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Abstract

We consider the free 2-nilpotent graded Lie algebra g generated in degree one by a
finite dimensional vector space V . We recall the beautiful result that the cohomology
H•(g,K) of g with trivial coefficients carries a GL(V )-representation having only the
Schur modules Vλ with self-dual Young diagrams {λ : λ = λ′} (each with multiplicity
one) in its decomposition into GL(V )-irreducibles. The homotopy transfer theorem
due to Tornike Kadeishvili allows to equip the cohomology of the Lie algebra g with a
structure of homotopy commutative algebra.

1 Homotopy algebras A∞ and C∞

We start by recalling the definition of homotopy algebra. For a pedagogical introduction to
the subject we send the read to the textbook of J.-L. Loday and B. Valette [6].

DEFINITION 1 A homotopy associative algebra, or A∞-algebra over K is a Z-graded
vector space A =

⊕

i∈Z A
i endowed with a family of graded mappings (operations)

mn : A⊗n → A, deg(mn) = 2− n n ≥ 1

satisfying the Stasheff identities SI(n) for n ≥ 1
∑

r+s+t=n

(−1)r+stmr+1+t(Id
⊗r ⊗ms ⊗ Id⊗t) = 0 SI(n)

where the sum runs over all decompositions n = r + s+ t.

Throughout the text we assume the Koszul sign rule (f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y).
We define the shuffle product by the expression (a1 ⊗ . . . ⊗ ap) � (ap+1 ⊗ . . . ⊗ ap+q) =
∑

σ∈Shp,q
sgn(σ) aσ−1(1)⊗ . . .⊗aσ−1(p+q) the sum running over shuffles Shp,q, i.e., over all per-

mutations σ ∈ Sp+q such that σ(1) < σ(2) < . . . < σ(p) and σ(p+ 1) < σ(p + 2) < . . . < σ(p+ q) .

∗A talk given by Todor Popov at the International Workshop “Supersymmetries & Quantum Symmetries”,
held at BLTP of JINR, Dubna from July, 18th to July, 23th, 2011.
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DEFINITION 2 (see e.g.[4]) A homotopy commutative algebra C∞, or C∞-algebra is an
A∞ algebra {A,mn} with the additional condition: each operation mn vanishes on shuffles

mn ((a1 ⊗ . . .⊗ ap)� (ap+1 ⊗ . . .⊗ an)) = 0 , 1 ≤ p ≤ n− 1 . (1)

In particular for m2 we have m2(a ⊗ b ± b ⊗ a) = 0, so a C∞-algebra such that mn = 0 for
n ≥ 3 is a super-commutative Differential Graded Algebra (DGA for short).

Morphism of two A∞-algebras A and B is a family of graded maps fn : A⊗n → B for
n ≥ 1 with deg fn = 1− n such that the following conditions hold

∑

r+s+t=n

(−1)r+stfr+1+t(Id
⊗r ⊗ms ⊗ Id⊗r) =

∑

1≤q≤n

(−1)Smq(fi1 ⊗ fi2 ⊗ . . .⊗ fiq)

where the sum is on all decompositions i1 + . . .+ iq = n and the sign on RHS is determined
by S =

∑q−1
k=1(q − k)(ik − 1). The morphism f is a quasi-isomorphism of A∞-algebras if f1

is a quasi-isomorphism. It is strict if fi = 0 for i ≥ 1. The identity morphism on A is the
strict morphism f such that f1 is the identity of A.

A morphism of C∞-algebras is a morphism of A∞-algebras with components vanishing
on shuffles fn ((a1 ⊗ . . .⊗ ap)� (ap+1 ⊗ . . .⊗ an)) = 0 , 1 ≤ p ≤ n− 1 .

2 Homotopy Transfer Theorem

LEMMA 1 (see e.g.[6]) Every cochain complex (A, d) of vector spaces over a field K has
its cohomology H•(A) as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d) such that
An ∼= Bn ⊕ Hn ⊕ Bn+1 where Hn is the cohomology and Bn is the space of coboundaries,
Bn = dAn−1. We choose a homotopy h : An → An−1 which identifies Bn with its copy in An−1

and is 0 onHn⊕Bn+1. The projection p to the cohomology and the cocycle-choosing inclusion

i given by An
p

//
Hn

i
oo are chain homomorphisms (satisfying the additional conditions hh =

0, hi = 0 and ph = 0). With these choices done the complex (H•(A), 0) is a deformation
retract of (A, d)

h
"" (A, d)

p
// (H•(A), 0)

i
oo , pi = IdH•(A) , ip− IdA = dh+ hd . (2)

Let now (A, d, µ) be a DGA, i.e., A is endowed with an associative product µ compatible
with d. The cochain complexes (A, d) and its contraction H•(A) are homotopy equivalent,
but the associative strucure is not stable under homotopy equivalence. However the as-
sociative structure on A can be transferred to an A∞-structure on a homotopy equivalent
complex, a particular interesting complex being the deformation retract H•(A).

THEOREM 1 (Kadeishvili[4]) Let (A, d, µ) be a (commutative) DGA over a field K.
There exists a A∞-algebra (C∞-algebra) structure on the cohomology H•(A) and a A∞(C∞)-
quasi-isomorphism fi : (⊗

iH•(A), {mi}) → (A, {d, µ, 0, 0, . . .}) such that the inclusion f1 =
i : H•(A) → A is a cocycle-choosing homomorphism of cochain complexes. The differential
on H•(A) is zero m1 = 0 and m2 is the associative operation induced by the multiplication
on A. The resulting structure is unique up to quasi-isomorphism.
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3 Homology and cohomology of the Lie algebra g

Let g be the 2-nilpotent graded Lie algebra g = V ⊕
∧2 V generated by the finite dimensional

vector space V over the ground field K of characteristics zero. The Lie bracket on g reads

[x, y] := x ∧ y when x, y ∈ V and [x, y] := 0 otherwise .

We define the homology with trivial coefficients of the Lie algebra g throught the Chevalley-
Eilenberg complex C•(g) = (

∧•
g, ∂•) having differential ∂n :

∧n
g →

∧n−1
g,

∂n(x1 ∧ . . . ∧ xn) =
∑

i<j
(−1)i+j [xi, xj ] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn p > 0. (3)

The homology Hn(g,K) of the Lie algebra g is the homology space of the complex C(g)

Hn(g,K) := Hn(C•(g)) , Hn(C•(g)) = ker ∂n/im∂n+1 .

The differential ∂ is induced by the Lie bracket [·, ·] :
∧2

g → g of the graded Lie algebra
g = g1⊕ g2. It identifies a pair of degree 1 generators ei, ej ∈ g1 with one degree 2 generator
eij := (ei ∧ ej) = [ei, ej ] ∈ g2. In greater details the chain degrees read

∧n

g =
∧n

(

V ⊕
∧2

V
)

=
⊕

s+r=n

∧s
(

∧2
V
)

⊗
∧r

V (4)

and differentials ∂n=r+s :
∧s(

∧2V )⊗
∧rV →

∧s+1(
∧2V )⊗

∧r−2V are given by

∂n : ei1j1 ∧ . . . ∧ eisjs ⊗ e1 ∧ . . . ∧ er 7→
∑

i<j

(−1)i+jeij ∧ ei1j1 ∧ . . . ∧ eisjs ⊗ e1 ∧ . . . ∧ êi ∧ . . . ∧ êj ∧ . . . ∧ er .

The differential ∂ commutes with the GL(V )-action thus the homology H•(g,K) is also
a GL(V )-module; its decomposition into irreducible polynomial representations Vλ (the so
called Schur modules) is given by the following beautiful result.

THEOREM 2 (Józefiak and Weyman[3], Sigg[7]) The homology H•(g,K) of the 2-
nilpotent Lie algebra g = V ⊕

∧2V decomposes into irreducible GL(V )-modules

Hn(g,K) = Hn(
∧•

g, ∂•) ∼=
⊕

λ:λ=λ′

Vλ (5)

where the sum is over the self-dual Young diagrams {λ : λ = λ′} such that n = 1
2
(|λ|+ r(λ)).

By duality, one has the cochain complex HomK(C(g),K) = (
∧•

g
∗, δ•) which is a (super)

commutative DGA. The cohomology Hn(g,K) with trivial coefficients is calculated by the
complex (

∧•
g
∗, δ•)

Hn(g,K) := Hn(∧•
g
∗, δ•) .

Here the coboundary map δn :
∧n

g
∗ →

∧n+1
g
∗ is transposed1 to the differential ∂n+1

δn : e∗i1j1 ∧ . . . ∧ e∗isjs ⊗ e∗1 ∧ . . . ∧ e∗r 7→ (6)
s

∑

k=1

∑

ik<jk

(−1)i+je∗i1j1 ∧ . . . ∧ ê∗ikjk ∧ . . . ∧ e∗isjs ⊗ e∗ik ∧ e∗jk ∧ e∗1 ∧ . . . ∧ . . . ∧ e∗r ,

it is (up to a conventional sign) a continuation of the dualization of the Lie bracket δ1 :=
[·, ·]∗ : g∗ →

∧2
g
∗ by the Leibniz rule.

1In the presence of metric one has δ := ∂∗(see below).
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PROPOSITION 1 ([2]) The cohomology H•(g,K) of the 2-nilpotent graded Lie algebra
g = V ⊗

∧2V is a homotopy commutative algebra. The C∞-algebra H•(g,K) is generated in
degree 1,i.e., in H1(g,K), by the operations m2 and m3.

Sketch of the proof. By Lemma 1 the commutative DGA (
∧•

g
∗, µ, δ•) has a deformation

retract H•(
∧•

g
∗) thus from the Kadeishvili homotopy transfer Theorem 1 follows that the

cohomology H•(g,K) is a C∞-algebra.
To prove that the C∞-algebraH•(g,K) is generated bym2 andm3 we will need convenient

choice of the homotopy h, the projection p and the inclusion i in the deformation retract(2).
Let us choose a metric g( , ) = 〈 , 〉 on the vector space V and an orthonormal basis

〈ei, ej〉 = δij. The choice induces a metric on
∧•

g

g
∼=

∧•
g
∗. In presence of metric g the

differential δ is identified with the adjoint of ∂, δ
g
:= ∂∗(see eq.(5)) while ∂ plays the role of

homotopy. The deformation retract of the complex (
∧•

g
∗, δ•) takes the following form[7]

pi = IdH•(
∧

•
g∗) , ip− Id∧•

g∗ = δδ∗ + δ∗δ , δ∗
g
= ∂ .

Here the projection p identifies the subspace ker δ∩ker δ∗ withH•(
∧•

g
∗), which is the orthog-

onal complement of the space of the coboundaries imδ. The cocycle-choosing homomorphism
i is Id on H•(

∧•
g
∗) and zero on coboundaries.

Due to the isomorphisms Hn(g,K)∼=H∗
n(g,K)(i.e., TorUg

n (K,K) ∼= ExtnUg
(K,K) in the

category of graded algebras [1]) induced by V
g
∼= V ∗ the theorem 2 implies the decomposition

Hn(g,K) ∼= Hn(∧g∗, δ) ∼= ⊕λ:λ=λ′Vλ

where the sum is over the self-dual Young diagrams λ such that n = 1
2
(|λ|+ r(λ)).

We were able to show in [2] that with the use of the explicit expressions[5] for the operations
m2(x, y) := pµ(i(x), i(y)) and m3(x, y, z) = pµ(i(x), hµ(i(y), i(z))) − pµ(hµ(i(x), i(y)), i(z))
one can generate all the elements in H•(g,K) by the degree one elements H1(g,K). �
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