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Abstract. This article presents a new open-source C++ implementa-
tion to solve the SLAM problem, which is focused on genericity, versatil-
ity and high execution speed. It is based on an original object oriented
architecture, that allows the combination of numerous sensors and land-
mark types, and the integration of various approaches proposed in the
literature. The system capacities are illustrated by the presentation of
an inertial/vision SLAM approach, for which several improvements over
existing methods have been introduced, and that copes with very high
dynamic motions. Results with a hand-held camera are presented.

1 Motivation

Progresses in image processing, the growth of available computing power and
the proposition of approaches to deal with bearings-only observations have made
visual SLAM very popular, particularly since the demonstration of a real-time
implementation by Davison in 2003 [4]. The Extended Kalman Filter (EKF) is
widely used to solve the SLAM estimation problem, but it has recently been
challenged by global optimization methods that have shown superior precision
for large scale SLAM. Yet EKF still has the advantage of simplicity and faster
processing for problems of limited size [14], and can be combined with global
optimization methods [6] to take the best of both worlds.

Monocular EKF-SLAM reached maturity in 2006 with solutions for initiali-
zing landmarks [7] [12] [9]. Various methods for landmark parametrization have
been analyzed [10], and the literature now abounds with contributions to the
problem.

This article presents RT-SLAM1, a software framework aimed at fulfilling
two essential requirements. The first one is the need for a generic, efficient and
1 RT-SLAM stands for “Real-Time SLAM”



flexible development tool, that allows to easily develop, evaluate and test vari-
ous approaches or improvements. The second one is the need for practical solu-
tions for live experiments on robots, for which localization and mapping require
real-time execution and robustness. RT-SLAM is a C++ implementation based
on Extended Kalman Filter (EKF) that allows to easily change robot, sensor
and landmark models. It runs up to 60Hz with 640 × 480 images, withstand-
ing highly dynamic motions, which is required for instance on humanoid or
high speed all terrain robots. RT-SLAM is available as open source software at
http://rtslam.openrobots.org.

Section 2 details the architecture of RT-SLAM and section 3 presents some of
the techniques currently integrated within, to define an efficient inertial/visual
SLAM approach. Section 4 analyzes results obtained with a hand-held system
assessed thanks to ground truth, and section 5 concludes the article by a pre-
sentation of prospects.

2 Overall Architecture

Fig. 1 presents the main objects defined in RT-SLAM. They encompass the
basic concepts of a SLAM solution: the world or environment contains maps;
maps contain robots and landmarks; robots have sensors; sensors make obser-
vations of landmarks. Each of these objects is abstract and can have different
implementations. They can also contain other objects that may themselves be
generic.

(a) Main objects in a SLAM context.
Different robots Rob have several sen-
sors Sen, providing observations Obs of
landmarks Lmk. States of robots, sen-
sors and landmarks are stored in the
stochastic map Map. There is one ob-
servation per sensor-landmark pair.

(b) Objects hierarchy in RT-SLAM. Each in-
dividual map M in the world W contains robots
R and landmarks L. A robot has sensors S,
and an observation O is created for every pair
of sensor and landmark. In order to allow full
genericity, map managers MM and data man-
agers DM are introduced.

Fig. 1. The main objects in RT-SLAM



Map. The maps contain an optimization or estimation engine: for now RT-
SLAM uses a standard formulation of EKF-SLAM. Since this solution is very
well documented in the literature [5], it is not detailed in depth here. Indirect
indexing within Boost’s ublas C++ structures is intensively used to exploit the
sparsity of the problem and the symmetry of the covariances matrices.

Robot. Robots can be of different type according to the way their state is repre-
sented and their prediction model. The latter can be either a simple kinematic
model (constant velocity, constant acceleration, . . . ) or a proprioceptive sensor
(odometric, inertial, . . . ), as illustrated section 3.3. The proprioceptive sensor is
an example of generic object contained in robot objects, as different hardware
can provide the same function.

Sensor. Similarly to robots, sensors can also have different models (perspective
camera, panoramic catadioptric camera, laser, . . . ), and contain a generic extero-
ceptive sensor hardware object (firewire camera, USB camera, . . . ). In addition,
as sensors belong to the map, their state can be estimated: this opens the possi-
bility for estimating other parameters such as extrinsic calibration, time delays,
biases and gain errors, and the like.

Landmark. Landmarks can be of different type (points, lines, planes, . . . ), and
each type can have different state parametrization (Euclidean point, inverse
depth point, . . . ). Moreover the parametrization of a landmark can change over
time, as explained section 3.2. A landmark also contains a descriptor used for
data association, which is a dual description to the state representation.

As shown Fig. 1(a), it is worth noticing that landmark objects are common
to the different sensors, all of them being able to observe the same landmark
(provided they have compatible descriptors for this landmark of course). This
allows to greatly improve the observability of landmarks compared to a system
where the sensors are strictly independent. In the particular case of two cameras
for instance, landmarks can be used even if they are only visible from one camera
or if they are too far away for a stereovision process to observe their depth (this
process was introduced in [11] as BiCam SLAM).

Observation. In RT-SLAM, the notion of observation plays a predominant role.
An observation is a real object containing both methods and data. One obser-
vation is instantiated for every sensor-landmark pair, regardless of the sensor
having actually observed the landmark or not, and has the same lifetime as the
associated landmark. The methods it contains are the conventional projection
and back-projection models (that depend on the associated sensor and landmark
models), while the stored data consist of results and intermediary variables such
as Jacobian matrices, predicted and observed appearances, innovations, event
counters and others, that allow to greatly simplify and optimize computations.

Managers. In order to achieve full genericity wrt landmark types, in particu-
lar to allow the concurrent use of different landmark types for one sensor, two



different manager objects are added: data manager and map manager. Their im-
plementations define a given management strategy, while their instantiations are
dedicated to a certain landmark type. The data manager processes the sensors
raw data, providing observations of the external landmarks. For this purpose,
it exploits some raw data processors (for feature detection and tracking), and
decides which observations are to be corrected and in which order, according to
the quantity of information they bring and their quality. For example it can ap-
ply an active search strategy and try to eliminate outliers as described in section
3.1. The map manager keeps the map clean, with relevant information, and at a
manageable size, by removing landmarks according to their quality and the given
policy (e.g. visual odometry where landmarks are discarded once they are not
observed, or multimap slam where maps are “closed” according to given criteria).
These managers communicate together: for example, the data manager may ask
the map manager if there is enough space in the map to start a new initialization
process, and to allocate the appropriate space for the new landmark.

3 Inertial/visual SLAM within RT-SLAM

3.1 Active search and one-point RANSAC

The strategy currently implemented in RT-SLAM’s data manager to deal with
observations is an astute combination of active search [5] and outliers rejection
using one-point RANSAC [3].

The goal of active search is to minimize the quantity of raw data processing
by constraining the search in the area where the landmarks are likely to be
found. Observations outside of this 3σ observation uncertainty ellipse would
be anyway considered incompatible with the filter and ignored by the gating
process. In addition active search gives the possibility to decide anytime to stop
matching and updating landmarks with the current available data, thus enabling
hard real-time constraints. We extended the active search strategy to landmark
initialization: each sensor strives to maintain features in its whole field of view
using a randomly moving grid of fixed size, and feature detection is limited to
empty cells of the grid. Furthermore the good repartition of features in the field
of view ensures a better observability of the motions.

Outliers can come from matching errors in raw data or mobile objects in the
scene. Gating is not always discriminative enough to eliminate them, particu-
larly right after the prediction step when the observation uncertainty ellipses can
be quite large – unfortunately at this time the filter is very sensitive to faulty
corrections because it can mistakenly make all the following observations incom-
patible. To prevent faulty observations, outliers are rejected using a one-point
RANSAC process. It is a modification of RANSAC, that uses the Kalman filter
to obtain a whole model with less points than otherwise needed, and provides a
set of strongly compatible observations that are then readily corrected. Contrary
to [3] where data association is assumed given when applying the algorithm, we
do the data association along with the one-point RANSAC process: this allows
to look for features in the very small strongly compatible area rather than the



whole observation uncertainty ellipse, and to save additional time for raw data
processing.

3.2 Landmark parametrizations and reparametrization

In order to solve the problem of adding to the EKF a point with unknown dis-
tance and whose uncertainty cannot be represented by a Gaussian distribution,
point landmarks parametrizations and initialization strategies for monocular
EKF-SLAM have been well studied [4] [8] [9]. The solutions now widely accepted
are undelayed initialization techniques with inverse depth parametrization. An-
chored Homogeneous Point [10] parametrization is currently used in RT-SLAM.

The drawback of inverse depth parametrizations is that they describe a land-
mark by at least 6 variables in the stochastic map, compared to only 3 for an
Euclidean point (x y z)

T . Memory and temporal complexity being quadratic
with the map size for EKF, there is a factor of 4 to save in time and memory by
reparametrizing landmarks that have converged enough [2]. The map manager
uses the linearity criterion proposed in [9] to control this process.

3.3 Motion prediction

The easiest solution for EKF-SLAM is to use a robot kinematic model to do the
filter prediction, such as a constant velocity model:

R = (p q v w)
T

where p and q are respectively the position and quaternion orientation of the
robot, and v and w are its linear and angular velocities.

The advantage of such a model is that it does not require complicated hard-
ware setup (only a simple camera), but its strong limitation is that the scale
factor is not observable. A second camera with a known baseline can provide a
proper scale factor, but one can also use a proprioceptive sensor for the predic-
tion step. Furthermore it usually provides a far better prediction with smaller
uncertainties than a simple kinematic model, which brings several benefits:

1. search areas for matching are smaller, so processing is faster,
2. linearization points are more accurate, so SLAM precision is better, or one

can reduce the framerate to decrease CPU load for equivalent quality,
3. it allows to withstand high motion dynamics.

In the case of an Inertial Measurement Unit (IMU), the robot state is then:

R = (p q v ab wb g)
T

where ab and wb are the accelerometers and gyrometers biases, and g the 3D
gravity vector. Indeed it is better for linearity reasons to estimate the direction
of g rather than constraining the robot orientation to enforce g to be vertical.

A special care has to be taken for the conversion of the noise from continous
time (provided by the manufacturer in the sensor’s datasheet) to discrete time.
As the perturbation is continuous white noise, the variance of the discrete noise
grows linearly with the integration period.



3.4 Image processing

Point extraction. Point extraction is based on Harris detector with several opti-
mizations. Some of them are approximations: a minimal derivative mask [−1, 0, 1]
is used, as well as a square and constant convolution mask, in order to minimize
operations. This allows the use of integral images [15] to efficiently compute the
convolutions. Additional optimizations are related to active search (section 3.1):
only one new feature is searched in a small region of interest, which eliminates
the costly steps of thresholding and sub-maxima suppression.

Point matching. Point matching is based on Zero-mean Normalized Cross Cor-
relation (ZNCC), also with several optimizations. Integral images are used to
compute means and variances, and a hierarchical search is made (two searches
at half and full resolution are sufficient). We also implemented bounded partial
correlation [13] in order to interrupt the correlation score computation when
there is no more hope to obtain a better score than the threshold or the best one
up to now. To be robust to viewpoint changes and to track landmarks longer,
tracking is made by comparing the initial appearance of the landmark with its
current predicted appearance [5].

4 Results

Fig. 2 shows the hardware setup that has been used for the experiments. It is
composed of a firewire camera rigidly tied to an IMU, on which four motion
capture markers used to measure the ground truth are fixed.

Fig. 2. The experimental setup composed of a Flea2 camera and an XSens MTi IMU,
and screen captures of the 3D and 2D display of RT-SLAM.

Two different sequences are used, referred to as low dynamic and high dy-
namic sequences. Both were acquired indoor with artificial lights only, with an
image framerate of 50Hz synchronized to the inertial data rate of 100Hz. The
motion capture markers are localized with a precision of approximately 1mm,
so the ground truth has a precision of σxyz = 1mm in position and σwpr = 0.57◦

in angle (baseline of 20 cm).
Movies illustrating a run of every experiment are provided at:

http://rtslam.openrobots.org/Material/ICVS2011.



4.1 Constant velocity model

The inertial data is here not used, and the prediction is made according to a
constant velocity model. Fig. 3 presents the estimated trajectory and the ground
truth for the low dynamic sequence, and Fig. 4 shows the absolute errors for the
same run.

Fig. 3. Illustration of low dynamic trajectory, constant velocity SLAM (with scale
factor of 2.05 manually corrected). Estimated trajectory parameters and ground truth,
as a function of time (in seconds).

Fig. 4. Errors of the estimated parameters of the trajectory shown Fig. 3. The 99%
confidence area corresponds to 2.57σ bounds. The SLAM 99% confidence area, that
does not include ground truth uncertainty, is also shown.

Besides the global scale factor which is manually corrected, the camera tra-
jectory is properly estimated. The movie shows that loops are correctly closed,
even after a full revolution.



The position error raises up to 10 cm after quick rotations of the camera:
this is due to a slight drift of the scale factor caused by the integration of newer
landmarks (when closing loops, the scale factor is restimated closer to its initial
value). Also, uncertainty ellipses remain relatively large throughout the sequence:
these issues are solved by the use of an IMU to predict the motions.

4.2 Inertial/visual SLAM

Fig. 5 shows the trajectory estimated with the high dynamic sequence, and Fig.
6 and 7 show the behavior of inertial SLAM. Here, all of the 6 degrees of freedom
are successively excited, then y and yaw are excited with extreme dynamics: the
yaw angular velocity goes up to 400 deg/s, the rate of change of angular velocity
exceeds 3,000 deg/s2, and accelerations reach 3 g. It is interesting to note that
the time when SLAM diverges (around t = 65 s) corresponds to motions for
which the angular velocity exceeds the limit of the IMU (300 deg/s) and where
its output is saturated.

The IMU now allows to observe the scale factor, and at the same time reduces
the observation uncertainty ellipses and thus eases the active search procedure.
Conversely, the divergence of the SLAM process at the end of the sequence illus-
trates what happens when vision stops stabilizing the IMU: it quickly diverges
because the biases and the gravity cannot be estimated anymore.

Fig. 5. Illustration of high dynamic trajectory, inertial/visual SLAM. Estimated tra-
jectory parameters and ground truth, as a function of time (in seconds).

5 Outlook

We have presented a complete SLAM architecture whose genericity and per-
formance make it both a useful experimentation tool and efficient solution for
robot localization. The following extensions are currently being developed: using
a second camera to improve landmarks observability, a multimap approach to
cope with large scale trajectories and multirobot collaborative localization, and
the use of line landmarks complementarily to points to provide more meaningful
maps and to ease map matching for loop closure.



Fig. 6. Errors of inertial/visual SLAM estimated over 100 runs on the dynamic se-
quence, as a function of time (in seconds) – the difference between each run is due
to the randomized landmark selection, see section 3.1. All the runs remain in the
neighborhood of the 99% confidence area. The angular ground truth uncertainty is
not precisely known: its theoretical value is both overestimated and predominant over
SLAM precision in such a small area.

Fig. 7. Inertial/visual SLAM NEES [1] over 100 runs on the dynamic sequence. The
average NEES is quickly out of the corresponding 99% confidence area, but as the 100
runs were made on the same sequence they are not independant and the average NEES
should rather be compared to the simple NEES confidence area. The filter appears
to be very conservative with angles but this is due to the overestimated ground truth
uncertainty as explained in Fig. 6.



The architecture of RT-SLAM allows to easily integrate such developments,
and also to consider additional motion sensors: to increase the robustness of the
system, it is indeed essential to consider the various sensors usually found on
board a robot (odometry, gyrometers, GPS). Eventually, it would be interesting
to make RT-SLAM completely generic wrt the estimation engine as well, in order
to be able to use global optimization techniques in place of filtering.
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