss), from the transient response, where we can observe
a transition in the operation mode and large variations of
the inputsut(tkt). This is mainly motivated by the fact that
we identify algebraic relationships in the first case while a
dynamic algorithm is needed in the second case. Note also
that the global behavior of the system can be described with
low sampling rate data measured on large time intervals when



the system has slow variations while the transient behavior
needs a high sampling rate and measurements focused on the
transition phases.

The time vector associated with the distributed measure-
ments (including bothtkss and tkt) is denoted astk and the
parameters computed by each layer are{α j , β j , γ j}(tk), ϑs

andϑt. The three layers of the network are then described
as follows:

1) the first layer is focused on the spatial variation:
for each sampling timetk, it estimates ˆv(x, tk)/v(0, tk)
from the normalized measurementsv(x, tk)/v(0, tk) and
provides the shape parameters{α j , β j , γ j}(tk) (outputs)
according to (1) for the next layer;

2) the second layer is focused on the steady-state behav-
ior and replaces the time-dependency of{α j , β j , γ j}

by scaling laws involving the time-dependent global
parametersuss(tk) and constant identified parameters
ϑs, thus expressing the shape parameters in terms of
uss andϑs (denoted as{α j , β j , γ j}(uss, ϑs) on Fig. 1;

3) finally, the transient dynamics is considered in the third
layer where the time-variation law :

dv̂0

dt
= h(v̂0, ut, ϑt), v̂0(0) = v̂0i (2)

is introduced to modelv(0, tk) thanks to a specific
choice ofh(·) and the identified parametersϑt.

The specific choice ofκ(·) is based on the general shape
of v(·) while h(·) can be set from the physical properties
of the system (such as a conservation law). A stochastic
gradient method ensures the optimal parameter identification
(least squares minimization) and allows for the consideration
of parameter dependencies and nonlinear aspects on each
layer, as detailed in the next sections. More details on the
sensitivity-based gradient computation used in this paperand
the consideration of the system dynamics are provided in
[15].

III. Shape Definition of the Spatial Distribution

The first step is to approximate the measured distributed
state with a finite number of parameter-dependent continu-
ous functions. More precisely, given the spatial distribution
v(x, tk) and a set of trial functions, we want to determine the
optimal set of parametersϑ f (tk) � {αi , βi , γi} in (1) which
minimizes the variance ofv(x, tk) − v̂(x, tk), where v̂ is the
model output. This is done by minimizing the quadratic cost:

Jf (tk) =
Nx
∑

j=1

[

v(x j , tk) − v̂(x j , tk)

v(0, tk)

]2

whereNx is the number of measurement locations.
Remark 1: If a specific class of associated transport model

is available (e.g. with a partial differential equation with
constant coefficients), such knowledge can be included in the
shape definition. In this case, the (quasi)steady-state solution
of the PDE can be used to define the mother function support.

IV. Steady-State behavior

The steady-state behavior of the identified system is mod-
eled in the second layer by establishing the relationship
between the spatial parametersϑ f (tkss) (at time instants when
the system is at equilibrium) and some global, 0D (only time-
varying) inputsui ∈ R

ni . The spatial parameters determined
by the first layer then provide for the reference outputs of
the second layer.

A. Linear regression

Parameter estimation methods are particularly efficient
when the output is estimated with a linear regression tech-
nique (guaranteed global minimum), which can be obtained
from an exponential scaling law as follows. In this case
ϑ̂ f (tkss), the estimate of the parameters given by the first
layer, writes as:

ϑ f ≈



























ϑ̂ f ,1(t) = eϑs,0,1uϑs,1,1

1 uϑs,2,1

2 uϑs,3,1

3 . . .u
ϑs,ni ,1
ni

...

ϑ̂ f ,3n(t) = eϑs,0,3nuϑs,1,3n

1 uϑs,2,3n

2 uϑs,3,3n

3 . . .u
ϑs,ni ,3n
ni

(3)

where the time dependency ofuss � {u1, u2, . . . , uni} in tkss

is omitted to simplify the notations. This set of equations
writes in the linear form:

ln
(

ϑ̂ f

)

= [1 ln(uss)] × ϑs

with:

ϑs �

























ϑs,0,1 . . . ϑs,ni ,1
...

. . .
...

ϑs,0,3n . . . ϑs,ni ,3n

























∈ R3n×(ni+1)

andϑs minimizes the cost function:

Js(ϑs) =
1
nm

nm
∑

i=1

|| ln(ϑ f (i)) − ln(ϑ̂ f (i))||
2

B. Nonlinear/ discontinuous dependencies

The more general case whereϑ f is estimated with a
nonlinear function does not introduce any particular technical
difficulty as long aŝϑ f ∈ C

1, whereC1 is the set of continu-
ously differentiable functions (the stochastic gradient descent
method applies). A more interesting case is when a specific
triggering input uT introduces some discontinuities in the
model considered. In this case, an appropriate identification
scheme has to include a possible switching between different
submodels. This kind of behavior can be observed whenuT

reflects an actuator switching, some particular microscopic
phenomena or unmodeled instabilities.

We consider that each submodel is independent from the
others, and consequently that the input data correspondingto
submodeli does not influence the optimal parameter set of
submodelj, with j , i. The second hidden layer then writes
in the switched form as:

ϑ̂ f (tkss) =



























g1(uss, ϑ
1
s), i f uT(tkss) ∈ [a1, a2]

...
...

gN(uss, ϑ
N
s ), i f uT(tkss) ∈ [aN, aN+1]



where gi(·) ∈ C1 is the fitting law corresponding to the
specific value of the triggering input,i indicates the model
considered and [ai, ai+1] the triggering interval. The optimal
set of parametersϑs is now a set ofN matrices, obtained for
example with a gradient descent method.

V. Amplitude Dynamics

The third hidden layer focuses on the dynamics associated
with the transient response of the system. The functionh(·)
has to be such thatdv̂0/dt→ 0 when the selected inputsut

are constant and vary otherwise. Supposing that the inputs
uss andut have faster dynamics than ˆv0 (i.e. the actuators and
sensors dynamics do not interfere in the identification), the
previous property is verified if we restricth(·) to the class of
functions that writes ash(φ(ut, ϑt)− v̂0, ut, ϑt) whereφ(ut, ϑt)
is the equilibrium value of ˆv0. It is supposed that:
• φ(·) is aC1 function;
• h(·) is Lipschitz continuous and strictly decreasing in

v̂0, to ensure thatdv̂0/dt → 0 for constant inputs as
well as the convergence of the ODE associated with the
sensitivity computation.

The state ˆv0 then converges toφ(ut, ϑt) and the optimal
set of parametersϑ∗t is obtained using a gradient descent
method with sensitivityS(ϑt, t) = ∂v̂0/∂ϑt where∂v̂0/∂ϑt is
computed by solving on [0,T] the ODE:

d
dt

[

∂v̂0

∂ϑt

]

= −
∂h

∂(φ − v̂0)
∂v̂0

∂ϑt
+
∂h
∂ϑt

along with (2).

VI. Experimental Results

The proposed identification method is applied to the
estimation of the electron temperature profileTe(x, t) of Tore
Supratokamak plasmas operating inL-mode. The tempera-
ture behavior is generally set by the diffusion equation

3
2
∂neTe

∂t
= ∇ (neχe∇Te) + ST (4)

wherene(x, t) is the electron density,χe(x, t) is the temper-
ature diffusivity andST(x, t) corresponds to distributed heat
sources (radio frequency antennas). Various approaches have
been proposed for the computation ofχ and ST but their
number illustrates the difficulty to model the heat diffusion
for tokamak plasmas. Some existing fitting laws provide for
the volume average temperature estimation [6] but do not
allow to estimate the spatial distribution, which motivated
the proposed approach.

The first and second layer of the neural network are used
to determine the profile shape while the third layer sets
its amplitude. The considered system inputsu(t) are global
parameters, which are usually set before ashot (tokamak
plasma experiment) and can be used in predictive control
schemes. A qualitative analysis of the plasma physics moti-
vates the choice of the following global variables:

u(t) �
{

Ip, Bφ0, n̄e, Ptot, Plh, N∥, Picr f

}

(in MA, T, 1019 m−3, MW), where Ip is the total plasma
current,Bφ0 is the toroidal magnetic field, ¯ne is the electron

line average density andPtot is the total power input. The
second part of the input data comes from the distributed
sources with the powerPlh and parallel refraction indexN∥
of the Lower Hybrid launchers and the power of the Ion
Cyclotron Radio Frequency antennaPicr f .

A. Profile shape estimation

The profiles shape (first layer) is estimated using the nor-
malized measured temperature profilesTe(x, t)/Te0(t), where
Te0(t) � Te(0, t) is the central temperature andx is the
normalized small plasma radius. The spatial distribution is
estimated with the sigmoid distribution:

Te(x, t)
Te(0, t)

≈
v̂(x, t)
v̂0(t)

=
α

1+ e−β(x−γ)
(5)

Note that, considering the measurements precision and the
L-modeoperation, a single sigmoid function is sufficient to
obtain the desired accuracy. Additional sigmoids would be
needed to represent theH-modeor internal transport barriers.
The set of first layer optimal parametersϑ f (tk) = {α, β, γ}
is obtained by minimizing the cost function:

Jf (tk) =
Nx
∑

j=1

ǫ f (x j , tk)2, ǫ f (x j , tk) =
∣

∣

∣

∣

∣

Te(x j , tk) − v̂(x j , tk)

Te0(tk)

∣

∣

∣

∣

∣

where Nx = 21 is the number of spatial measurements
available to set the identification method andtk = 1 . . .Nt.
The resulting optimal values of the cost functionJ∗f at each
tk are presented at the top of Figure 2, where the 19 shots are
plotted consecutively on the same time scale and delimited
with vertical dotted lines. The stars and the vertical dotted
lines indicate the times for switching between shots (lower
stars) and between phases with different operating conditions
(top stars). All the shots considered have an associated
J∗f < 10−3 (the algorithm is stopped whenJf < 10−4 to
reduce the amount of computations), which validates the fact
that a single sigmoid function provides a good approximation
for the temperature profile shape.

B. Parameter dependency

The second layer is estimated combining the linear re-
gression proposed in Section IV-A and the switched model
described in Section IV-B, where the switching term isPlh

(optimization tests highlighted the peculiar influence of this
parameter). The data set for ˆv(x, tkss)/v̂0(tkss) and u(tkss) is
chosen such thatu has slow variations compared to the
temperature dynamics.

The switched scaling law for the shape parameters writes
as:

ϑ̂ f =

{

{αlh, βlh, γlh} i f Plh , 0
{αω, βω, γω} else.

(6)

with






























αlh = e−0.87I−0.43
p B0.63

φ0
N0.25
∥

(

1+ Picr f

Ptot

)0.15

βlh = −e3.88I0.31
p B−0.86

φ0
n̄−0.39

e N−1.15
∥

γlh = e1.77I1.40
p B−1.76

φ0
N−0.45
∥

(

1+ Picr f

Ptot

)−0.54

(7)
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


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























αω = e−0.37I−0.46
p B0.23

φ0
n̄0.22

e

βω = −e1.92I0.38
p n̄−0.33

e

γω = e−0.15I1.03
p B−0.51

φ0

(

1+ Picr f

Ptot

)−0.46
(8)

Note that only the most significant dependencies are kept in
the final scaling laws. For example, it appeared thatPlh has a
limited impact on the profile slope (βlh) while it significantly
affects the other two parameters (αlh and γlh). The ratio
Picr f /Ptot is used to take into account the fact that the ICRF
antenna significantly modifies the shapes when it is used but
does not necessitate the definition of an extra switch.

This model is compared with experimental data on the
middle part of Figure 2. The minimized costJs is computed
asJf but with v̂(xk, tkss)/v̂0(tkss) estimated using (7)-(8). The
average value of the cost function is increased but remains
within some acceptable bounds with a mean value of 3.5%.
This, along with the fact that the distribution of the error
around its mean value doesn’t exhibit significantly large
shot-dependent variations, validates the specific choice of
{

Ip, Bφ0, n̄e, Plh, N∥, Picr f

}

as system inputs and the linear
regression approach.

C. System dynamics

The third layer estimates the dynamics of the central
temperatureTe0(t) ash(·), including an energy conservation
constraint. Supposing that the tokamak torus shape can be
approximated with a cylinder (classical cylindrical approxi-
mation [16], [11]), the physics of plasma energy confinement

is introduced to relateTe0(t) to the plasma energy:

W(t) =
3e
2

∫

V
(neTe+ niTi)dV ≈ C

∫ 1

0
(neTe+ niTi)dx

whereC � 6π2a2R0e with a and R0 the minor and major
plasma radius, respectively, ande the electron charge. The
subscripti denotes the ions contribution. The ratioαTi(t) �
Ti(0, t)/Te(0, t) is estimated using the linear regression tech-
nique (on a set of 34 shots) as:

αTi(t) = 1−0.31

(

Ip

Bφ0

)−0.38

n̄−0.90
e

(

1+
Picr f

Ptot

)−1.62 (

1+
Plh

Ptot

)1.36

and the electronic density is approximated withne(x, t) ≈
(1 − xγn) ne(0, t), whereγn = 2. Approximating the ratio of
ion to electron density withαni(t) ≈ (7 − Ze f f(t))/6, where
Ze f f(t) is the effective plasma charge, the energy equation
implies thatTe0(t) = A(t)W(t) with:

A(t) �

[

C(1+ αTiαni)
γn + 1
γn

n̄e

∫ 1

0
(1− xγn)x

v̂(xk, t)
v̂0(t)

dx

]−1

The relationship betweenW and Ptot corresponds to first
order dynamics and the optimal parameters{ϑt0 . . . ϑt4} set a
scaling law on the time constant to minimize:

Jt =
1
Nt

Nt
∑

i=1

(Te0(i) − T̂e0(i))2dt(i)

More precisely, the estimated central temperatureT̂e0(t)
results from the proper approximation of the thermal con-
finement timeτth(t), which sets the dynamics:



























τth = 0.14I0.91
p B−0.13

φ0
n̄0.77

e P−0.75
tot

dW
dt

= Ptot −
1
τth

W, W(0) = Ptot(0)τth(0)

T̂e0(t) = AW

(9)

The efficiency of this layer, which also includes the results
of the first and second layers since the integral of ˆv(x, t)/v̂0(t)
is needed to computeA, is illustrated at the bottom of
Figure 2, where bothTe0(t) and T̂e0(t) are presented. The
accuracy of the estimation validates the use of (9) to estimate
the central temperature as well as the efficiency of the
proposed methodology to find the optimal parameters.

D. Validation on a shot not included in the database

To conclude on the experimental validation, the identified
model is tested on a shot that is not included in the database
(35557) on Figure 3. The first and last 2s correspond to
the current ramp-up and ramp-down, where some specific
phenomena (not considered in the proposed model) occur.
The distributed error|Te(x, t) − v̂(x, t)| is presented on the
top part of the figure and illustrates the spatial distribution
accuracy. The highest error (approximately 10%) appears
when the sole input is the LH power but remains within
acceptable bounds for the intended use. This effect is at-
tenuated when LH is combined with ICRF and a more
precise model could be obtained by distinguishing the case
when LH is the only input from the case when both LH
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Fig. 3. Comparison of the model with a shot not included in thedatabase
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and ICRF are used or by refining the shape description
(i.e. adding a Gaussian shape, as suggested in [11]). The
central temperature obtained from the measurements, from
the proposed identification method and from the fitting law
ITERL-96P(th) [6] τth,ITER = 0.14I0.96

p B0.03
φ0

n̄0.40
e P−0.73

tot are
presented on the bottom part of the figure, along withPlh

andPicr f . The overall temperature profile is estimated with a
satisfactory accuracy and is comparable withITERL-96P(th)
to estimate the plasma confinement. Further validation was
given in [11], where this model was used for magnetic flux
and current profiles prediction.

Conclusions

The problem of modeling non-homogeneous transport
phenomena is considered in this work as defining a set
of time and space varying functions that characterizes the
shape distribution and its evolution. This is an alternative
to classical discretization methods and ensures the spatial
continuity of the resulting model. It also allows to set
scaling laws with a direct interpretation of the physical
phenomena. Based on some distributed measurements, the
proposed identification method first estimates the spatial
distribution at each sampling time with a sum of space-
dependent functions. The steady-state and transient behaviors
of the system, including the parameters dependencies, are
then considered successively. The generality of the results
allows to consider a large class of physical systems and
to include a priori knowledge of the system explicitly in
the choice of key global parameters. Experimental results
illustrate the efficiency of this method forTore Supraplasmas
temperature profiles estimation.
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[12] H. Ouarit, S. Brémond, R. Nouailletas, J.-F. Artaud, V. Basiuk,
E. Witrant, and L. Autrique, “Model based predictive control of toka-
mak plasma current profile,” in26th Symposium on Fusion Technology
(SOFT), Porto, Portugal, Sept. 2010.
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