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Shape ldentification for Distributed Parameter Systems and
Temperature Profiles in Tokamaks

Emmanuel WITRANT and Sylvain BEEMOND?

Abstract— Simple physical models are often dficult to obtain Indeed, electrory ion temperature profiles in tokamak
for nonhomogeneous transport phenomena that involve com- plasmas result from heat transfer processes for whicrotelia
plex couplings between several distributed variables, sicas physical models are still not fully available. The global
temperature profiles in tokamak plasmas. Model-based curret S
or combustion control approaches necessitate plasma model thermal energy dy.nam'cs 's_ yet rea_sonably We!l repres_ented
with real-time computation capabilities. This may prevent DY OD energy confinement time scaling laws derived as linear
the use of classical knowledge-based physical models andregression on engineering quantities of existing tokamaks
motivates dedicated identification methods to exploit thedrge  [6]. The 1D transfer (along the small tokamak radius) of
available experimental data. Based on distributed temperare the plasma heat through the so-called plasma equilibrium
measurements, this paper proposes a parameter-dependent - . . . L
identification method that first relates the normalized profiles magn_et'c surfaces. is often described using .ﬁfu_d've'l'ke
distribution to a specific shape description thanks to a thre- non linear PDE with more or less ad-hodtdsivity coef-
hidden-layers neural network architecture. The amplitude of  ficients, as it is now recognized that transport of particles
the profiles is then constrained by the global energy conseav  and heat within the tokamak plasmas is ruled by more
tion (OD) with an identified time constant. The shape param- ., pjex turbulence processes. As a result, such a deseripti

eters and time constant are related to the global parameters id delina b fit f ignificant i .
using appropriate scaling laws. Experimental results illistrate provides a poor modeling benentior a signiicant increase in

the efficiency of the proposed identification method to estimate COmplexity and computation time as far as control-oriented
TORE SUPRA temperature profiles. modeling, especially plasma current profile control, is-con

cerned. Model-based control of the plasma current profile, a
very active research area due to the kéfga of this profile
Distributed parameter systems (DPS) constitute a class @h both plasma stability and performance (see for example
systems which are particularlyfficult to model accurately. [7], [8], [9], [10] and references therein), yet requiresnsn
They are often described by classical transport equatiens ( 1D modeling of the #ect of tokamak actuators variables.
convection-ditusion models) with time-varying céiecients  This is especially relevant for the heating systerfiea on
and additional nonlinear terms. Their dynamics may stpnglplasma temperature, as the electrical resistivity and marst
depend on the operating conditions grdunmodeled cou- inductive current drive sourcedfieiencies strongly depend
pling with other transport phenomena. Modeling is furthepn the plasma temperature.
complicated when space-dependent inputs are consideredFrom an engineering point of view and for real-time
which motivates the identification method proposed in thignodel-based control purposes, we may then be more inter-
paper. Complex irrigation systems, carfli@ large antennas ested in establishing a simplified model that strongly selie
waveguides, fluids on surfaces or tokamak plasmas provid@ experimental measurements and guarantees the global
particularly challenging examples for such systems. physical consistency (such as OD mass or energy conserva-
Most DPS identification methods rely on the spatial distion) than obtaining a precise PDE model. This is the main
cretization of the partial dierential equation (PDE) asso- motivation of the proposed identification method, where the
ciated with the transport model to compute the convectioRormalized spatial distribution of the DPS is first reduced
and difusion components when the system fire (linear to shape parameters (identification of a sigmoid distriuti
dependence) in the exogenous inputs. Orthogonal coleatiin the plasma temperature case). These parameters are then
[1], [2] and Galerkin's method [3] are generally used forlrelated by scaling laws to global parameters (such as the
this discretization. Identification of time-invariantéiar DPS  plasma current, electrons density or toroidal magnetid)fiel
can be performed using orthogonal functions with the resulthat are easily known for some given operating conditions.
proposed in [4], where some identifiability requirements arfinally, the 0D conservation dynamics is introduced by
discussed. The case of parameter estimation for non-linegnstraining the integral of the shape (corresponding ¢o th
DPS is considered in [5] for systems with boundary inputotal energy or mass of the system) to be consistent with the
The problem becomes more complicated for time-varyingoundary inputs and outputs of the system, with an identified
non-dfine systems with distributed uncertain inputs, such agne constant.
the tokamak plasmas. The proposed approach can be compared with classical
_ L __identification methods as follows. Instead of discretizing
The authors are with:* GIPSA-lab, Université Joseph Fourier . . e .
/ CNRS, BP 46, 38 402 Saint Martn dHeres, Francg 1" SPace arld |dent|fy|ng the parameter dependenmes,. the
CEA, IRFM, F-13108 Saint Paul-lez-Durance, France. E-mailState is estimated with a set of parameter dependent (time-
emmanuel .witrant@gipsa-lab.grenoble-inp. fr varying) functions that ensure the continuity and unifdymi
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dependent basis of functions that describes the DPS shé layer
at each sampling time. The estimated model is then bas
on the identification of a finite set of time-varying shape
parameters, which determines the dynamics of a sum of tin
and space dependent functions. This identification method

measurements

Steady-state Transient

of the spatial distribution. This is achieved thanks to acepa Input Profile Global parameters ]
V(X, 1) /Vo(tx) | measurements || measurements

Ithidden { Spatial
layer distribution Uss(tksd

consequently well suited to model complex systems whe l{“' Bi, vi))

distributed measurements are available and to capture t, . .- pob AR U (tir)

main inpufoutput relationships for real-time applications Tayer { Steady-state behavior

(such as control-oriented models [11] or model-predictiv i{“i’lgi’ i} Uss Bs)

control [12]). 3rdhidden{ Sostom dunam Y
This paper is organized as follows. The main hypothese Jayer ySTemm Cynamies

and a global description of the identification process ar @h(\“/o, U, D)

given _in Section I_I. The spa_ltial di_strib_ution, steady_etat Cl‘utput{ Estimated distributed system

behavior and transient dynamics estimations are presemntec. ‘YT

Sections Il to V, respectively. Theficiency of the proposed
model is discussed in Section VI, thanks to experimental
measurements of Tore Supra temperature profiles.

Fig. 1. Three hidden layer identification approach.

The proposed modeling approach relies oshape de-
scription of the state profile. Instead of determining a

The class of systems considered is DPS that involMg@mped-parameter model at specific locations (as it is done
transport phenomena, such as convection fusion. Such with traditional finite elements techniques), we use the-gen
systems are generally modeled with nonlinear PDEs relatirgfal nonlinear black-box structure (see [13] for a survey on
the dynamics of the distributed variable of interegk, t)  nonlinear black-box modeling):
(the plasma temperature profile along the normalized small -
tokamak radiusx in our case) to a set of controlled en- M
gineering parameters or known disturbanc€d (such as Vo(t)
the éig:ﬁtfgiqf;;\fyzwi‘ﬁ Tﬂ'{‘%ﬁgteonp”eﬁzﬁg‘r’vzzst:r?g‘é‘ss Where\ix. 1) is the identified estimate af(x,t), %(t) is the

. s reference normalizing amplitude (i.x&(f) = ¥(0,t) in the ex-
i:';11ptlr;'zlstj)sport phenomena with distributed Amdboundary ample considered), and (t), ;(t) andy;(t) are, respectively,

The followina hvbotheses are made on the transport htr]e amplitude, slope and translation of the mother basis
9 hyp : ) POM P inction that has a shape determinedds; (t), v;(t), ) (i.e.
nomena and available signals:

_ a Gaussian or sigmoid distribution). The desired estimatio
H1) the transport phenomena is supposed to have smogjfecision is obtained by settiny sufficiently large and the

Il. HyporHESES AND METHOD OVERVIEW

= 3 OB 0. ¥i(0). %) M
=1

transitions €(-) continuously diferentiable); key issue is to choose, based on the visual observation of
H2) distributed measurements ofx, t) are available t0 the measurements profiles, an appropriate class of fursction
identify the system (observable state); «(") to ensures that the spatial distribution can be estimated
H3) the exogenous inputgt) are known; with a minimum number of parameters. The advantage of

H4) the normalized profiles/(x, )/v(0, 1) exhibit some this identification procedure is then limited by the ability
shape similaritythat can be described by a functionalind a functional basis that involve less parameters than
basis (possibly non-linear) involving a limited numberyaditional approaches (which relatesta).

of time-varying parameters; The identification method is based othaee hidden layers
HS) Sto‘fh‘?‘St'C disturbances are supposedffiecathe sys- network presented on Fig. 1 (see [14] and related references
tem’s input over a sfiicient frequency range. for examples of distributed system identification usingraéu

H1) excludes the shock waves from the analysis, as sudetworks). The first two layers identify the shape paranseter
transport phenomena would need a more dedicated identiif the normalized profile/(X, t)/Vo(t), while the dynamics is
cation approachH?2) is a reasonable assumption consideringnhtroduced in the third layer along withy(t). We distinguish

the fact that distributed measurement devices are availaliiere the steady state behavior, which corresponds to small
for large scale plants (such as Tokamaks). The need for dig@riations around an equilibrium and almost constant isput
tributed measurements may be removed if the system satisfigg(txs9, from the transient response, where we can observe
some traditional observability conditionbl3) restricts the a transition in the operation mode and large variations of
use of global parameters to be known at each sampling time inputsu(ts). This is mainly motivated by the fact that
H4) is clearly the most restrictive hypothesis and will beve identify algebraic relationships in the first case while a
discussed belowH5) relates to singular perturbation theorydynamic algorithm is needed in the second case. Note also
and is necessary to ensure that the signal fBcsently rich  that the global behavior of the system can be described with
to identify a relevant model. low sampling rate data measured on large time intervals when



the system has slow variations while the transient behavior IV. STEADY-STATE BEHAVIOR
needs a high sampling rate and measurements focused on th¢pe steady-state behavior of the identified system is mod-
transition phases. eled in the second layer by establishing the relationship
The time vector associated with the distributed measur@gtween the spatial parametérgtcsd (at time instants when
ments (including bothyss and ty) is denoted asx and the  the system is at equilibrium) and some global, 0D (only time-
parameters computed by each layer arg 8j, ¥j}(t), s  varying) inputsu; € R". The spatial parameters determined
and . The three layers of the network are then describegy tne first layer then provide for the reference outputs of
as follows: the second layer.
1) the first layer is focused on the spatial variation

for each sampling timéy, it estimatesv(x, tk)/v(0, ty) A. Linear regression

from the normalized measurements, t)/v(0, t) and Parameter estimation methods are particulafiycient
provides the shape parametérs, B;, v;}(t) (outputs) when the output is estimated with a linear regression tech-
according to (1) for the next layer; nigue (guaranteed global minimum), which can be obtained

2) the second layer is focused on the steady-state behd@m an exponential scaling law as follows. In this case
ior and replaces the time-dependency{ef, 8;, v;} P+ (tks9, t_he estimate of the parameters given by the first
by scaling laws involving the time-dependent globalayer, writes as:
parametersis{ty) and constant identified parameters

3 — 9501y 011y PJs21, Ps31 Dsnj1
s, thus expressing the shape parameters in terms of 1t €U U, U Uy
Uss andds (denoted asa;, Bj, vj}(Uss ¥s) on Fig. 1; By = : 3
3) finally, the transielnt dynamips is considered in the third Bian(t) = eﬂso,snuvzsl.gnugsz,gnugsa.gn o uzisni,sn
layer where the time-variation law : ] )
where the time dependency afs = {uj, U, ..., Un} N tyss
dVo N N N is omitted to simplify the notations. This set of equations
Tt = N, U ). %(0) = Vo (2) writes in the linear form:
is introduced to model(0,t) thanks to a specific In(d¢) =1 In(us9] x s
choice ofh(-) and the identified parametefs. ith
with:
The specific choice ok(:) is based on the general shape
of v(-) while h(-) can be set from the physical properties Ps01 ... Dsna
of the system (such as a conservation law). A stochastic Ps = : : € RI%(i+1)
gradient method ensures the optimal parameter |der_1_tcirmat| Psoan ... Dsnan
(least squares minimization) and allows for the considenat L o
of parameter dependencies and nonlinear aspects on 40§ s minimizes the cost function:
layer, as detailed in the next sections. More details on the 1 o _ s s
sensitivity-based gradient computation used in this paper Js(s) = n—m Z 1@+ (i) — In(@ (D)l
the consideration of the system dynamics are provided in =1
[15]. B. Nonlinear/ discontinuous dependencies
The more general case whety is estimated with a
[Il. SuaPE DEFINITION OF THE SpATIAL DISTRIBUTION nonlinear function does not introduce any particular técdin

he T _ _ h 4 distrib difficulty as long ag}; € C1, whereC! is the set of continu-
The first step is to approximate the measured distribut sly diferentiable functions (the stochastic gradient descent

statef W'th_ a finite number olf parametﬁr—depgntljznt ?ﬁg;t'nﬂiethod applies). A more interesting case is when a specific
ous functions. More precisely, given the spatial diStitiut ;o 0ering inputur introduces some discontinuities in the

v(x &) and a set of inial functions, we want to determine th odel considered. In this case, an appropriate identifinati

optimal set of parameterd(t) = {ai. 5, 7} in (1) which  gopome has to include a possible switching betwegardnt

minimizes the vqriance 0f(X, ti) ,__v(?(’_tk)’ whereV is .the submodels. This kind of behavior can be observed wien
model output. This is done by minimizing the quadratic COSFeflects an actuator switching, some particular microscopi

phenomena or unmodeled instabilities.

Ny N 2
Ji(t) = Z [M We consider that each submodel is independent from the
i1 V(0. t) others, and consequently that the input data correspomaling
submodeli does not influence the optimal parameter set of
whereN, is the number of measurement locations. submodelj, with j # i. The second hidden layer then writes

Remark 1:If a specific class of associated transport modgh the switched form as:
is available (e.g. with a partial flerential equation with 1 N
constant cofficients), such knowledge can be included in the g (Uss I5), I %”(tksg € [a1, 2]
shape definition. In this case, the (quasi)steady-statgigol Dt (tksd = :
of the PDE can be used to define the mother function support. Muss 1Y), if ur(tksd € [an, ansa]



where g'() € C! is the fitting law corresponding to the line average density anBi is the total power input. The
specific value of the triggering inpuit,indicates the model second part of the input data comes from the distributed
considered andal, a;,1] the triggering interval. The optimal sources with the powd?p, and parallel refraction indei)

set of parameter§s is now a set oN matrices, obtained for of the Lower Hybrid launchers and the power of the lon
example with a gradient descent method. Cyclotron Radio Frequency antenRgs.

V. AmpLITUDE DYNaMmICS A. Profile shape estimation
The third hidden layer focuses on the dynamics assomated-l-he profiles shape (first layer) is estimated using the nor-

with the transient response of the system. The fundtih | -ii-ad measured tem
A . perature profilgéx, t)/ Teo(t), where
has to be such thatVy/dt — 0 when the selected inputs Tw) = Te(0,1) is the central temperature andis the

are constant and vary othe_rW|se. Supposing that the NPYBrmalized small plasma radius. The spatial distributi®n i
ussandu; have faster dynamics thag (i.e. the actuators and estimated with the sigmoid distribution:

sensors dynamics do not interfere in the identificatiord, th
previous property is verified if we restrib{.) to the class of Te(xt) Wxb _ a (5)
functions that writes aB(¢ (U, 9;) — Vo, U, ) Whereg(u, t) Te(0,t)  Uo(t) 1+eh)

is the equilibrium value of/g. It is supposed that:

Note that, considering the measurements precision and the
« ¢(-) is aC" function; L-modeoperation, a single sigmoid function isfaient to
« h() is Lipschitz continuous and strictly decreasing ingptain the desired accuracy. Additional sigmoids would be
Vo, to ensure thatllp/dt — 0 for constant inputs as npeeded to represent themodeor internal transport barriers.
well as .the convergence of the ODE associated with thene set of first layer optimal paramete?$(t) = {e, 8, ¥}
sensitivity computation. is obtained by minimizing the cost function:
The statevy then converges tap(u;, ;) and the optimal
set of parameterg); is obtained using a gradient descent
method with sensitivityS(¢, t) = dVy/d%; wheredly/dd; is
computed by solving on [0'] the ODE: _ .
d 166 oh o0 oh whe_re Ny = 21 is 'Fhe n_u_mb_er of spatial measurements
el [_0 -2 o = available to set the identification method amd= 1...N;.
dt| 99, R ORI The resulting optimal values of the cost functidhat each
along with (2). tx are presented at the top of Figure 2, where the 19 shots are
plotted consecutively on the same time scale and delimited
) o ] ) with vertical dotted lines. The stars and the vertical dbtte
The proposed identification method is applied t0 thgnes ingicate the times for switching between shots (lower

estimation of the electron temperature profilgx,t) of Tore  giars) and between phases witffefient operating conditions
Supratokamak plasmas operating inmode The tempera- (1o ‘stars). All the shots considered have an associated

ture behavior is generally set by thefdsion equation 3 < 10-% (the algorithm is stopped whed; < 107 to

30neTe reduce the amount of computations), which validates the fac
2 ot that a single sigmoid function provides a good approxinmatio
whereng(x, 1) is the electron densitye(x,t) is the temper- for the temperature profile shape.
ature difusivity andSt(x,t) corresponds to distributed heat
sources (radio frequency antennas). Various approaches h§- Parameter dependency
been proposed for the computation pfand St but their The second layer is estimated combining the linear re-
number illustrates the fliculty to model the heat ffusion gression proposed in Section IV-A and the switched model
for tokamak plasmas. Some existing fitting laws provide fodescribed in Section IV-B, where the switching termPig
the volume average temperature estimation [6] but do n¢optimization tests highlighted the peculiar influence bt
allow to estimate the spatial distribution, which motihte parameter). The data set fofx; txsg/Vo(tks9 and u(tksg is
the proposed approach. chosen such thati has slow variations compared to the
The first and second layer of the neural network are usédmperature dynamics.
to determine the profile shape while the third layer sets The switched scaling law for the shape parameters writes
its amplitude. The considered system inpufy are global as: _
parameters, which are usually set beforshent (tokamak 3 _{ {ain, Bn, yn} if  Pr#0 ©6)
plasma experiment) and can be used in predictive control {@ws Bus Yo €lse
schemes. A qualitative analysis of the plasma physics mOU\?ith
vates the choice of the following global variables:

Ny

Ji(te) = Z er(Xj 6% €r(X),t) =

=1

Te(Xj, t) — V(Xi %)
Teo(t)

VI. ExpERIMENTAL RESuULTS

=V (NeyeVTe) + St 4)

_  o-087)-043R0637\0.25 Pt \015
U(t) = {IP’ B¢O’ ﬁe? PtOt: P|h7 N//7 Picrf} @ = € Ip B¢0 N// (1+ Plot)
,Blh — —93'88| 0.31870.86ﬁ70.39N71.15 (7)
(in MA, T, 10'°® m=3, MW), wherel, is the total plasma P "o € y o osa
current,By, is the toroidal magnetic fieldhe is the electron Yh = e1-77lg-4°B;§-76N/7°-45(1+ To:)



3 First layer estimation

; is introduced to relat& (t) to the plasma energy:

1

I
- |
107 , whereC = 6n°a’Roe with a and Ry the minor and major
| plasma radius, respectively, amdthe electron charge. The
0 =0 100 50 200 250 300 a3s0  aoo Subscripti den_otes t.he ions cpntributign. The rati@i_(t) =
. Second layer estimation TE(O, t)/Te(0, 1) is estimated using the linear regression tech-
10 M ‘ nigue (on a set of 34 shots) as:
| b I
| | m | \~038 P \~162 P, \136
= " | ’N l ' - 1—0.31(—") ﬁe°-90(1+ —'C”) (1+ i)
‘ ‘ Bys tot Ptot
and the electronic density is approximated witf(x,t) =~
102 ‘ ‘ ‘ ‘ ‘ ‘ ‘ (1 — x")ng(0, t), wherey, = 2. Approximating the ratio of
0 50 100 150 200 250 300 350 400 ion to electron density witlwni(t) ~ (7 — Zet1(t))/6, where
o B __ Third layer estimation Zet1(t) is the dfective plasma charge, the energy equation
S meas. implies thatTe(t) = A(Y)W(t) with:
L6 kkxk N 1
= +1_ (1 ) , |
Ky AW = |0 + arian) 2R [ (0= w0 T dax
< ! R | Yn 0 Vo(t)
B ; identif. " ‘ The relationship betweew and Py, corresponds to first
0| ‘ ‘ ‘ ‘ ‘ ‘ ‘ order dynamics and the optimal parametgks. .. 9} set a
0 % 100 150 200 ) 250 300 350 400 gealing law on the time constant to minimize:
Fig. 2. Identification methodf&ciency when applied to the reference data 1 Ne
set (19 shots, 9500 measurements). J=— Z(Teo(i) _ feo(i))zdt(i)
N
i=1
a, = e—0.37|50.46|32.2352.22 More precisely, the estimated central temperatﬂ?’g@(t)
B, = _el_gzlo_sgﬁ_of’sg, results from the proper approximation of the thermal con-
@ pe finement timery,(t), which sets the dynamics:
_ @015 1'038’0-51(1 + M)‘OAG
Yo P By, Prot 7w = 0.14 g.ng;(?.1sﬁ(e).77pt—otg.75
Note that only the most significant dependencies are kept in dlv = Pyt - iV\/, W(0) = Pot(0)rin(0) 9
the final scaling laws. For example, it appeared fgahas a A Tth
Teo(t) = AW

limited impact on the profile slopeg;,) while it significantly
affects the other two parametergy( and y,). The ratio The diiciency of this layer, which also includes the results
Piert /Prot is used to take into account the fact that the ICRPf the first and second layers since the integral(@ft)/Vo(t)
antenna significantly modifies the shapes when it is used bst needed to computer, is illustrated at the bottom of
does not necessitate the definition of an extra switch. Figure 2, where botlT(t) and Te(t) are presented. The
This model is compared with experimental data on th&ccuracy of the estimation validates the use of (9) to estima
middle part of Figure 2. The minimized codf is computed the central temperature as well as theticeency of the
asJ; but with V(x, tks9/Yo(tks9 estimated using (7)-(8). The proposed methodology to find the optimal parameters.
average value of the cost functlon_ Is increased but FeMaIR® Validation on a shot not included in the database
within some acceptable bounds with a mean value.5%3
This, along with the fact that the distribution of the error TO conclude on the experimental validation, the identified
around its mean value doesn’t exhibit significantly |argénodel is tested on a shot that is not included in the database
shot-dependent variations, validates the specific chofce 35557) on Figure 3. The first and lass Zorrespond to

{|p, Byos Ne» P, NJ, Picrf} as system inputs and the linearthe current ramp-up and ramp-down, where some specific
regression approach. phenomena (not considered in the proposed model) occur.

The distributed erroiTe(x, t) — ¥(x,t)| is presented on the
top part of the figure and illustrates the spatial distrititi
accuracy. The highest error (approximately 10%) appears
The third layer estimates the dynamics of the centralhen the sole input is the LH power but remains within
temperaturel (t) ash(:), including an energy conservation acceptable bounds for the intended use. Thisce is at-
constraint. Supposing that the tokamak torus shape can temuated when LH is combined with ICRF and a more
approximated with a cylinder (classical cylindrical apgro precise model could be obtained by distinguishing the case
mation [16], [11]), the physics of plasma energy confinementhen LH is the only input from the case when both LH

C. System dynamics
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Fig. 3. Comparison of the model with a shot not included indatgabase
(TS 35 557:1p = 0.6 MA, Byo = 3.53-3.59 T, g = 1.4 - 2.6 x10'° m™3,
Ny = 1.84 andZess = 2-5.5).

(3]

(4]
(5]

(6]

and ICRF are used or by refining the shape descriptiof’]
(i.e. adding a Gaussian shape, as suggested in [11]). The
central temperature obtained from the measurements, from
the proposed identification method and from the fitting law!(8l
ITERL-96P(th) [6] 7thiter = 0.14 3-9682603@40%%73 are
presented on the bottom part of the figure, along vith
and P ¢. The overall temperature profile is estimated with a
satisfactory accuracy and is comparable WitERL-96P(th) [10]
to estimate the plasma confinement. Further validation was
given in [11], where this model was used for magnetic flux
and current profiles prediction. (11

CONCLUSIONS

The problem of modeling non-homogeneous transpoptzl
phenomena is considered in this work as defining a set
of time and space varying functions that characterizes the
shape distribution and its evolution. This is an alterreativ
to classical discretization methods and ensures the patia
continuity of the resulting model. It also allows to set
scaling laws with a direct interpretation of the physica[”]

phenomena. Based on some distributed measurements, the

proposed identification method first estimates the spatial
distribution at each sampling time with a sum of space-
dependent functions. The steady-state and transient imekav
of the system, including the parameters dependencies, are
then considered successively. The generality of the esult®
allows to consider a large class of physical systems and
to include a priori knowledge of the system explicitly in
the choice of key global parameters. Experimental results
illustrate the &iciency of this method fofore Suprgplasmas
temperature profiles estimation.
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