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Abstract- In this paper, we address the practical implementation of the synchrosqueezing method. The
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I. I NTRODUCTION

Audio signals are commonly modelled as a sum of AM/FM components with slowly varying amplitude

and instantaneous frequency [13]. Consequently, the retrieval of the components of a multicomponent

signal is a central issue in many audio processing problems.The most commonly used techniques to carry

out the retrieval are time-frequency or time-scale based signal representations. For the former, spectrogram

reassignment techniques [3], reconstruction based onl1 minimization of the ambigüıty function associated

with the Wigner-Ville distribution [6], synchrosqueezingusing the short time Fourier transform [14] or

Fourier ridges [2] have all been successfully used. For the latter, i.e., time-scale representations, wavelet

ridges have also proven to be very efficient [10] [9]. In [9], the emphasis is put on the importance of

the wavelet choice with regard to the ridge representation.Synchrosqueezing techniques have also been

developed within the wavelet framework [4]. The main difference between the short time Fourier and

wavelet representations is that the latter is more demanding in terms of the frequency separation of high

frequency components.

In this paper, we will first discuss the practical implementation of the synchrosqueezing method (SM)

and then show how it enables us to find out a relevant non uniformsampling set for the signal, i.e.

preserving its essential frequency characteristics, and finally how it can be used for signal denoising.

The layout of the paper is the following. In section II, we recall some notation that are useful to

describe the SM. Then, we restate the main theoretical relatedresults [4] with a practical implementation

recently proposed by Brevdo etal. in [1] (section III). While recalling these results on the SM in a

wavelet framework, we also point out that they can easily be adapted to a short time Fourier transform

(STFT) framework. In this regard, we propose a novel restatementof the SM in a STFT framework

that is consistent with the reconstruction formula associated with this transform. A fundamental issue

in synchrosqueezing is the wavelet choice; a poor wavelet representation inevitably leads to a poor

synchrosqueezing transform. Therefore, in section IV, we focus on the difference between applying the

wavelet transform to pure harmonic or to multicomponent signals. We deduce from this study that a good

wavelet representation for pure harmonic signals is only related to the frequency support of the wavelet

while that of multicomponent signals is related to the ratiobetween the first and the second derivatives of

the phase (for a multicomponent signal made of frequency modulated signals). When such a ratio is high,

we show that moving the frequency center of the wavelet towards zero improves the quality of the wavelet

representation. Bearing in mind these elements, we proposea novel algorithm for the implementation of

the SM in section V. It is based on a mode detection step followed by a reconstruction step that takes
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into account the particular structure of the wavelet transform of multicomponent signals. The numerical

simulations of section VI show that the proposed reconstruction algorithm provides good mode separation

and compares favorably toempirical mode decomposition(EMD) [8] and other existing algorithms

related to the implementation of the synchrosqueezing method [1]. Finally, we conclude the paper by

proposing a potential use of the synchrosqueezing method todetermine a relevant sampling strategy for

multicomponent signals analysis and also by showing that the algorithm we propose for synchrosqueezing

naturally provides a very efficient denoising algorithm thatoutperforms wavelet thresholding technique

for the multicomponent signals studied.

II. N OTATION AND DEFINITIONS

We denote byf̂ the Fourier transform off , defined using the following normalization:

f̂(ξ) =

∫

R

f(x)e−2iπξxdx. (1)

Let f be a tempered distribution, andg be in the Schwartz classS(R), such that̂g is compactly supported

with its support centered in0 ; the short time Fourier transform off is defined as:

Vf (η, t) :=

∫ +∞

−∞
f(x)g(x − t)e−2iπη(x−t)dx. (2)

For f ∈ L2(R), we define the continuous wavelet transform:

Wf (a, t) =

∫

R

f(x)
1

a
Ψ(

x − t

a
)dx, (3)

whereΨ ∈ L2(R) is a function called a wavelet satisfying the condition
∫ +∞
0

|Ψ̂(ξ)|
2

ξ dξ < +∞. The

wavelet is said to be analytic if̂Ψ(ξ) = 0, ξ ≤ 0. A particular class of analytic wavelets are those

admitting a unique peak frequency:

ξΨ = argmax
ξ

∣∣∣Ψ̂(ξ)
∣∣∣ . (4)

As an illustration, let us consider thebump waveletdefined

Ψ̂(ξ) = e
1− 1

1−(
ξ−µ

σ
)2 χ[µ−σ,µ+σ], (5)

which admits a peak frequencyξΨ = µ.
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III. SYNCHROSQUEEZINGBASICS

In what follows, we investigate the retrieval of the components fk of a multicomponent signalf with

durationT = n∆t, (∆t being the time span), defined by:

f(t) =
K∑

k=1

Ak(t) cos(2πφk(t)) =
K∑

k=1

fk(t), (6)

whereAk(t) > 0. Note that one can associate withf its ideal TF distributionρ(t, ξ) =
K∑

k=1
A2

k(t)δ(ξ −

φ′
k(t)). The problem can be viewed from two perspectives. The first consists of computing an approx-

imation of the modes, either by using EMD [8] or via wavelet projections [11] and then deriving the

Hilbert spectrum off to obtain an approximation of the ideal TF distribution. The second, used by the

SM, which we will study hereafter, consists in computing a quantity ω̂ which is based on assessing the

frequency content of the signalf in the time-scale space and which is subsequently used to weight the

wavelet transform off and finally retrieve the modesfk.

A. Theoretical Aspects

For the the sake of consistency, we recall some theoretical results stated in [4]. These were established

for a signalf defined as a superposition ofintrinsic-mode-typefunctions(IMT):

Definition 1: A function f : R → R is said to be a superposition of well-separated IMTs with accuracy

ǫ and separationd, the set of which is denoted byAǫ,d in the sequel, if there exists a finiteK such that

f(t) =
K∑

k=1
fk(t) =

K∑
k=1

Ak(t) cos(2πφk(t)), where all thefk are ǫ−IMTs satisfying:





φ′
k(t) > φ′

k−1(t)

|φ′
k(t) − φ′

k−1(t)| ≥ d(φ′
k−1(t) + φ′

k(t)).

An IMT is defined as follows:

Definition 2: A continuous functionf : R → R ∈ L∞(R) is said to be of theintrinsic-mode-type

(IMT) with accuracyǫ if f(t) = A(t) cos(2πφ(t)) with A andφ satisfying the following properties:

A ∈ C1(R)
⋂

L∞(R), φ ∈ C2(R)

inf
t∈R

φ′(t) > 0, sup
t∈R

φ′(t) < ∞, sup
t∈R

|φ′′(t)| < ∞

|A′(t)|, |φ′′(t)| ≤ ǫ|φ′(t)|, ∀t ∈ R

Let us consider the following description of the frequency representation off in the time-scale space:

ω̂(a, t) =
∂tWf (a, t)

2iπWf (a, t)
, (7)
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which is only defined for a non zero wavelet coefficient. The main theorem defining the synchrosqueezing

method was detailed in [4] and is as follows:

Theorem 1:Let f be a function inAǫ,d and set̃ǫ = ǫ1/3. Select a functionh in C∞
c with

∫
h(t)dt = 1,

and a waveletΨ in S(R) such that its Fourier transform̂Ψ is supported in[1 − ∆, 1 + ∆], with ∆ <

d/(1+d). Consider the function obtained by synchrosqueezingWf , with threshold̃ǫ and accuracyδ, i.e.

Sδ
f,ǫ̃(t, ω) =

∫

Aǫ̃,f (b)
Wf (a, t)

1

δ
h(

ω − ω̂(a, t)

δ
)
da

a
,

whereAǫ̃,f = {a ∈ R+; |Wf (a, t)| > ǫ̃}. Then providedǫ is sufficiently small, the following condition

holds:

• |Wf (a, t)| > ǫ̃ only when for somek ∈ {1, · · · , K}, (a, t) ∈ Zk := {(a, t); |aφ′
k(t) − 1| < ∆}.

• For eachk ∈ {1, · · · , K}, and for each pair(a, t) ∈ Zk, for which holds|Wf (a, t)| > ǫ̃, we have

|ω̂(a, t) − φ′
k(t)| ≤ ǫ̃

• Moreover, for eachk ∈ {1, · · · , K}, there exists a constantC, such that, for anyt in R,∣∣∣∣limδ→0

2
CΨ

Re
[∫

Bǫ̃,k
Sδ

f,ǫ̃(t, ω)dω
]
− Ak(t) cos(2πφk(t))

∣∣∣∣ ≤ Cǫ̃, where CΨ =
∫ ∞
0 Ψ̂(ξ)dξ

ξ and Bǫ̃,k :=

{ω, |ω − φ′
k(t)| < ǫ̃}.

Remark:This version of the theorem differs slightly from the original since here we deal with real

signals as opposed to complex and a different normalizationof the wavelet transform is adopted than

that originally proposed.

To retrieve the modesfk the synchrosqueezing method uses the following reconstruction formula:

f(t) = 2Re
[
C−1

Ψ

∫ ∞
0 Wf (a, t)da

a

]
, and then, as stated above, it suffices to sum up considering only the

scalesa in Aǫ̃,f (t)
⋂
{a : |aφ′

k(t)− 1| < ∆}. This approach is valid only for smallǫ, we may ponder the

following: what happens at largerǫ and does the synchrosqueezing method lead to good results insuch

circumstances. This point is dealt with in section VI where a particular emphasis is put on the wavelet

choice.

B. Practical Implementation

We recall a practical implementation proposed by Brevdo etal. in [1] which is based on the theoretical

results described above. To highlight the frequency components involved in the reconstruction off(t),

one defines a binning of the frequency{ωl}
∞
l=0 and thenWl = [ωl+ωl−1

2 , ωl+ωl+1

2 ]. With this in mind, the

synchrosqueezing operator corresponds to:Tf (ωl, t) =
∫
a:|ω̂(a,t)|∈Wl

Wf (a, t)da
a , which satisfiesf(t) =

∑
l

Tf (ωl, t). By changing variables, we can write:Tf (ωl, t) =
∫
u:|ω̂(2u/nv ∆t,t)|∈Wl

Wf (2u/nv , t) log(2)
nv

du,

wherenv is associated with the discretization of the scalesa into aj = 2j/nv∆t, j = 0, · · · , Lnv − 1.
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Now, putting na = Lnv, the Nyquist-Shannon theorem suggests that the maximum frequency isω̄ =

ωna−1 = 1
2∆t and, under a periodic assumption for the signal, the minimumis ω = ω0 = 1

n∆t . Assuming

ω varies on a log scale:ωl = 2l∆ωω, we obtain∆ω = 1
na−1 log2(n/2). Consequently, a discrete version

of Tf (ωl, b) can finally be written as follows:

Td,f (ωl, q) =
∑

0≤j≤na−1,j:|ω̂(aj ,q∆t)|∈Wl

Wf (aj , q∆t)
log(2)

nv
. (8)

This operator satisfiesf(q∆t) ≈ 2Re
[
C−1

Ψ

∑
l Td,f (ωl, q)

]
. The strategy developed to retrieve the

components of a multicomponent signal [1] is to proceed on a component by component basis. The

idea is to find a curve(c∗q)q=0,··· ,n−1, in the time-frequency plane such that it maximizes the energy

while forces the modes to be smooth through a total variationterm penalization and is obtained by

computing the following quantity:

c∗ = argmax
c∈{1,··· ,na}n

n−1∑

q=0

log(|Td,f (ωcq
, q)|2) −

n∑

q=1

λ∆ω|cq − cq−1|
2. (9)

Note that it is assumed that the component persists for the whole signal duration, if it only persists for

some part of it, the correspondingTd,f (ωcq
, q∆t) will contribute very little to the reconstruction process.

When c∗q has been found, the associated component at timeq∆t can be reconstructed by summing up

Td,f (ωl, q) for l in Nq := [c∗q − nv/2, c∗q + nv/2] in the above formula. To find the next component, one

setsTd,f (Nq, q) to zero and restarts the minimization procedure on the remaining transform. In section

V, we will propose an alternative approach to this construction which will prove to be both more accurate

and computationally much less demanding.

C. An Alternative Definition Based on the Short-Time Fourier Transform

In a very similar manner, one can define the frequency content of f in the time-frequency plane from

its STFT by:

η̂(η, t) =
∂tVf (η, t)

2iπVf (η, t)
. (10)

Rewriting the STFT of the signalf as:Vf (η, t) :=
∫ +∞
−∞ f(x+ t)g(x)e−2iπηx dx, Vf (η, t) can be viewed

as the Fourier transform of the functionx 7→ f(x + t)g(x) at frequencyη. Supposing thatg(0) 6= 0, we

can writef(t) = 1
g(0)

∫ +∞
−∞ Vf (η, t)dη. This reconstruction formula is very similar to the wavelet case and

the same theoretical developments as in Theorem 1 can be carried out by changing the mode separation

condition into |φ′
k(t) − φ′

k−1(t)| ≥ d [14]. This suggests creating a partition(Wl)l of frequencies and

writing: Sf (ωl, t) =
∫
ξ:|η̂(η,t)|∈Wl

Vf (η, t)dη. This approach is similar to that introduced in [14] except

December 15, 2011 DRAFT
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that the operator used there was̃Sf (ωl, t) =
∫
ξ:|η̂(η,t)|∈Wl

dη, and was thus not consistent with the

reconstruction formula.

By dividing the frequency domain linearly, that isω = ωna−1 = 1
2∆t and ω̄ = ω0 = 1

n∆t , we are lead

to consider∆ω = n−2
2n∆t(na−1) and subsequently a discrete version ofSf would take the following form:

Sd,f (ωl, q) =
∑

0≤p≤na−1,p:|η̂(p∆ω,q∆t)|∈Wl

∆ω
g(0)Vf (p∆ω, q∆t).

The algorithm for component retrieval can be applied to the STFT replacingTd,f by Sd,f . Note that

the meaning ofNq as defined at the end of section III-B is also different due to the change in the binning

process.

IV. ON THE PARAMETERS OF THESYNCHROSQUEEZINGALGORITHM

In this section, we consider an analytic wavelet such thatΨ̂ is compactly supported. We first introduce

some approximation formulae of the wavelet transform that need to be verified for ensuring that the

synchrosqueezing technique is well behaved and then we discuss the estimation of̂ω.

A. WT and STFT for Pure Harmonic Signals

Assume that the signal we study is composed of pure harmonic signals, that is:f(t) =
∑K

k=1 Ak cos(2πφkt),

with φk−1 < φk. If the signal is made of a single pure harmonic componentA cos(2πφt), then the

wavelet transform is as follows:Wf (a, t) = 1
2Ae2iπφtΨ̂(aφ). It is thus clear that, provided supp(Ψ̂) ⊂

[1 − ∆, 1 + ∆], we haveω2(a, t) = φ for all t such that1 − ∆ < aφ < 1 + ∆ ⇔ 1−∆
φ < a < 1+∆

φ .

Then a necessary condition for the synchrosqueezing to work well is for all k > 1: 1+∆
φk

< 1−∆
φk−1

⇔ ∆ <

φk−φk−1

φk+φk−1
. In addition, following Definition 1 we assume the frequency separation obeys the following

rule:φk − φk−1 ≥ d(φk + φk−1). Then it is sufficient to have∆ ≤ d to obtain perfect separation.

Indeed, in this case, anya belongs to at most oneXk := {|aφk − 1| < ∆}, on which we have:

Wf (a, t) = 1
2Ake

2iπφktΨ̂(aφk), Wf (a, t) being null outside of the union of theXk, and thenω̂(a, t) is

a perfect estimator ofφk.

For the STFT representation, we would assume the following frequency separation condition:|φk−1 −

φk| ≥ d for k > 1 and φ1 ≥ d/2. As a result of the linearity of the STFT, we may write, (assuming

suppĝ ⊂ [−d/2, d/2] andη in Yk = {|η − φk| ≤ d/2}): Vf (η, t) = 1
2Ake

i2πφktĝ(η − φk), which is null

outside the union of theYk. Again, when separation is achieved,η̂(η, t) defined in (10) equalsφk when

η ∈ Yk .
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Fig. 1: From top to bottom: the modulus of the wavelet transformof the signalcos(2π ∗40∗ t)+cos(2π ∗

32.72∗ t), the modulus of the wavelet transform ofcos(2π∗30∗(t+1/4)2)+cos(2π∗24.55∗(t+1/4)2).

analyzed with the bump wavelet with parametersµ = 1 and from left to right:σ = 0.2, 0.1, 0.05.

B. WT and STFT for Multicomponent Signals

For multicomponent signals as defined in Definition 1, the studyis basically the same. We still consider

that supp(Ψ̂) ⊂ [1−∆, 1+∆]. In such a case, one considers the following approximation of the wavelet

transform:

Wf (a, t) ≈
1

2
Ak(t)e

2iπφk(t)Ψ̂(aφ′
k(t)), (11)

for any given pair(a, t) satisfying1 − ∆ < aφ′
k(t) < 1 + ∆. This requires that for allk > 1 and all

t: 1+∆
φ′

k(t) < 1−∆
φ′

k−1(t)
⇔ ∆ <

φ′

k(t)−φ′

k−1(t)

φ′

k(t)+φ′

k−1(t)
. As the frequency separation obeys for allt the rule given in

Definition 1: φ′
k(t)− φ′

k−1(t) ≥ d(φ′
k(t) + φ′

k−1(t)), we can deduce that the approximation makes sense

as soon as∆ < d.

For the case of the STFT representation, we would assume the frequency separation given by the rule:

|φ′
k−1(t)−φ′

k(t)| ≥ d, for k > 1 andφ′
1(t) ≥ d/2. Also, as supp(ĝ) ⊂ [−d/2, d/2], and considering any

December 15, 2011 DRAFT
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given pair(η, b) such that|η − φ′
k(t)| ≤ d/2, we have the following approximation:

Vf (η, t) ≈
1

2
Ak(t)e

i2πφk(t)ĝ(η − φ′
k(t)). (12)

Note that this upper bound for∆ in the wavelet approximation is larger than that derived in [4], which

stated that the separation was only possible if∆ < d
1+d . The key difference is that the inequalities used

in [4] were aφ′
k(t) − aφ′

k−1(t) ≤ (1 + ∆) − (1 − ∆) = 2∆ andaφ′
k(t) + aφ′

k−1(t) ≥ 2(1 − ∆) which

are too sharp since there is not which can attain these bounds simultaneously.

To be valid, the approximations described in (11) and (12) both require thatǫ, (introduced in Definition

2), be sufficiently small. The fundamental difference betweena signal made of pure harmonics and a

multicomponent signal is the dependence of the latter onǫ. To illustrate this we consider a sum of two

cosines with close frequencies, and a sum of two linear chirps with close instantaneous frequencies, such

that both signals satisfy the conditionφ′
1(t)− φ′

2(t) = 1
10(φ′

1(t) + φ′
2(t)). We analyze these signals with

a bump wavelet (see definition (5)). We takeξΨ = µ = 1 and we take∆ = σ equal to either0.2, 0.1 or

0.05. For the multicomponent signal and contrary to what happensfor a signal made of pure harmonics,

when σ = 0.05, in spite the frequency separation condition is verified, thewavelet representation is

poor meaning that the approximation (11) is inaccurate (compare Figure 1 C and F). With reference to

the study by Mallat on wavelet ridges, ( [10], p.102), and recalling that the wavelet frequency center is

denoted byξΨ, (which equals1 in the example above), the second order terms in the approximation (11)

would be negligible only if:

ξ2
Ψ

|φ′
k(t)|

2

|A′′
k(t)|

|Ak(t)|
<< 1 andξ2

Ψ
|φ′′

k (t)|
|φ′

k(t)|2 << 1, (13)

provided ξΨ

|φ′

k(t)|
|A′

k(t)|
|Ak(t)| ≤ 1. We are now going to show that the quality of the approximation (11) greatly

influences that of the wavelet transform. The constraints described in (13) when applied to an IMT

imply that φ is such thatφ′(t) ≥ ξΨǫ, provided that ξΨ

|φ′(t)|
|A′(t)|
|A(t)| ≤ 1, which is true whenξΨǫ

A(t) ≤ 1, or

equivalentlyA(t) ≥ ξΨǫ. If we assume that bothA andφ′ are bounded below, the wavelet decomposition

leads to better results by takingξΨ smaller whenǫ is large. Note also, that, if we analyze the signal with

a waveletΨ such that supp(Ψ̂) ⊂ [ξΨ − ∆, ξΨ + ∆], then∆ needs to be inferior toξΨd to ensure the

frequency separation condition. Thus, to take a small value for ξΨ when ǫ is large as suggested by the

constraints (13) applied to an IMT, requires that the Fourier transform of the wavelet be better localized

since we must have∆ ≤ ξΨd.

As an illustration consider the wavelet transform ofcos(2π ∗ 30 ∗ (t + 1/4)2). The first inequality of

(13) is always satisfied in the present case, while the second may not be verified whenξΨ is chosen
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Fig. 2: From top to bottom: modulus of the wavelet transform ofcos(2π ∗ 30 ∗ (t + 1/4)2) and that of

cos(2π ∗ 30 ∗ (t + 1/4)2) + cos(2π ∗ 24.55 ∗ (t + 1/4)2). From left to right: forσ = 0.02 andµ = 0.2,

0.3, 0.5

too large. Indeed, in the case studied, sinceΦ′′(t)/Φ′(t) is decreasing witht we get ǫ = 4 and, as

Φ′(t) equals2 in 0 and is increasing, we need to takeξΨ ≤ 0.5, for the second inequality of (13) to

be satisfied. Note the role of the wavelet frequency center on the decomposition, we analyze the signal

with the bump wavelet consideringσ = 0.02, µ being either equal to0.2, 0.3 or to 0.5. We have taken

σ = 0.02 in the simulations to ensure that∆ ≤ ξΨd even whenξΨ = Fc = 0.2. In Figures 2 A to

C we see that, on the one hand, we have a better wavelet representation for smallξΨ when t is small

but this improvement is to the detriment of the representation for largert. Then when one considers a

signalcos(2π ∗ 30 ∗ (t + 1/4)2) + cos(2π ∗ 24.55 ∗ (t + 1/4)2) made of two linear chirps, we notice that

a better wavelet representation of each of the linear chirp results in less interference as confirmed by

comparison between Figures 2 D to F. To conclude, for signals made of pure harmonics what matters

is how well the wavelet transform separates the modes while for multicomponent signals the strength

of the modulationǫ must also be taken into account in the wavelet choice. Later onwe will use the
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previous remark regarding the location of the frequency center of the wavelet to improve the results of

the synchrosqueezing method for largeǫ.

Remark:if the STFT was used instead, the second order terms in (12) wouldbe negligible if: |A
′′

k (t)|
|Ak(t)| <<

1, |φ′′
k(t)| << 1, provided |A′

k(t)|
|Ak(t)| ≤ 1.

C. Estimation of̂ω on Signals Made of Pure Harmonics

Before considering a signal made of pure harmonics, let us analyze the computation of̂ω(a, t) for a

single pure harmonic signal,A cos(2πφt). In this case, whatever the analytic wavelet used for analysis,

ω̂(a, t) = φ for any a such thatΨ̂(aφ) 6= 0. We first start by telling an argument that precludes the

use of a wavelet whose Fourier transform is not compactly supported. Indeed, in such a case, even

if Ψ̂(aφ) is extremely small, one still haŝω(a, t) = φ becauseΨ̂(aφ) is on both the numerator and

denominator ofω̂(a, t)). Now, if a signal consisting of pure harmonics as defined in section IV-A is

considered a consequence of the previous remark is that the regionsRk = {(a, t), ω̂(a, t) = φk} are

ill-defined. However analyzing the signal with a wavelet admittting a compactly supported wavelet does

not completely resolve the problem of the computation ofω̂(a, t) and a threshold still needs to be

applied to the wavelet coefficients to get something relevant. To illustrate this point, let us consider

cos(2π ∗ 40 ∗ t) + cos(2π ∗ 32.72 ∗ t) for which we computêω usingŴf (a, ξ) = f̂(ξ)Ψ̂(aξ), remarking

that ∂̂tWf (a, ξ) = 2iπξŴf (aξ) and finally inverting these quantities as in [1]. The wavelet weuse is

again the bump wavelet (µ = 1, σ = 0.05 ensuring the frequency separation condition). Due to numerical

considerations instead of computing the trueω̂(a, t), we set it to zero whenever|Wf (a, t)| < γ, γ being

a certain threshold. In what follows, we will call̂ωs the corresponding quantity and we now study its

evolution withγ . Note that for the signal studied, the maximum of the wavelettransform is1/2 which

means thatγ should be significantly smaller than this value. Figure 3 displays, for a fixedt, ω̂s(a, t) as

a function ofγ (which is in that case independent of the choice fort). It appears that one needs to take

γ large to be able to associatêωs with the presence of two distinct modes but then the numerical value

obtained forω̂s(a, t) is different from the theoretical expectation. Indeed, it should be equal toφk for all a

in [1−∆
φk

, 1+∆
φk

] which is not exactly the case. For instance, the mean square error (measured in dB) relative

to the evaluation of̂ω by ω̂s and takingγ = 2.10−2 is 9.56 dB. This inaccuracy means that the summation

(8) used to define the synchrosqueezing transform is biased due to the error in the computation of̂ω. To

investigate whether the estimation error could be improvedby analyzing the signal with a wavelet whose

Fourier transform decays slower than that of the bump wavelet, we computêωs(a, t) with the following
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Shannon waveletdefined by:Ψ̂(ξ) = χ[µ−σ,µ+σ]. Doing so, however we do not obtain any significant

improvments. For instance, whenγ = 2.10−2, we obtain a mean square error relative to the evaluation of

ω̂ equal to6.30 dB which is even worse than in the case of the bump wavelet using the same parameters.

It appears that the lack of precision in the estimation ofω̂ is related to the fact that the Fourier transform

of a discretized cosine function is not strictly speaking a Dirac distribution. Consequently, even in simple

cases, a largeγ is required for a meaningful̂ωs but large wavelet coefficients are not dealt with in the

reconstruction formula (8), leading to large reconstruction errors. In the new algorithm we propose in

the next section for mode reconstruction, we will remove theneed for the estimation of̂ω.
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ω̂s(a, t), γ = 0.001
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ω̂s(a, t), γ = 0.1

ω̂s(a, t), γ = 0.2

Fig. 3: ω̂s(a, t) computed using different thresholdγ for the signalcos(2π ∗ 40 ∗ t) + cos(2π ∗ 32.72 ∗ t)

using the bump wavelet withµ = 1 andσ = 0.05

V. A NEW ALGORITHM FOR THERETRIEVAL OF MODES IN A SYNCHROSQUEEZINGFRAMEWORK

The algorithm we propose to retrieve the modes is based on three distinct steps: a determination of

the number of modes step, an optimal wavelet threshold computation step and a modes reconstruction

step based on the first two steps.

A. Detection of the Number of Modes

To get rid of the estimation̂ω we first remark that the latter is basically non zero as soon asWf (a, t)

is above a certain threshold. In that context, given a threshold γ, it is natural to introduce the following

sets:

Cf (γ, t) = {j, |Wf (aj , t)| < γ and |Wf (aj+1, t)| > γ}. (14)

Note that the normalization of the wavelet transform we use is necessary to give sense to the above set.

Indeed, if we consider a sum of pure harmonics with the same amplitude then the wavelet transform at the
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frequencies of interest should also have the same amplitude. In our context and givenγ, we will consider

that a mode for a given timet is associated with a set of successive scalesaj such that|Wf (aj , t)| > γ,

and consequently with some indexj0 in Cf (γ, t). With that in mind and given a rangeΓ for γ, we

compute an estimation of the number of modes as follows:

Nf (Γ) = round(mean
t,γ∈Γ

#(Cf (γ, t))), (15)

where#X, denotes the cardinality ofX. The quantityNf (Γ) corresponds to the average number of

modes over all timest andγ in Γ. To give an insight into howΓ should be chosen, we shall remark that

as the Fourier transforms of the wavelets are normalized to one at their peak frequencies, then refering

to (11) at the corresponding scale corresponding to let us say the kth mode, the modulus of the wavelet

transform almost equals1/2Ak(t). Thus, the setΓ admits as upper bound1/2 max
k

‖Ak‖∞. Furthermore,

the maximal value in the setΓ should not be taken too small so that the true number of modes can

indeed be detected.

B. Wavelet Threshold

In our determination of the relevant wavelet thresholdγ, we favor a value of that parameter that leads

to at least the expected number of modes for eacht. As we will see later, it is only worth focusing on

cases where the number of detected modes at least equals the expected one. We thus first seek a value

γ̂ of γ as follows:

γ̂ = argmin
γ

{mean(#(Cf (γ, t)) − Nf (Γ)), .s.t. ∀t #(Cf (γ, t)) ≥ Nf (Γ)} . (16)

This corresponds to the value ofγ that on average gives#(Cf (γ, t)) the closest toNf (Γ), imposing

that, for eacht, #(Cf (γ, t)) be larger thanNf (Γ). Whenγ̂ exists, to consider such a value ensures that

for eacht, we have detected at least as many modes as the expected number Nf (Γ).

However, in some instances, especially when the modes we tryto extract interfere, such a valuêγ may

not exist, in which case we will alternatively use:

γ̄ = argmin
γ

{mean(#(Cf (γ, t)) − Nf (Γ))} , (17)

which, contrary tôγ always exists. In what follows,γopt will either denoteγ̂ or γ̄.

C. Algorithm for Modes Retrieval

In our framework, we will consider that a mode is associated with a set of intervals, each corresponding

to a particular timet. As for somet the number of detected modes may not be equal to the expected
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number, we take this into account in our search for the modes.Our strategy to define the intervals

associated with each mode is first to find the first timet0 such that#(Cf (γopt, t0)) = Nf (Γ), and then

defineNf (Γ) intervals at that time by considering for eachjk, 1 ≤ k ≤ Nf (Γ), in Cf (γopt, t0):

Ijk,t0 = [jk, ̃k] s.t. ∀jk ≤ j ≤ ̃k |Wf (aj , t0)| > γopt and |Wf (ãk+1, t0)| < γopt.

Each intervalIjk,t0 is associated with one of the modes of the signal. Note thatjk depends ont0 but

we omit this dependancy for the sake of simplicity. Finally, we exploit the continuity of the wavelet

transform with respect tot: the intervals detected at timet0 should also be detected at the following

time t0 + ∆t. Let us now explain how we compute the intervals(Ijk,t0+∆t)k from the intervals(Ijk,t0)k

. Three cases may occur:

• When#Cf (γopt, t0 + ∆t) = Nf (Γ), then we link the intervals at timet0 + ∆t to those at timet0,

by following the criterion:

Ijk,t0 andIjk,t0+∆t belong to the same mode ifIjk,t0

⋂
Ijk,t0+∆t 6= ∅.

We then carry on considering the timet0 + ∆t and the associated intervals.

• When#Cf (γopt, t0+∆t) > Nf (Γ), then we get rid of irrelevant intervals by applying the following

criterion:

Ijk,t0 andIjk̃,t0+∆t belong to the same mode if̃k = argmax
p

{
|Ijp,t0+∆t|, s.t. , Ijk,t0

⋂
Ijp,t0+∆t 6= ∅

}
,

where for an intervalI, |I| denotes its length. Doing so, we only consider at timet0 +∆t the longer

intervals that match those detected at timet0. This technique enables us to defineNf (Γ) intervals

at time t0 + ∆t. We thus restart the procedure changingt0 into t0 + ∆t and considering just the

defined set of intervals.

• When #Cf (γopt, t0 + ∆t) < Nf (Γ), for which we do not define any intervalsIjk,t0+∆t. Instead,

we look for the first positive indexl such that#Cf (γopt, t0 + l∆t) = Nf (Γ). We then restart the

procedure replacingt0 by t0 + l∆t and by considering the associated intervalsIjk,t0+l∆t.

The same procedure is then applied fromt0 towards smaller times. We finally end up with either zero

or Nf (Γ) intervals associated with eacht. We will see, in subsequent numerical applications, that the

former happens when the wavelet representation is very bad locally. In such a case, it would be unwise

to derive modes using the synchrosqueezing method. For eachmode indexed by1 ≤ k ≤ Nf (Γ), we

can associate for mostt = q∆t an intervalIjk,t := [jk, ̃k], which enables us to retrieve the modes by
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considering the following reconstruction formula:

fk(q∆t) = 2Re


C−1

Ψ

∑

j∈Ijk,t

Wf (aj , q∆t)
log(2)

nv


 . (18)

Doing so, we avoid both the problem of the binning of the frequency domain as well as the heuristic

procedure involved in the determination of the modes (see section III-B). As already mentioned previously,

the thresholdγopt is computed to ensure good detection of the different modes.When reconstructing the

modes using such a threshold leads to wavelet coefficients with a large amplitude being neglected. To

improve the reconstruction, we comment that if the Fourier transform ofΨ is compactly supported inside

[ξΨ − ∆, ξΨ + ∆] , then basically the scales of interest for the modek at time t are [ ξΨ−∆
φ′

k(t) , ξΨ+∆
φ′

k(t) ].

Invoking (11), the amplitude of the wavelet transform attains a local maximum whenajφ
′
k(t) = ξΨ.

Then, if the Fourier transform of the wavelet is symmetric with respect to its peak frequency (which is

the case with the bump wavelet), the wavelet representationis almost symmetric with respect to the scale

aj associated with the peak frequency, (this is true for pure harmonic signals and also for multicomponent

signals provided (11) holds). Consequently a good estimation φ̄′
k(t) of φ′

k(t) is obtained by considering
ξΨ

aj0

whereaj0 is the middle of the intervalajk
andãk which are the scales associated with the indices

jk and ̃k of the intervalIjk,t. This then leads us to an alternative reconstruction formula:

fk(q∆t) =
2

CΨ
Re


 ∑

aj∈Jk,q

Wf (aj , q∆t)
log(2)

nv


 , (19)

whereJk,q = [ ξΨ−∆
φ̄′

k(q∆t)
, ξΨ+∆

φ̄′

k(q∆t)
]. We investigate in the next section the relevance of the reconstruction

formula (19) and we will also put forward its potential interest for signal sampling and denoising in

section VII.

Remark:We should also note that the proposed procedure is also validwhen the STFT is used instead

of the wavelet transform.

VI. I LLUSTRATIONS OF THERECONSTRUCTIONPROCEDURE ANDCOMPARISONS

In this section, we compare some examples to illustrate the advantage of using the reconstruction

approach described in (19) as opposed to that proposed in section III-B and which was implemented in

[1]. Furthermore, we will compare the proposed method to EMD which consists in extracting the modes

by analyzing the signal in the time domain [8].

A. Synchrosqueezing Frequency Modulated Multicomponent Signals

To illustrate the reconstruction procedure defined in (18) and (19), we consider the retrieval of the com-

ponents of a modulated frequency signalsin(3(2π×77t+30 sin(3πt)))+sin(3(2π×46t+21 sin(3πt)))+
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Fig. 4: A: An example of a signal made of the superposition of non trivial IMTs. B: corresponding

wavelet representation. C: reconstruction of the modes of the signal in A using formula (18) and the

bump wavelet (µ = 1 andσ = 0.2); D: same as in A but using the reconstruction formula (19)

sin(3(2π × 6t)) (see Figure 4 A), which has a frequency separation conditiond ≈ 0.2 (see Definition

1). This signal admits the wavelet representation in Figure 4 B, computed using the bump wavelet with

µ = 1 andσ = 0.2. We test the two reconstruction methods (18) and (19) on the signal with the results

depicted in Figure 4 C and D respectively. The mean square error(expressed in dB) associated with the

reconstruction of the three modesf1, f2 andf3 of Figure 4 A is13.37 dB, 11.03 dB and19.64 dB for

(18) and21.6 dB , 14.45 dB and31.32 dB for (19). Note also that, in such a case, sinceγ̂ exists we

have a reconstruction formula for each timet.

Now, we wish to compare the procedure we propose for reconstruction to that introduced in section

III-B. First, we remark that formula (9) proposed for reconstruction requires the knowledge of the number

of modes. Even if the latter is known the determination of the optimal curvesc∗ is very sensitive to the

choice of the parameterλ. To ensure a fair comparison, we compute formula (9) for the signal of Figure 4
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Fig. 5: A: The optimal curvesc∗, for different values ofλ, B: The results of the EMD decomposition

on the signal of Figure 4 A

A using the bump wavelet as analyzing wavelet still withµ = 1 andσ = 0.2, and then display the optimal

curvesc∗ depending on the value ofλ on Figure 5 A (the tested values areλ = 5.103, 104 and2.104). For

largerλ, we note that the regularization term prevails over the synchrosqueezing term and somec∗ being

straight lines. Then, considering Figure 5 A is very informative on the way the reconstruction formula

(9) works for smallerλ. Indeed, the algorithm selects in this case optimal curves made of several parts

that belong to different frequency bands because the synchrosqueezing part prevails in the reconstruction

formula, i.e. it creates mode-mixing. For instance, if one considers the valueλ = 2.104, we see that for

some times (typically between0.3 and 0.4) the two optimal curves correspond to the same frequency

band. We also note that the lack of precision in the determination of the optimal curves results in the

modes obtained not summing up to the original signal.

Another technique used to represent such signals is EMD [8]. The main principle of the technique is

to extract less and less oscillatory components from a signal by applying an iterative procedure called

the sifting process (for further details on the method see [8]). We apply the EMD algorithm using the

version given in [12] using the default parameters to the signal of Figure 4 A. The components of the

decomposition, called IMFs (intrinsic mode functions), sumup to the original signal. In the present case,

most of the energy of the original signal is contained in the first five IMFs which we depict on Figure 5

B. We notice that mode-mixing is present by considering IMF1 and IMF2, and note that the information

contained in the modesf3 andf2 spreads over IMF1, IMF2 and IMF3. Similarly, the information contained
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in f1 spreads over IMF4 and IMF5. The reason for such mode-mixing effects is related to the fact that the

extraction of the IMFs in the EMD is not frequency based in contrast to the synchrosqueezing technique.

Furthermore, we also comment that if an error is made in the extraction of the first IMF then it will spread

throughout the whole extraction procedure. A deeper analysis of Figure 5 B, fort < 0.2, tends to show

that EMD is relatively good at separating high frequency components but when the frequency modulation

is important towards lower frequencies, it seems to need a stronger frequency separation condition than

that involved in the study of synchrosqueezing (typically for 0.35 < t < 0.45). This remark offers some

insight to the study carried out in [6] on a two tone signal, which concluded that when the modes have

the same amplitude and for a given frequency ratio, the separation of the mode is easier to achieve with

synchrosqueezing than with EMD.

B. Analysis of Linear Chirp

In this section, we provide another illustration of the method on the extraction of linear chirps. Our

aim is on the one hand to compare the behavior of our method with existing methods, namely EMD [8]

and another version of the synchrosqueezing algorithm [1] and also to focus on the importance of the

wavelet choice in the synchrosqueezing technique whenǫ is large.
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Fig. 6: The first row contains the estimation off1 using the reconstruction formula (19) with analyzing

wavelet the bump wavelet withσ = 0.02 and µ = 0.2, µ = 0.3 and µ = 0.5 from left to right. The

second row contains the estimation off2 with the same parameters with regards to the wavelet transform

To do so we analyze the linear chirp signalcos(2π ∗ 30 ∗ (t + 1/4)2) + cos(2π ∗ 24.55 ∗ (t + 1/4)2)

whose wavelet transform was explored in Figure 2. Figure 2 showed the importance of the location of
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Fig. 7: A:The first two IMFs associated with the decomposition of the linear chirp, B: the two optimal

curves given by the formula (9) withλ = 1000, C: the corresponding modes

the frequency center of the analyzing wavelet in terms of thequality of the representation. In the present

case, we showed thatξΨ had to be lower than0.5 so that the estimation (11) could be reasonably good.

Also it appeared that by moving the frequency center of the analyzing wavelet towards zero, a better

time-scale resolution resulted. We now investigate how this improvement in the wavelet representation

impacts the synchrosqueezing transform. We use the reconstruction formula (19) as suggested by the

previous simulations on frequency modulated multicomponent signals again using the bump wavelet for

analysis. Our simulations consist in moving the frequency center of the wavelet towards0 by considering

successivelyµ = 0.5, µ = 0.3 andµ = 0.2, σ being fixed ; because we also have the constraintσ ≤ µd

and sinced = 1/10, we considerσ = 0.02 so that the previous inequality is valid forµ = 0.2.

The results of Figure 6 show that by improving the approximation (11) for smallt, the synchrosqueezing

representation is greatly improved. Note that when the reconstruction formula returns zero this means that

our algorithm is not able to separate the mode from the wavelet representation and we find it wiser not to

propose any decomposition in such cases: when the analysis tools are inefficient this should be explicit.

The rationale underlying this view is to make the most of the wavelet decomposition without extrapolating

when the information is unclear. To measure quantitativelythe improvement in the mode reconstruction

brought about by the change in the frequency center of the wavelet, we compute the mean square error

(measured in dB) associated with the reconstruction of the two modes either considering only the time

indices such thatt > 0.8 (t > 0.8 in Table I). Our basic insight is that better reconstructionis achieved

for smaller times by moving the frequency center of the wavelet towards0, which is confirmed by the

results of Table I. This point is to our mind worth noting sinceit illustrates that the synchrosqueezing

technique can be efficient in practice only when the analyzingwavelet is appropriately chosen. Note
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also, that we had remarked earlier that to move the frequencycenter towards0 worsens the wavelet

representation for larget in the sense that its spreads the information over a larger number of scales.

However, as the reconstruction procedure takes into account the location of the frequency center, it has

no impact on the quality of the estimation of the modes.

σ = 0.02

µ = 0.2

t > 0.8

σ = 0.02

µ = 0.3

t > 0.8

σ = 0.02

µ = 0.5

t > 0.8

SNR (in dB,f1 estimate) 21.4 18.53 -2.17

SNR (in dB,f2 estimate) 21.17 16.82 -2.21

TABLE I: Influence of the location of the frequency center on thequality of the estimation of the modes

using the synchrosqueezing transform

We are also concerned with comparing our method for mode extraction to the EMD and to the technique

of extraction of the modes given by (9). For EMD, the useful information is mainly contained in the

first two IMFs, which are displayed in Figure 7 A. The reconstruction error (measured in dB) is for

the first and second modes (considering times larger thant > 0.8 to ensure a fair comparison with

the synchrosqueezing technique)2.09 dB and2 dB respectively. Again, as EMD does not analyze the

signal in the frequency domain it seems to be inefficient at separating components with close frequency

characteristics. Now, to test formula (9) we still considerthe decomposition of the linear chirp signal

with the bump wavelet takingµ = 0.2 and σ = 0.02. We notice that it clearly fails to reconstruct the

modes because trying to determine two modes from the smallest time it becomes trapped by the poor

representation given by the wavelet transform at these times. Figures 7 B and C illustrate this point for

λ = 1000, other values ofλ would offer no improvement.

VII. S IGNAL SAMPLING AND DENOISING USINGSYNCHROSQUEEZING

A. Multicomponent Signals Sampling and Synchrosqueezing

Based on the previous study, we now investigate how to use theSM to determine relevant signal

samples. Before getting into the technique we should briefly emphasize what motivates our study. The

central paradigm of modern signal processing is the Nyquist-Shannon theorem which states that any

signal f admitting a compactly supported Fourier transform included in [−Ω, Ω] can be reconstructed

from its regular samples through:f(t) =
∑

n∈Z
f(n π

Ω)sinc(Ω(t − n π
Ω)).
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When one considers irregular samples as in [14], the reconstruction can be ensured provided the

sampling points are a perturbation of regular sampling. More precisely ifT ≤ 1/Ω and if tk = {Tk+ak}

such thatsup
k

|tk − Tk| < T
2 then one can find out a series converging tof and based on these samples.

The idea behind such a result is to determine uniform samples of f from the nonuniform samples(f(tk))k

and then use classical estimation on Fourier series. These kinds of representations based on the Fourier

series do not take into account local signal frequency characteristics whereas it would be natural to relate

the signal sampling to these characteristics. The approach we now describe is an attempt in this direction.

A study of the robustness of the SM to bounded perturbations when it is applied to a superposition of

IMTs was given in [1]. In that study, the authors state that ifg = f + e, wheree is a small perturbation

such that‖e‖L∞ ≤ Cǫ. Defining for allk, Mk as the largest real number such that|Φ′
k(t)| ∈ [M−1

k , Mk],

then the SM enables the reconstruction offk with an error of the orderMkǫ
1/3. From this we deduce that

in such a case the SM enables a reconstruction of the signalf with an error of the ordermax
k

Mkǫ
1/3.

In our following study,g will be an interpolant off at some sample points and thuse will be the

interpolation error. We aim at showing how the SM helps us find relevant samples by considering the

interpolation error.

Let assume thatg is obtained by samplingf at the points(tm). Then if D = max
m

|tm+1 − tm|,

the interpolation error using cubic spline interpolante is bounded by‖e‖L∞ ≤ 5
584D4‖f (4)‖L∞ . Note

also that by applying piecewise cubic Hermite interpolant instead, the upper bound for the interpolation

error is even much lower, since we have:‖e‖L∞ ≤ 1
384D4‖f (4)‖L∞ , which suggests that given a set of

samples(tm), a better reconstruction of the modes through synchrosqueezing (and consequently of the

signal) should be achieved by using piecewise cubic interpolant. However, writting the upper bound of

the error as previously wipes up the locality of the error estimation. Indeed, we had rather write when

the piecewise cubic interpolant is used:

‖e‖L∞ ≤
1

384
max

m

{
(tm+1 − tm)4‖f (4)‖L∞,[tm,tm+1]

}
, (20)

which means that wheref (4) is large, the sampling points should be close.

We aim to show that the extrema of the high frequency component obtained after synchrosqueezing

are more relevant than the extrema of the signal itself in terms of the preservation of the signal frequency

content after sampling. Indeed let us consider the following two signal reconstruction procedures. The

first (resp. second) one consists in considering the extrema of the high frequency mode given by the SM

(resp of the original signal) and then piecewise cubic Hermite interpolation of the original signal at these

points (adding the first and the last point as interpolation points).
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Fig. 8: A:display of the functiont →
∑
m

1
384(tm+1 − tm)4|f (4)(t)|χ[tm,tm+1[(t), wheref is the signal of

Figure 4 A andtm are the extrema of the original signal, B: same computation wheretm are the extrema

of the high frequency mode obtained after synchrosqueezing. Note the difference in the interpolation

error changing the interpolation points

As an illustrative example, we again consider the signal of Figure 4 A to which we apply the

SM using the same parameters as previously. Each method leads to 464 extrema points. The Nyquist

frequency associated 500 Hz and the Nyquist-Shannon representation would lead to 1000 equally-

spaced points on[0, 1]. The time-scale representation of the interpolants being satisfactory, this suggests

that the sampling should be based on local frequency and not on maximal frequency computation.

Going further, we assess the quality of the two types of interpolant by computing the functiont →
∑
m

1
384(tm+1 − tm)4|f (4)(t)|χ[tm,tm+1[(t). We notice that the amplitude of this function is much smaller

when the extrema of the first mode after synchrosqueezing is used instead of those of the original signal

(compare Figure 8 A and B). This suggests that the value of the signal at the extrema location of the first

mode given by the SM is more relevant than the value of the signal at its extrema location in terms of

frequency content. In spite, the numerical simulations proposed here is very limited the obtained results

are encouraging and will be the subject for further developments.

B. Denoising with Synchrosqueezing

In this subsection we show that the SM enables us to define a denoising algorithm that outperforms

the traditional wavelet denoising technique.
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We first note that by computing the thresholdγopt and by considering the wavelet coefficients whose

amplitude are above that threshold, we perform wavelet thresholding even if we use formula (19). Our

point is to show that the algorithm we have proposed to compute the mode is a very efficient tool for the

denoising of multicomponent signals. We again consider themulticomponent signal which we previously

studied for signal sampling to which we add a Gaussian white noise with a varying standard deviation.

We then compute the SNR before denoising between the originaland noisy signals. Then, we apply

our synchrosqueezing algorithm to the noisy signal (still considering the bump wavelet withµ = 1 and

σ = 0.2 as in the noise-free case) and we obtain the so-called denoised signal by summing up all of

the modes obtained. We finally compute the SNR after denoising between the denoised and the original

signals and plot these in Figure 9. The SNR after denoising versus the SNR before denoising (curve

labelled SR for Synchrosqueezing Reconstruction on that Figure). We now compare the behavior of our

novel denoising technique to traditional wavelet thresholding techniques. We decompose our signal with

a symmlet having six null moments and the depth of decomposition is set to three (denoted by WD

for ”wavelet decomposition”, on Figure 9). We apply soft or hard thresholding techniques (ST and HT

on Figure 9 respectively, using the classical estimation of the standard deviation of the noise [5]) on

either the first or the first two levels of decomposition (1 scaleor 2 scales on Figure 9 respectively). On

such a multicomponent signal, the synchrosqueezing reconstruction algorithm preserves much better the

characteristics of the original signal.

We believe that our algorithm behaves better for the reason that the wavelet coefficients of a modulated

frequency mode can belong to several octaves and are thus thresholded differently depending on the time

while the thresholding procedure embedded in the SM is the same whatever the frequency content of the

mode. In future work, we will certainly address this issue inmore detail but it is beyond the scope of

the current paper.
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Fig. 9: SNR after denoising as a function of the SNR before denoising as a function either using the

synchrosqueezing reconstruction technique (SR) or with various wavelet thresholding techniques (WD)
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VIII. C ONCLUSION

In this paper, we have presented a novel algorithm for the synchrosqueezing method. After emphasising

the importance of the accuracy of the wavelet representation on which the synchrosqueezing algorithm

is based, we then profited from the structure of the wavelet transform of multicomponent signals to

develop a novel algorithm. We then showed that with regard tothe mode-mixing issue, the proposed

algorithm behaves better than EMD or any other existing implementation of the synchrosqueezing

method. We then showed that in the noise-free configuration the proposed algorithm can be used to

find out an appropriate sampling of multicomponent signals which no longer obey the constraints of

the Shannon-Nyquist Theorem. Finally we showed that the algorithm also provides a natural way to

denoise multicomponent signals and which outperforms classical wavelet thresholding techniques on

these signals. Future work requires a deeper study of the denoising and sampling procedure provided by

the synchrosqueezing method along with some new developments on synchrosqueezing-like techniques

especially when the wavelet representations are not accurate enough. Finally, we are very concerned in

future work with developing a better mathematical formulation of the proposed reconstruction algorithm.
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