Homotopy transfer and self-dual Schur modules

Michel Dubois-Violette, Todor Popov

To cite this version:

Michel Dubois-Violette, Todor Popov. Homotopy transfer and self-dual Schur modules. Physics of Particles and Nuclei, 2012, 43 (5), pp.708-710. 10.1134/S1063779612050115 . hal-00667215

HAL Id: hal-00667215
https://hal.science/hal-00667215
Submitted on 7 Feb 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Homotopy Transfer and Self-Dual Schur Modules*

Michel Dubois-Violette
Laboratoire de Physique Théorique, UMR 8627, Université Paris XI, Bâtiment 210, F-91 405 Orsay Cedex, France

Todor Popov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BG-1784, Bulgaria

Abstract

We consider the free 2 -nilpotent graded Lie algebra \mathfrak{g} generated in degree one by a finite dimensional vector space V. We recall the beautiful result that the cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ of \mathfrak{g} with trivial coefficients carries a $G L(V)$-representation having only the Schur modules V_{λ} with self-dual Young diagrams $\left\{\lambda: \lambda=\lambda^{\prime}\right\}$ (each with multiplicity one) in its decomposition into $G L(V)$-irreducibles. The homotopy transfer theorem due to Tornike Kadeishvili allows to equip the cohomology of the Lie algebra \mathfrak{g} with a structure of homotopy commutative algebra.

1 Homotopy algebras A_{∞} and C_{∞}

We start by recalling the definition of homotopy algebra. For a pedagogical introduction to the subject we send the read to the textbook of J.-L. Loday and B. Valette [6].

DEFINITION 1 A homotopy associative algebra, or A_{∞}-algebra over \mathbb{K} is a \mathbb{Z}-graded vector space $A=\bigoplus_{i \in \mathbb{Z}} A^{i}$ endowed with a family of graded mappings (operations)

$$
m_{n}: A^{\otimes n} \rightarrow A, \quad \operatorname{deg}\left(m_{n}\right)=2-n \quad n \geq 1
$$

satisfying the Stasheff identities $\mathbf{S I}(\mathbf{n})$ for $n \geq 1$

$$
\sum_{r+s+t=n}(-1)^{r+s t} m_{r+1+t}\left(I d^{\otimes r} \otimes m_{s} \otimes I d^{\otimes t}\right)=0 \quad \mathbf{S I}(\mathbf{n})
$$

where the sum runs over all decompositions $n=r+s+t$.
Throughout the text we assume the Koszul sign rule $(f \otimes g)(x \otimes y)=(-1)^{|g| x \mid} f(x) \otimes g(y)$. We define the shuffle product by the expression $\left(a_{1} \otimes \ldots \otimes a_{p}\right) \amalg\left(a_{p+1} \otimes \ldots \otimes a_{p+q}\right)=$ $\sum_{\sigma \in S h_{p, q}} \operatorname{sgn}(\sigma) a_{\sigma^{-1}(1)} \otimes \ldots \otimes a_{\sigma^{-1}(p+q)}$ the sum running over shuffles $S h_{p, q}$, i.e., over all permutations $\sigma \in S_{p+q}$ such that $\sigma(1)<\sigma(2)<\ldots<\sigma(p)$ and $\sigma(p+1)<\sigma(p+2)<\ldots<\sigma(p+q)$.

[^0]DEFINITION 2 (see e.g.[4]) A homotopy commutative algebra C_{∞}, or C_{∞}-algebra is an A_{∞} algebra $\left\{A, m_{n}\right\}$ with the additional condition: each operation m_{n} vanishes on shuffles

$$
\begin{equation*}
m_{n}\left(\left(a_{1} \otimes \ldots \otimes a_{p}\right) \amalg\left(a_{p+1} \otimes \ldots \otimes a_{n}\right)\right)=0, \quad 1 \leq p \leq n-1 \tag{1}
\end{equation*}
$$

In particular for m_{2} we have $m_{2}(a \otimes b \pm b \otimes a)=0$, so a C_{∞}-algebra such that $m_{n}=0$ for $n \geq 3$ is a super-commutative Differential Graded Algebra (DGA for short).

Morphism of two A_{∞}-algebras A and B is a family of graded maps $f_{n}: A^{\otimes n} \rightarrow B$ for $n \geq 1$ with $\operatorname{deg} f_{n}=1-n$ such that the following conditions hold

$$
\sum_{r+s+t=n}(-1)^{r+s t} f_{r+1+t}\left(I d^{\otimes r} \otimes m_{s} \otimes I d^{\otimes r}\right)=\sum_{1 \leq q \leq n}(-1)^{S} m_{q}\left(f_{i_{1}} \otimes f_{i_{2}} \otimes \ldots \otimes f_{i_{q}}\right)
$$

where the sum is on all decompositions $i_{1}+\ldots+i_{q}=n$ and the sign on RHS is determined by $S=\sum_{k=1}^{q-1}(q-k)\left(i_{k}-1\right)$. The morphism f is a quasi-isomorphism of A_{∞}-algebras if f_{1} is a quasi-isomorphism. It is strict if $f_{i}=0$ for $i \geq 1$. The identity morphism on A is the strict morphism f such that f_{1} is the identity of A.

A morphism of C_{∞}-algebras is a morphism of A_{∞}-algebras with components vanishing on shuffles $f_{n}\left(\left(a_{1} \otimes \ldots \otimes a_{p}\right)\right.$ Ш $\left.\left(a_{p+1} \otimes \ldots \otimes a_{n}\right)\right)=0,1 \leq p \leq n-1$.

2 Homotopy Transfer Theorem

LEMMA 1 (see e.g.[6]) Every cochain complex (A, d) of vector spaces over a field \mathbb{K} has its cohomology $H^{\bullet}(A)$ as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d) such that $A^{n} \cong B^{n} \oplus H^{n} \oplus B^{n+1}$ where H^{n} is the cohomology and B^{n} is the space of coboundaries, $B^{n}=d A^{n-1}$. We choose a homotopy $h: A^{n} \rightarrow A^{n-1}$ which identifies B^{n} with its copy in A^{n-1} and is 0 on $H^{n} \oplus B^{n+1}$. The projection p to the cohomology and the cocycle-choosing inclusion i given by $A^{n} \underset{i}{\stackrel{p}{\rightleftarrows}} H^{n}$ are chain homomorphisms (satisfying the additional conditions $h h=$ $0, h i=0$ and $p h=0)$. With these choices done the complex $\left(H^{\bullet}(A), 0\right)$ is a deformation retract of (A, d)

$$
\begin{equation*}
{ }_{h} \bigcirc(A, d) \stackrel{p}{\underset{i}{\rightleftarrows}}\left(H^{\bullet}(A), 0\right), \quad p i=I d_{H \bullet(A)}, \quad i p-I d_{A}=d h+h d \tag{2}
\end{equation*}
$$

Let now (A, d, μ) be a DGA, i.e., A is endowed with an associative product μ compatible with d. The cochain complexes (A, d) and its contraction $H^{\bullet}(A)$ are homotopy equivalent, but the associative strucure is not stable under homotopy equivalence. However the associative structure on A can be transferred to an A_{∞}-structure on a homotopy equivalent complex, a particular interesting complex being the deformation retract $H^{\bullet}(A)$.

THEOREM 1 (Kadeishvili[4]) Let (A, d, μ) be a (commutative) DGA over a field \mathbb{K}. There exists a A_{∞}-algebra (C_{∞}-algebra) structure on the cohomology $H^{\bullet}(A)$ and a $A_{\infty}\left(C_{\infty}\right)$ -quasi-isomorphism $f_{i}:\left(\otimes^{i} H^{\bullet}(A),\left\{m_{i}\right\}\right) \rightarrow(A,\{d, \mu, 0,0, \ldots\})$ such that the inclusion $f_{1}=$ $i: H^{\bullet}(A) \rightarrow A$ is a cocycle-choosing homomorphism of cochain complexes. The differential on $H^{\bullet}(A)$ is zero $m_{1}=0$ and m_{2} is the associative operation induced by the multiplication on A. The resulting structure is unique up to quasi-isomorphism.

3 Homology and cohomology of the Lie algebra \mathfrak{g}

Let \mathfrak{g} be the 2-nilpotent graded Lie algebra $\mathfrak{g}=V \oplus \bigwedge^{2} V$ generated by the finite dimensional vector space V over the ground field \mathbb{K} of characteristics zero. The Lie bracket on \mathfrak{g} reads

$$
[x, y]:=x \wedge y \quad \text { when } \quad x, y \in V \quad \text { and } \quad[x, y]:=0 \quad \text { otherwise . }
$$

We define the homology with trivial coefficients of the Lie algebra \mathfrak{g} throught the ChevalleyEilenberg complex $C_{\bullet}(\mathfrak{g})=\left(\Lambda^{\bullet} \mathfrak{g}, \partial_{\bullet}\right)$ having differential $\partial_{n}: \Lambda^{n} \mathfrak{g} \rightarrow \bigwedge^{n-1} \mathfrak{g}$,

$$
\begin{equation*}
\partial_{n}\left(x_{1} \wedge \ldots \wedge x_{n}\right)=\sum_{i<j}(-1)^{i+j}\left[x_{i}, x_{j}\right] \wedge x_{1} \wedge \ldots \wedge \hat{x}_{i} \wedge \ldots \wedge \hat{x}_{j} \wedge \ldots \wedge x_{n} \quad p>0 \tag{3}
\end{equation*}
$$

The homology $H_{n}(\mathfrak{g}, \mathbb{K})$ of the Lie algebra \mathfrak{g} is the homology space of the complex $C(\mathfrak{g})$

$$
H_{n}(\mathfrak{g}, \mathbb{K}):=H_{n}(C \cdot(\mathfrak{g})), \quad H_{n}\left(C_{\bullet}(\mathfrak{g})\right)=\operatorname{ker} \partial_{n} / \operatorname{im} \partial_{n+1} .
$$

The differential ∂ is induced by the Lie bracket $[\cdot, \cdot]: \bigwedge^{2} \mathfrak{g} \rightarrow \mathfrak{g}$ of the graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$. It identifies a pair of degree 1 generators $e_{i}, e_{j} \in \mathfrak{g}_{1}$ with one degree 2 generator $e_{i j}:=\left(e_{i} \wedge e_{j}\right)=\left[e_{i}, e_{j}\right] \in \mathfrak{g}_{2}$. In greater details the chain degrees read

$$
\begin{equation*}
\bigwedge^{n} \mathfrak{g}=\bigwedge^{n}\left(V \oplus \bigwedge^{2} V\right)=\bigoplus_{s+r=n} \bigwedge^{s}\left(\bigwedge^{2} V\right) \otimes \bigwedge^{r} V \tag{4}
\end{equation*}
$$

and differentials $\partial_{n=r+s}: \bigwedge^{s}\left(\bigwedge^{2} V\right) \otimes \bigwedge^{r} V \rightarrow \bigwedge^{s+1}\left(\bigwedge^{2} V\right) \otimes \bigwedge^{r-2} V$ are given by

$$
\begin{aligned}
\partial_{n}: & e_{i_{1} j_{1}} \wedge \ldots \wedge e_{i_{s} j_{s}} \otimes e_{1} \wedge \ldots \wedge e_{r} \mapsto \\
& \sum_{i<j}(-1)^{i+j} e_{i j} \wedge e_{i_{1} j_{1}} \wedge \ldots \wedge e_{i_{s} j_{s}} \otimes e_{1} \wedge \ldots \wedge \hat{e}_{i} \wedge \ldots \wedge \hat{e_{j}} \wedge \ldots \wedge e_{r} .
\end{aligned}
$$

The differential ∂ commutes with the $G L(V)$-action thus the homology $H_{\bullet}(\mathfrak{g}, \mathbb{K})$ is also a $G L(V)$-module; its decomposition into irreducible polynomial representations V_{λ} (the so called Schur modules) is given by the following beautiful result.
THEOREM 2 (Józefiak and Weyman[3], Sigg[7]) The homology $H_{\bullet}(\mathfrak{g}, \mathbb{K})$ of the 2nilpotent Lie algebra $\mathfrak{g}=V \oplus \bigwedge^{2} V$ decomposes into irreducible $G L(V)$-modules

$$
\begin{equation*}
H_{n}(\mathfrak{g}, \mathbb{K})=H_{n}\left(\bigwedge \mathfrak{g}, \partial_{\bullet}\right) \cong \bigoplus_{\lambda: \lambda=\lambda^{\prime}} V_{\lambda} \tag{5}
\end{equation*}
$$

where the sum is over the self-dual Young diagrams $\left\{\lambda: \lambda=\lambda^{\prime}\right\}$ such that $n=\frac{1}{2}(|\lambda|+r(\lambda))$.
By duality, one has the cochain complex $\operatorname{Hom}_{\mathbb{K}}(C(\mathfrak{g}), \mathbb{K})=\left(\bigwedge^{\bullet} \mathfrak{g}^{*}, \delta^{\bullet}\right)$ which is a (super) commutative DGA. The cohomology $H^{n}(\mathfrak{g}, \mathbb{K})$ with trivial coefficients is calculated by the complex $\left(\bigwedge_{\bullet}^{\bullet} \mathfrak{g}^{*}, \delta \bullet\right)$

$$
H^{n}(\mathfrak{g}, \mathbb{K}):=H^{n}\left(\wedge \mathfrak{g}^{*}, \delta^{\bullet}\right)
$$

Here the coboundary map $\delta^{n}: \bigwedge^{n} \mathfrak{g}^{*} \rightarrow \bigwedge^{n+1} \mathfrak{g}^{*}$ is transposed ${ }^{1}$ to the differential ∂_{n+1}

$$
\begin{align*}
& \delta^{n}: e_{i_{1} j_{1}}^{*} \wedge \ldots \wedge e_{i_{s} j_{s}}^{*} \otimes e_{1}^{*} \wedge \ldots \wedge e_{r}^{*} \mapsto \tag{6}\\
& \sum_{k=1}^{s} \sum_{i_{k}<j_{k}}(-1)^{i+j} e_{i_{1} j_{1}}^{*} \wedge \ldots \wedge \hat{e}_{i_{k} j_{k}}^{*} \wedge \ldots \wedge e_{i_{s} j_{s}}^{*} \otimes e_{i_{k}}^{*} \wedge e_{j_{k}}^{*} \wedge e_{1}^{*} \wedge \ldots \wedge \ldots \wedge e_{r}^{*},
\end{align*}
$$

it is (up to a conventional sign) a continuation of the dualization of the Lie bracket $\delta^{1}:=$ $[\cdot, \cdot]^{*}: \mathfrak{g}^{*} \rightarrow \bigwedge^{2} \mathfrak{g}^{*}$ by the Leibniz rule.

[^1]PROPOSITION $1([2])$ The cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ of the 2-nilpotent graded Lie algebra $\mathfrak{g}=V \otimes \bigwedge^{2}$ Vis a homotopy commutative algebra. The C_{∞}-algebra $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is generated in degree 1,i.e., in $H^{1}(\mathfrak{g}, \mathbb{K})$, by the operations m_{2} and m_{3}.
Sketch of the proof. By Lemma 1 the commutative DGA ($\left.\bigwedge^{\bullet} \mathfrak{g}^{*}, \mu, \delta^{\bullet}\right)$ has a deformation retract $H^{\bullet}\left(\bigwedge^{\bullet} \mathfrak{g}^{*}\right)$ thus from the Kadeishvili homotopy transfer Theorem 1 follows that the cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is a C_{∞}-algebra.

To prove that the C_{∞}-algebra $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is generated by m_{2} and m_{3} we will need convenient choice of the homotopy h, the projection p and the inclusion i in the deformation retract(2).

Let us choose a metric $g()=,\langle$,$\rangle on the vector space V$ and an orthonormal basis $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$. The choice induces a metric on $\Lambda^{\bullet} \mathfrak{g} \stackrel{g}{\cong} \Lambda^{\bullet} \mathfrak{g}^{*}$. In presence of metric g the differential δ is identified with the adjoint of $\partial, \delta: \stackrel{g}{=} \partial^{*}$ (see eq.(5)) while ∂ plays the role of homotopy. The deformation retract of the complex $\left(\bigwedge^{\bullet} \mathfrak{g}^{*}, \delta{ }^{\bullet}\right)$ takes the following form[7]

$$
p i=I d_{H} \bullet\left(\wedge \bullet_{\mathfrak{g}^{*}}\right), \quad i p-I d_{\wedge^{\bullet} \mathfrak{g}^{*}}=\delta \delta^{*}+\delta^{*} \delta, \quad \delta^{*} \stackrel{g}{=} \partial .
$$

Here the projection p identifies the subspace $\operatorname{ker} \delta \cap \operatorname{ker} \delta^{*}$ with $H^{\bullet}\left(\bigwedge^{\bullet} \mathfrak{g}^{*}\right)$, which is the orthogonal complement of the space of the coboundaries im δ. The cocycle-choosing homomorphism i is $I d$ on $H^{\bullet}\left(\bigwedge^{\bullet} \mathfrak{g}^{*}\right)$ and zero on coboundaries.

Due to the isomorphisms $H^{n}(\mathfrak{g}, \mathbb{K}) \cong H_{n}^{*}(\mathfrak{g}, \mathbb{K})\left(\right.$ i.e., $\operatorname{Tor}_{n}^{U \mathfrak{g}}(\mathbb{K}, \mathbb{K}) \cong \operatorname{Ext}_{U \mathfrak{g}}^{n}(\mathbb{K}, \mathbb{K})$ in the category of graded algebras [1]) induced by $V \stackrel{g}{\cong} V^{*}$ the theorem 2 implies the decomposition

$$
H^{n}(\mathfrak{g}, \mathbb{K}) \cong H^{n}\left(\wedge \mathfrak{g}^{*}, \delta\right) \cong \oplus_{\lambda: \lambda=\lambda^{\prime}} V_{\lambda}
$$

where the sum is over the self-dual Young diagrams λ such that $n=\frac{1}{2}(|\lambda|+r(\lambda))$.
We were able to show in [2] that with the use of the explicit expressions[5] for the operations $m_{2}(x, y):=p \mu(i(x), i(y))$ and $m_{3}(x, y, z)=p \mu(i(x), h \mu(i(y), i(z)))-p \mu(h \mu(i(x), i(y)), i(z))$ one can generate all the elements in $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ by the degree one elements $H^{1}(\mathfrak{g}, \mathbb{K})$.

References

[1] H. Cartan. Homologie et cohomologie d'une algèbre graduée. Sèm. H. Cartan, 11(1958), 1-20.
[2] M. Dubois-Violette, T. Popov, Young tableaux and homotopy commutative algebras, to appear in Proceedings of "Lie Theory-9", Springer Proceedings in Mathematics(2012).
[3] T. Józefiak, J. Weyman, Representation-theoretic interpretation of a formula of D. E. Littlewood, Math. Proc. Cambridge Phil. Soc., 103(1988), 193-196.
[4] T. Kadeishvili, The A_{∞}-algebra Structure and Cohomology of Hochschild and Harrison, Proc. of Tbil. Math. Inst. 91(1988), 19-27.
[5] M. Kontsevich, Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, Math. Phys. Stud., 21(2000), Kluwer Acad. Publ., Dordrecht, 255-307.
[6] J.-L. Loday, B. Valette, Algebraic Operads, (to appear)
[7] S. Sigg, Laplacian and homology of free 2-step nilpotent Lie algebras, J. Algebra 185(1996), 144-161.

[^0]: *A talk given by Todor Popov at the International Workshop "Supersymmetries \& Quantum Symmetries", held at BLTP of JINR, Dubna from July, 18th to July, 23th, 2011.

[^1]: ${ }^{1}$ In the presence of metric one has $\delta:=\partial^{*}$ (see below).

