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Abstract- In this paper, we address the practical implementation efsgmchrosqueezing method. The
emphasis is placed on the importance of the wavelet choidenanpropose a novel algorithm based on
a two step strategy: a mode detection step followed by a stration step. Simulations will illustrate
how the proposed procedure compares favorably with engppinode decomposition and other related
methods in terms of mode-mixing. We conclude the paper bgystg the sensitivity of the
synchrosqueezing to sampling and an application to sigeabiding.
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. INTRODUCTION

Audio signals are commonly modelled as a sum of AM/FM comptsesith slowly varying amplitude
and instantaneous frequency [13]. Consequently, theevalriof the components of a multicomponent
signal is a central issue in many audio processing probl&hes most commonly used techniques to carry
out the retrieval are time-frequency or time-scale basgubdirepresentations. For the former, spectrogram
reassignment techniques [3], reconstruction basdd orinimization of the ambigitly function associated
with the Wigner-Ville distribution [6], synchrosqueezinging the short time Fourier transform [14] or
Fourier ridges [2] have all been successfully used. Fordkterl i.e., time-scale representations, wavelet
ridges have also proven to be very efficient [10] [9]. In [9]e ttmphasis is put on the importance of
the wavelet choice with regard to the ridge representatymchrosqueezing techniques have also been
developed within the wavelet framework [4]. The main diffeze between the short time Fourier and
wavelet representations is that the latter is more demgnditerms of the frequency separation of high
frequency components.

In this paper, we will first discuss the practical implemeiotaf the synchrosqueezing method (SM)
and then show how it enables us to find out a relevant non uniampling set for the signal, i.e.
preserving its essential frequency characteristics, arallyfitmow it can be used for signal denoising.
The layout of the paper is the following. In section Il, we rfésome notation that are useful to
describe the SM. Then, we restate the main theoretical retatedts [4] with a practical implementation
recently proposed by Brevdo el. in [1] (section IlI). While recalling these results on the Skl a
wavelet framework, we also point out that they can easily degpted to a short time Fourier transform
(STFT) framework. In this regard, we propose a novel restateroetite SM in a STFT framework
that is consistent with the reconstruction formula asdediavith this transform. A fundamental issue
in synchrosqueezing is the wavelet choice; a poor wavelgtesentation inevitably leads to a poor
synchrosqueezing transform. Therefore, in section IV, weigoon the difference between applying the
wavelet transform to pure harmonic or to multicomponentalg. We deduce from this study that a good
wavelet representation for pure harmonic signals is orligted to the frequency support of the wavelet
while that of multicomponent signals is related to the radween the first and the second derivatives of
the phase (for a multicomponent signal made of frequencyutated] signals). When such a ratio is high,
we show that moving the frequency center of the wavelet tds/aero improves the quality of the wavelet
representation. Bearing in mind these elements, we proposs/el algorithm for the implementation of

the SM in section V. It is based on a mode detection step foliiolae a reconstruction step that takes

December 15, 2011 DRAFT



into account the particular structure of the wavelet tramafof multicomponent signals. The numerical
simulations of section VI show that the proposed reconstma@lgorithm provides good mode separation
and compares favorably tempirical mode decompositio(EMD) [8] and other existing algorithms

related to the implementation of the synchrosqueezing odeft]. Finally, we conclude the paper by

proposing a potential use of the synchrosqueezing methoetermine a relevant sampling strategy for
multicomponent signals analysis and also by showing tleathorithm we propose for synchrosqueezing
naturally provides a very efficient denoising algorithm tbatperforms wavelet thresholding technique

for the multicomponent signals studied.

II. NOTATION AND DEFINITIONS

We denote byf the Fourier transform of, defined using the following normalization:

fle) = /R f(@)e 2 dy, )

Let f be a tempered distribution, agde in the Schwartz clas$(R), such thatj is compactly supported

with its support centered ifi ; the short time Fourier transform ¢f is defined as:

400 .
Vi(n,t) == / f(@)g(z —t)e 2@ dy, (2)
For f € L?(R), we define the continuous wavelet transform:
1 x—t
t) = -V d 3
Witet) = [ @ vy, €

where ¥ € L?(R) is a function called a wavelet satisfying the conditifg‘iOO @df < 4o0. The
wavelet is said to be analytic i'if(f) = 0, £ < 0. A particular class of analytic wavelets are those

admitting a unique peak frequency:
6w = argman{i(c) (4)

As an illustration, let us consider thmimp waveletefined

> - =y
v (g) = € -5 X[p—o,utol (5)

which admits a peak frequency = p.
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[1l. SYNCHROSQUEEZINGBASICS

In what follows, we investigate the retrieval of the compatsef;, of a multicomponent signaf with

durationT = nAt, (At being the time span), defined by:
K K
F(t) = Ap(t) cos(2mer(t) = D fult), (6)
k=1

where A, (t) > 0. Note that one can associate withits ideal TF distributionp(¢,&) = § AZ(t)o(€ —
#,.(t)). The problem can be viewed from two perspectives. The first stnsf compl’jt:irllg an approx-
imation of the modes, either by using EMD [8] or via waveletjpations [11] and then deriving the
Hilbert spectrum off to obtain an approximation of the ideal TF distribution. Thew®l, used by the
SM, which we will study hereafter, consists in computing arditya w which is based on assessing the
frequency content of the signdlin the time-scale space and which is subsequently used ighivisie

wavelet transform off and finally retrieve the modes..

A. Theoretical Aspects

For the the sake of consistency, we recall some theoretealts stated in [4]. These were established
for a signalf defined as a superposition witrinsic-mode-typdunctions(IMT):

Definition 1: A function f : R — R is said to be a superposition of well-separated IMTs with samu
e and separation, the set of which is denoted by, ; in the sequel, if there exists a finif€ such that
ft) = k§1 fr(t) = k§1 Ak (t) cos(2mo(t)), where all thefy, aree—IMTs satisfying:

b (t) > ¢ 1 (1)
|01(t) — @1 (D) = d(¢_1 (t) + & (1))

An IMT is defined as follows:
Definition 2: A continuous functionf : R — R € L*(R) is said to be of thentrinsic-mode-type

(IMT) with accuracye if f(t) = A(t) cos(2m¢(t)) with A and ¢ satisfying the following properties:
Ae CHR)NL>(R), ¢ € C*(R)

inf ¢/(t) > 0, sup ¢'(t) < oo, sup |¢”(t)] < oo
teR teR teR

[A'()], 10" (1)] < el (B)], Vi€ R
Let us consider the following description of the frequengyresentation off in the time-scale space:

6th(a, t)

S lat O0Wy(a,t)
w(a,?) 2inWy(a,t)’

(7)
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which is only defined for a non zero wavelet coefficient. The mlagotem defining the synchrosqueezing
method was detailed in [4] and is as follows:

Theorem 1:Let f be a function inA. 4 and se€ = ¢!/3. Select a functiorh in C2° with [ h(t)dt = 1,
and a waveleW in S(R) such that its Fourier transfornr is supported in1 — A, 1+ A}, with A <
d/(1+d). Consider the function obtained by synchrosquee#irng with thresholde and accuracy, i.e.

Sfattw) = [ witengn==5
where A; ; = {a € RT;|Wy(a,t)| > €}. Then providec is sufficiently small, the following condition
holds:

o |W¢(a,t)| > € only when for some: € {1,--- , K}, (a,t) € Zy, = {(a,t);|ag,(t) — 1] < A}.

o For eachk € {1,---, K}, and for each paifa,t) € Z, for which holds|W(a,t)| > €, we have

Oa,t) — Bl (t)] < €
« Moreover, for eactk € {1,--- , K}, there exists a constaft, such that, for any in R,

lim 2 Re ., S3elt,w)dw]| — Ay(t) cos(2men(t)| < CF where Cy = [°W(6)E and By :=
{w, w - }(0)] <&,

Remark: This version of the theorem differs slightly from the oridirnce here we deal with real

signals as opposed to complex and a different normalizaifotihe wavelet transform is adopted than
that originally proposed.

To retrieve the modeg), the synchrosqueezing method uses the following recongiruéormula:
f(t) =2Re {C’\f,l Jo° Wf(a,t)%} , and then, as stated above, it suffices to sum up considerirygttosl
scalesa in Az ¢(t) N{a : lag)(t) — 1| < A}. This approach is valid only for small we may ponder the
following: what happens at largerand does the synchrosqueezing method lead to good reswdtsin
circumstances. This point is dealt with in section VI whereaatipular emphasis is put on the wavelet

choice.

B. Practical Implementation

We recall a practical implementation proposed by Brevdal.en [1] which is based on the theoretical
results described above. To highlight the frequency coraptninvolved in the reconstruction ¢ft),
one defines a binning of the frequengy; }7°, and thenV, = [%, %]. With this in mind, the
synchrosqueezing operator correspondsTidiwi, t) = [,.i5(a.0ew, Wy(a,t)% which satisfiesf(t) =
Elef(wl,t). By changing variables, we can writéy (wi,t) = [,..ou/m0 atp)jew, Wf(2“/"v,t)%du,

wheren, is associated with the discretization of the scaleisto a; = 21/mAt, =0, , Ln, — 1.
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Now, puttingn, = Ln,, the Nyquist-Shannon theorem suggests that the maximurueney isc =
wn,—1 = 5%; and, under a periodic assumption for the signal, the minimmm= wy = . Assuming
w varies on a log scaley; = 2'4“w, we obtainAw = ﬁ log,(n/2). Consequently, a discrete version

of Tt (wi, b) can finally be written as follows:

log(2
Taf(wi,q) = > Wy(aj, qAt) n( )~
0<j<na—1,5:|@(a;,gAt) €W, Y

(8)

This operator satisfieg(qAt) ~ 2Re [C;lz, Td7f(Wl,q):|. The strategy developed to retrieve the
components of a multicomponent signal [1] is to proceed oromponent by component basis. The
idea is to find a curvéc;)s=o,.. n—1, in the time-frequency plane such that it maximizes the gner
while forces the modes to be smooth through a total variatesm penalization and is obtained by

computing the following quantity:

n—1 n
¢ = argmax 3 log(|Tu s (we, 0)?) — 3 AAwle — cpr [ (9)
c€{1l, na}™ =0 q=1

Note that it is assumed that the component persists for tr@endignal duration, if it only persists for
some part of it, the correspondify ;(w., ,gAt) will contribute very little to the reconstruction process.
Whenc; has been found, the associated component at ¢ifecan be reconstructed by summing up
Ta,f(wi, q) for 1in Ny := [cs —ny/2, ¢ +n,/2] in the above formula. To find the next component, one
setsTy (N, q) to zero and restarts the minimization procedure on the mngitransform. In section
V, we will propose an alternative approach to this constoucivhich will prove to be both more accurate

and computationally much less demanding.

C. An Alternative Definition Based on the Short-Time Fouriem$farm

In a very similar manner, one can define the frequency contefitio the time-frequency plane from
its STFT by:

8t‘/f (777 t)

2iVy(m, t)’ (10)

i(n,t)

Rewriting the STFT of the signgl as: Vy(n, t) := [72° f(z +t)g(x)e~ 2™ dx, V}(n,t) can be viewed
as the Fourier transform of the function— f(x + t)g(x) at frequencyy. Supposing thag(0) # 0, we
can writef(t) = ﬁ [F2°Vi(n, t)dn. This reconstruction formula is very similar to the waveleseand
the same theoretical developments as in Theorem 1 can bectaut by changing the mode separation
condition into|¢, (t) — ¢)._,(t)| > d [14]. This suggests creating a partiti¢hV;), of frequencies and

writing: S¢(w,t) = fé:lﬁ(n,t)lewz V¢(n,t)dn. This approach is similar to that introduced in [14] except
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that the operator used there Wé$(w;,t) = fg:m(n niew, dn, and was thus not consistent with the
reconstruction formula.
By dividing the frequency domain linearly, thatds= w,, 1 = 7%; andw = wy = —%;, we are lead

to considerAw = =" and subsequently a discrete versionSgfwould take the following form:

2nAt(

Sd,f(wl’ q) = Z mvf (pAwa th)
0<p<n.—1,p:|A(pAw,qgAt)|[€EW;
The algorithm for component retrieval can be applied to the STéplacing”, by Sy ;. Note that
the meaning ofV;, as defined at the end of section 1lI-B is also different due édhange in the binning

process.

V. ON THE PARAMETERS OF THESYNCHROSQUEEZINGALGORITHM

In this section, we consider an analytic wavelet such fha compactly supported. We first introduce
some approximation formulae of the wavelet transform thegdnto be verified for ensuring that the

synchrosqueezing technique is well behaved and then wesdigbe estimation ab.

A. WT and STFT for Pure Harmonic Signals

Assume that the signal we study is composed of pure harmamials, that is;f () = Z,’le Ay cos(2m i),
with ¢,_1 < ¢. If the signal is made of a single pure harmonic componéibs(2r¢t), then the
wavelet transform is as followd¥(a,t) = 1A62i7r¢>t\i/(a¢)_ It is thus clear that, provided supp)

[1— A, 1+ A], we havews(a,t) = ¢ for all ¢ such thatl — A < a¢ < 1+ A & 158 <o < 12,

¢
Then a necessary condition for the synchrosqueezing to weltkisvfor all & > 1: 1+A < ¢> <:> A<
ﬁ’;ﬁk L. In addition, following Definition 1 we assume the frequencya@tion obeys the following

rulegr — ¢r—1 > d(ér + ¢r—1). Then it is sufficient to havel < d to obtain perfect separation.
Indeed, in this case, any belongs to at most on& := {|a¢r, — 1| < A}, on which we have:
We(a,t) = %Ake%”%tm, W(a,t) being null outside of the union of th&,, and thenw(a, ) is
a perfect estimator ofy.

For the STFT representation, we would assume the followingigreay separation conditiofpy 1 —
¢or| > dfor k > 1 and¢; > d/2. As a result of the linearity of the STFT, we may write, (assuming
suppg C [—d/2,d/2] andn in Yy, = {|n — ¢x| < d/2}): Vi(n,t) = $A,e2 %t g(n — ¢;), which is null
outside the union of th&}. Again, when separation is achievefy, ¢t) defined in (10) equalg; when

neyY,.

December 15, 2011 DRAFT



01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
time time

1

01 02 03 04 05 06 07 08 09
time

1

A B C

Fig. 1: From top to bottom: the modulus of the wavelet transfofrthe signalcos(27 x40 xt) 4 cos(2
32.72xt), the modulus of the wavelet transform@fs(27 x 30 * (t +1/4)?) +cos(2m % 24.55 x (t +1/4)?).

analyzed with the bump wavelet with parametgrs- 1 and from left to right.c = 0.2, 0.1, 0.05.

B. WT and STFT for Multicomponent Signals

For multicomponent signals as defined in Definition 1, the stadhasically the same. We still consider
that supg®) C [1 — A, 1+ AJ. In such a case, one considers the following approximatichewavelet

transform:

Wila,t) ~ %Ak(t)e%”‘bk(t)\if(aczﬁj,f(t)), (11)

for any given pair(a,t) satisfyingl — A < a¢(t) < 1+ A. This requires that for alk > 1 and all
. 14+A 1-A $r () =51 (1) ; ; ;
t: a0 <70 T A< PACET AN OR As the frequency separation obeys for @lihe rule given in
Definition 1: ¢}.(t) — ¢}._,(t) > d(¢}.(t) + ¢)._,(t)), we can deduce that the approximation makes sense
as soon as\ < d.

For the case of the STFT representation, we would assume theefreg separation given by the rule:

|¢h_1(t) — ()] > d, for k > 1 and ¢/ (t) > d/2. Also, as supfy) C [—d/2,d/2], and considering any
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given pair(n, b) such thatjn — ¢}.(t)| < d/2, we have the following approximation:

Vi, 0) % 5 Ax()e> 50— G0, (12)

Note that this upper bound fdk in the wavelet approximation is larger than that derivedijy \vhich

stated that the separation was only possibla i& The key difference is that the inequalities used

1+d
in [4] were a¢) (t) — ag)_,(t) < (1 4+ A) — (1 — A) = 2A anda¢)(t) + a¢;,_,(t) > 2(1 — A) which
are too sharp since there is navhich can attain these bounds simultaneously.

To be valid, the approximations described in (11) and (12 bequire that, (introduced in Definition
2), be sufficiently small. The fundamental difference betwaesignal made of pure harmonics and a
multicomponent signal is the dependence of the lattee.oro illustrate this we consider a sum of two
cosines with close frequencies, and a sum of two linear shiigh close instantaneous frequencies, such
that both signals satisfy the conditiaf (t) — ¢4 (t) = 15(¢1(t) + ¢5(¢)). We analyze these signals with
a bump wavelet (see definition (5)). We take = 1 = 1 and we takeA = ¢ equal to eithe.2, 0.1 or
0.05. For the multicomponent signal and contrary to what hapfena signal made of pure harmonics,
when o = 0.05, in spite the frequency separation condition is verified, Wavelet representation is
poor meaning that the approximation (11) is inaccurate @ Figure 1 C and F). With reference to
the study by Mallat on wavelet ridges, ( [10], p.102), andating that the wavelet frequency center is
denoted by, (which equalsl in the example above), the second order terms in the appabixim(11)
would be negligible only if:

& 1450
|65 (0 AR (D))

<<1 andf&,“;’ﬁ o << 1, (13)

provided —5* EAG] < 1. We are now going to show that the quality of the approxinmaf{ibl) greatly

EAGIIZHNOI
influences that of the wavelet transform. The constraints rdest in (13) when applied to an IMT
imply that ¢ is such thaty/(¢) > &ye, provided that-$ 1AWl < 1 which is true when$%s < 1, or

l¢" ()] TAB)] A(t)
equivalentlyA(t) > &ye. If we assume that botd and¢’ are bounded below, the wavelet decomposition

leads to better results by takigg smaller where is large. Note also, that, if we analyze the signal with
a wavelet¥ such that suppl) C [¢o — A, & + A], then A needs to be inferior tgyd to ensure the
frequency separation condition. Thus, to take a small vatu&§ whene is large as suggested by the
constraints (13) applied to an IMT, requires that the Faur@nsform of the wavelet be better localized
since we must have < {yd.

As an illustration consider the wavelet transformcof (27 * 30 = (¢ + 1/4)?). The first inequality of

(13) is always satisfied in the present case, while the secand mat be verified whergy is chosen
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Fig. 2: From top to bottom: modulus of the wavelet transforme@f(27 * 30 * (¢ + 1/4)?) and that of
cos(2m x 30 x (t + 1/4)%) + cos(2m * 24.55 (¢ + 1/4)?). From left to right: forc = 0.02 and u = 0.2,
0.3, 0.5

too large. Indeed, in the case studied, side&t)/®'(¢) is decreasing with we gete = 4 and, as
®’(t) equals2 in 0 and is increasing, we need to take < 0.5, for the second inequality of (13) to
be satisfied. Note the role of the wavelet frequency centeherdecomposition, we analyze the signal
with the bump wavelet considering = 0.02, . being either equal t6.2, 0.3 or to 0.5. We have taken
o = 0.02 in the simulations to ensure tha&t < &gd even whenéy = F. = 0.2. In Figures 2 A to

C we see that, on the one hand, we have a better wavelet retagse for smally whent is small
but this improvement is to the detriment of the represemator largert. Then when one considers a
signalcos(27 * 30 * (¢ + 1/4)?) + cos(2m * 24.55 x (t + 1/4)?) made of two linear chirps, we notice that
a better wavelet representation of each of the linear clagults in less interference as confirmed by
comparison between Figures 2 D to F. To conclude, for signaldenof pure harmonics what matters
is how well the wavelet transform separates the modes whilarfulticomponent signals the strength

of the modulatione must also be taken into account in the wavelet choice. Latewerwill use the
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previous remark regarding the location of the frequencytazeof the wavelet to improve the results of

the synchrosqueezing method for large

Remark:if the STFT was used instead, the second order terms in (12) veeuhegligible if: 'A/]’f(t)' <<

[Ax ()]
. Al
1, ¢y (t)] << 1, provided IAkEg} <1.

C. Estimation ofv on Signals Made of Pure Harmonics

Before considering a signal made of pure harmonics, let atyae the computation ab(a,t) for a
single pure harmonic signal cos(27¢t). In this case, whatever the analytic wavelet used for aiglys
w(a,t) = ¢ for any a such that\if(aqb) =# 0. We first start by telling an argument that precludes the
use of a wavelet whose Fourier transform is not compactlypsupd. Indeed, in such a case, even
if U(ag) is extremely small, one still has(a,t) = ¢ becausel(a¢) is on both the numerator and
denominator ofw(a,t)). Now, if a signal consisting of pure harmonics as defined ictise IV-A is
considered a consequence of the previous remark is thatethens R, = {(a,t),w(a,t) = ¢} are
ill-defined. However analyzing the signal with a wavelet attting a compactly supported wavelet does
not completely resolve the problem of the computationwdf, ) and a threshold still needs to be
applied to the wavelet coefficients to get something releva@atillustrate this point, let us consider
cos(2m * 40 x t) + cos(27 % 32.72 x t) for which we computeb using W,«(a, €) = f(&)U(af), remarking
thatm(a,f) = 2i7r§I7V\f(a§) and finally inverting these quantities as in [1]. The waveletuwse is
again the bump wavelet(= 1, o = 0.05 ensuring the frequency separation condition). Due to nigaler
considerations instead of computing the tiug, ¢), we set it to zero wheneveW(a,t)| < ~, v being
a certain threshold. In what follows, we will call; the corresponding quantity and we now study its
evolution with~ . Note that for the signal studied, the maximum of the wavebaisform is1 /2 which
means thaty should be significantly smaller than this value. Figure 3 digp) for a fixedt, &s(a,t) as
a function ofy (which is in that case independent of the choicetjoit appears that one needs to take
~ large to be able to associate with the presence of two distinct modes but then the numlevedae
obtained forw,(a, t) is different from the theoretical expectation. Indeedhit@ld be equal t@;, for all a
in [1;—?, %} which is not exactly the case. For instance, the mean squame(measured in dB) relative
to the evaluation of) by &, and takingy = 2.10~2 is 9.56 dB. This inaccuracy means that the summation
(8) used to define the synchrosqueezing transform is biasedodihe error in the computation éf To
investigate whether the estimation error could be imprdwednalyzing the signal with a wavelet whose

Fourier transform decays slower than that of the bump wavele computev;(a, t) with the following

December 15, 2011 DRAFT



12

Shannon waveledefined by:\if(g) = X[u—o,u+0]- DOING SO, however we do not obtain any significant
improvments. For instance, when= 2.102, we obtain a mean square error relative to the evaluation of
w equal t06.30 dB which is even worse than in the case of the bump wavelegubkim same parameters.

It appears that the lack of precision in the estimatiod a$ related to the fact that the Fourier transform
of a discretized cosine function is not strictly speakingiea®distribution. Consequently, even in simple
cases, a large is required for a meaningfub, but large wavelet coefficients are not dealt with in the
reconstruction formula (8), leading to large reconstarcterrors. In the new algorithm we propose in

the next section for mode reconstruction, we will removerked for the estimation ab.

! L
50 60 70

Fig. 3: ws(a,t) computed using different threshoidfor the signalcos(27 x 40  t) 4 cos(2m * 32.72 % t)

using the bump wavelet with = 1 ando = 0.05

V. A NEW ALGORITHM FOR THERETRIEVAL OF MODES IN A SYNCHROSQUEEZINGFRAMEWORK

The algorithm we propose to retrieve the modes is based oe thistinct steps: a determination of
the number of modes step, an optimal wavelet threshold ctatipn step and a modes reconstruction

step based on the first two steps.

A. Detection of the Number of Modes

To get rid of the estimatioty we first remark that the latter is basically non zero as sooWa&, t)
is above a certain threshold. In that context, given a tlolesh, it is natural to introduce the following

sets:

Cf(’%t) = {ja ’Wf(a]’t” <7 and |Wf(a’j+1a t)| > 7} (14)

Note that the normalization of the wavelet transform we gseecessary to give sense to the above set.

Indeed, if we consider a sum of pure harmonics with the sangitae then the wavelet transform at the
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frequencies of interest should also have the same amplitaaeir context and given, we will consider
that a mode for a given timeis associated with a set of successive scalesuch thatiW¢(a;,t)| > 7,
and consequently with some indgx in C¢(v,t). With that in mind and given a rangé for ~, we

compute an estimation of the number of modes as follows:

Ny(T) = roundmeans(Cy(7.1))), (15)
€l

where #X, denotes the cardinality oK. The quantity N;(I") corresponds to the average number of
modes over all timeg and~y in T". To give an insight into how' should be chosen, we shall remark that
as the Fourier transforms of the wavelets are normalizechtoat their peak frequencies, then refering
to (11) at the corresponding scale corresponding to let ysteakth mode, the modulus of the wavelet
transform almost equalls/2 A, (t). Thus, the sel’ admits as upper bound/2 max | Ak||oo- Furthermore,

the maximal value in the sdt should not be taken too small so that the true number of modes c

indeed be detected.

B. Wavelet Threshold

In our determination of the relevant wavelet threshgldve favor a value of that parameter that leads
to at least the expected number of modes for eadks we will see later, it is only worth focusing on
cases where the number of detected modes at least equalspihetezi one. We thus first seek a value

4 of ~ as follows:

3 = argmin{meari#(Cy (v, 1)) =~ Ny(I), s.t. V1 #(C5(1,1)) = Ny(T)} (16)

This corresponds to the value ofthat on average giveg(C¢(v,t)) the closest taV,(I'), imposing
that, for eacht, #(Cy(v,t)) be larger thanV,(I"). When# exists, to consider such a value ensures that
for eacht, we have detected at least as many modes as the expectedrndi{hg.

However, in some instances, especially when the modes we #&ytract interfere, such a valdemay

not exist, in which case we will alternatively use:

v = argwmin{mear(#(cf(y, t) = Ny(T))}, (17)

which, contrary toy always exists. In what followsy,,; will either denotey or 7.

C. Algorithm for Modes Retrieval

In our framework, we will consider that a mode is associatél wset of intervals, each corresponding

to a particular timet. As for somet the number of detected modes may not be equal to the expected
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number, we take this into account in our search for the mo@es. strategy to define the intervals
associated with each mode is first to find the first timesuch that#(C¢(vopt, to)) = N¢(I'), and then
define N¢(I") intervals at that time by considering for eagh 1 < k < N¢(I"), in C¢(Yopt, to):

Lt = ksdi] st Vi <5 <Jr [Wy(aj, to)| > vopr and [Wy(az,+1,%0)| < Yopt-

Each intervall;, ;, is associated with one of the modes of the signal. Note thatepends ort, but

kvt()
we omit this dependancy for the sake of simplicity. Finally exploit the continuity of the wavelet
transform with respect te: the intervals detected at timg should also be detected at the following
time ¢y + At. Let us now explain how we compute the intervalg, ;,+a¢)x from the intervals(Z;, ¢, )k

. Three cases may occur:

o When#Ct(vopt, to + At) = Ny(I'), then we link the intervals at timg + At to those at time,

by following the criterion:
I+, and I, 1 n; belong to the same mode I, ;, ()1, t,+a¢ # 0.

We then carry on considering the timg+ At and the associated intervals.
o When#C(vopt, to+At) > Ny(T'), then we get rid of irrelevant intervals by applying the daling

criterion:
L+, andI; ; +A: belong to the same mode fif= argmax{|1jp,to+m\, st Lyt ﬂljp,tﬁm # (Z)},
p

where for an interval, |I| denotes its length. Doing so, we only consider at tigie At the longer
intervals that match those detected at titpeThis technique enables us to defifvg(I") intervals
at timety + At. We thus restart the procedure changiggnto ¢y + At and considering just the
defined set of intervals.

o When #C¢(Vopt, to + At) < Ny¢(I'), for which we do not define any intervals, ;. Instead,
we look for the first positive index such that#C'r(vopt, to + IAt) = N¢(I"). We then restart the
procedure replacing, by to + (At and by considering the associated interna|s;, ia¢-

The same procedure is then applied freyrtowards smaller times. We finally end up with either zero
or N¢#(T') intervals associated with ea¢hWe will see, in subsequent numerical applications, that th
former happens when the wavelet representation is verydwzly. In such a case, it would be unwise
to derive modes using the synchrosqueezing method. For made indexed byl < k£ < N¢(T'), we

can associate for most= ¢gAt an intervall;, ; := [ji,]x], which enables us to retrieve the modes by
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considering the following reconstruction formula:

log(2)

v

fr(gAt) = 2Re C\I_,l Z Wye(aj, gAt)
jGIjk,f,

Doing so, we avoid both the problem of the binning of the fimtry domain as well as the heuristic

(18)

procedure involved in the determination of the modes (setoselll-B). As already mentioned previously,
the thresholdy,,; is computed to ensure good detection of the different modésen reconstructing the
modes using such a threshold leads to wavelet coefficients aviarge amplitude being neglected. To

improve the reconstruction, we comment that if the Fourngform of® is compactly supported inside

[€w — A, &y + A] , then basically the scales of interest for the mddat time ¢ are [5;’;‘(3, iﬂﬁ].
Invoking (11), the amplitude of the wavelet transform atsaa local maximum when;¢) (t) = &o.
Then, if the Fourier transform of the wavelet is symmetrichwigéspect to its peak frequency (which is
the case with the bump wavelet), the wavelet representatialmost symmetric with respect to the scale
a; associated with the peak frequency, (this is true for purebaic signals and also for multicomponent
signals provided (11) holds). Consequently a good estimatj.(t) of ¢} (¢) is obtained by considering
% wherea;, is the middle of the intervad;, anda;, which are the scales associated with the indices

Jr andjy of the intervall;, ;. This then leads us to an alternative reconstruction formula

FolgAt) = —Re S Wf(aj,qm)loi@) : (19)

Cu a;€J,q v

So—A  SutA
o1 (qAt)’ ¢ (qAt)

formula (19) and we will also put forward its potential irgst for signal sampling and denoising in

where J; , = |

|. We investigate in the next section the relevance of thencaction

section VII.
Remark:We should also note that the proposed procedure is also wélah the STFT is used instead

of the wavelet transform.

VI. ILLUSTRATIONS OF THERECONSTRUCTIONPROCEDURE ANDCOMPARISONS

In this section, we compare some examples to illustrate thewrdage of using the reconstruction
approach described in (19) as opposed to that proposed tiorséid-B and which was implemented in
[1]. Furthermore, we will compare the proposed method to EMIctviconsists in extracting the modes

by analyzing the signal in the time domain [8].

A. Synchrosqueezing Frequency Modulated Multicompongmaii

To illustrate the reconstruction procedure defined in (18) @9®), we consider the retrieval of the com-

ponents of a modulated frequency sigsial(3(27 x 77t 430 sin(37t))) +sin(3(27 x 46t +21 sin(37t))) +
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Fig. 4. A: An example of a signal made of the superposition af trdvial IMTs. B: corresponding
wavelet representation. C: reconstruction of the modedefsignal in A using formula (18) and the

bump wavelet 4 = 1 ando = 0.2); D: same as in A but using the reconstruction formula (19)

sin(3(27 x 6t)) (see Figure 4 A), which has a frequency separation conditien0.2 (see Definition
1). This signal admits the wavelet representation in Figure 4dBhputed using the bump wavelet with
1 =1ando = 0.2. We test the two reconstruction methods (18) and (19) onitirebwith the results
depicted in Figure 4 C and D respectively. The mean square @xpressed in dB) associated with the
reconstruction of the three modés, f, and f3 of Figure 4 A is13.37 dB, 11.03 dB and19.64 dB for
(18) and21.6 dB , 14.45 dB and31.32 dB for (19). Note also that, in such a case, sifcexists we
have a reconstruction formula for each time

Now, we wish to compare the procedure we propose for reagigin to that introduced in section
I1I-B. First, we remark that formula (9) proposed for recauastion requires the knowledge of the number
of modes. Even if the latter is known the determination of th&neal curvesc* is very sensitive to the

choice of the parameter. To ensure a fair comparison, we compute formula (9) for ipeas of Figure 4
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Fig. 5: A: The optimal curveg*, for different values of\, B: The results of the EMD decomposition

on the signal of Figure 4 A

A using the bump wavelet as analyzing wavelet still witk= 1 ande = 0.2, and then display the optimal
curvescx depending on the value ofon Figure 5 A (the tested values axe= 5.102, 10* and2.10%). For
larger \, we note that the regularization term prevails over the Byoggueezing term and somebeing
straight lines. Then, considering Figure 5 A is very inforwmaton the way the reconstruction formula
(9) works for smaller\. Indeed, the algorithm selects in this case optimal curvadarof several parts
that belong to different frequency bands because the sgagheezing part prevails in the reconstruction
formula, i.e. it creates mode-mixing. For instance, if onesiders the value = 2.10*, we see that for
some times (typically betweet.3 and 0.4) the two optimal curves correspond to the same frequency
band. We also note that the lack of precision in the deterniminaof the optimal curves results in the
modes obtained not summing up to the original signal.

Another technigue used to represent such signals is EMD [&8. mi&in principle of the technique is
to extract less and less oscillatory components from a kigynapplying an iterative procedure called
the sifting process (for further details on the method sdg W®e apply the EMD algorithm using the
version given in [12] using the default parameters to theaigf Figure 4 A. The components of the
decomposition, called IMFs (intrinsic mode functions), sumto the original signal. In the present case,
most of the energy of the original signal is contained in thet five IMFs which we depict on Figure 5
B. We notice that mode-mixing is present by considering {MRd IMF,, and note that the information

contained in the modeg and f, spreads over IMF, IMF5 and IMF;. Similarly, the information contained
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in f1 spreads over IMFand IMF;. The reason for such mode-mixing effects is related to thetffeat the
extraction of the IMFs in the EMD is not frequency based in asttto the synchrosqueezing technique.
Furthermore, we also comment that if an error is made in thaetkbn of the first IMF then it will spread
throughout the whole extraction procedure. A deeper aisabfsFigure 5 B, fort < 0.2, tends to show
that EMD is relatively good at separating high frequency congmts but when the frequency modulation
is important towards lower frequencies, it seems to needoager frequency separation condition than
that involved in the study of synchrosqueezing (typically .35 < ¢ < 0.45). This remark offers some
insight to the study carried out in [6] on a two tone signaljckhconcluded that when the modes have
the same amplitude and for a given frequency ratio, the adiparof the mode is easier to achieve with

synchrosqueezing than with EMD.

B. Analysis of Linear Chirp

In this section, we provide another illustration of the nogtlon the extraction of linear chirps. Our
aim is on the one hand to compare the behavior of our methdudexisting methods, namely EMD [8]
and another version of the synchrosqueezing algorithm fitl] @&iso to focus on the importance of the

wavelet choice in the synchrosqueezing technique whisnlarge.

Fig. 6: The first row contains the estimation ff using the reconstruction formula (19) with analyzing
wavelet the bump wavelet with = 0.02 and ¢ = 0.2, p = 0.3 and x = 0.5 from left to right. The

second row contains the estimation fofwith the same parameters with regards to the wavelet tremsfo

To do so we analyze the linear chirp sigrak(2m * 30 * (¢ + 1/4)?) + cos(27 * 24.55 * (t + 1/4)?)

whose wavelet transform was explored in Figure 2. Figure 2 shatlhie importance of the location of
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—first optimal curve —first mode
---second optimal curve]| ---second mod

B
time

Fig. 7: A:The first two IMFs associated with the decompositionha tinear chirp, B: the two optimal

curves given by the formula (9) with = 1000, C: the corresponding modes

the frequency center of the analyzing wavelet in terms ofoility of the representation. In the present
case, we showed thay had to be lower thaf.5 so that the estimation (11) could be reasonably good.
Also it appeared that by moving the frequency center of thalyaing wavelet towards zero, a better
time-scale resolution resulted. We now investigate how iimprovement in the wavelet representation
impacts the synchrosqueezing transform. We use the reactish formula (19) as suggested by the
previous simulations on frequency modulated multicompoisggnals again using the bump wavelet for
analysis. Our simulations consist in moving the frequerenyter of the wavelet towardsby considering
successively, = 0.5, p = 0.3 and . = 0.2, o being fixed ; because we also have the constraint ud

and sinced = 1/10, we considels = 0.02 so that the previous inequality is valid far= 0.2.

The results of Figure 6 show that by improving the approxinmatid ) for smallt, the synchrosqueezing
representation is greatly improved. Note that when thenstroction formula returns zero this means that
our algorithm is not able to separate the mode from the waveEesentation and we find it wiser not to
propose any decomposition in such cases: when the anatydssdre inefficient this should be explicit.
The rationale underlying this view is to make the most of theelet decomposition without extrapolating
when the information is unclear. To measure quantitativietyimprovement in the mode reconstruction
brought about by the change in the frequency center of thelegwe compute the mean square error
(measured in dB) associated with the reconstruction of werhodes either considering only the time
indices such that > 0.8 (¢ > 0.8 in Table I). Our basic insight is that better reconstructi®mchieved
for smaller times by moving the frequency center of the waivedwards0, which is confirmed by the
results of Table I. This point is to our mind worth noting sintdlustrates that the synchrosqueezing

technique can be efficient in practice only when the analyziagelet is appropriately chosen. Note
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also, that we had remarked earlier that to move the frequeerayer toward®) worsens the wavelet
representation for large in the sense that its spreads the information over a largetbeu of scales.

However, as the reconstruction procedure takes into atdberiocation of the frequency center, it has

no impact on the quality of the estimation of the modes.

o =0.02 o =0.02 o =0.02

pn=0.2 n=20.3 pn=20.5

t>08 t>0.8 t>038
SNR (in dBf; estimate)| 21.4 18.53 -2.17
SNR (in dBf» estimate)| 21.17 16.82 -2.21

TABLE I: Influence of the location of the frequency center on tjuglity of the estimation of the modes

using the synchrosqueezing transform

We are also concerned with comparing our method for modaetitin to the EMD and to the technique
of extraction of the modes given by (9). For EMD, the usefubiniation is mainly contained in the
first two IMFs, which are displayed in Figure 7 A. The reconstautterror (measured in dB) is for
the first and second modes (considering times larger than0.8 to ensure a fair comparison with
the synchrosqueezing technique)9 dB and2 dB respectively. Again, as EMD does not analyze the
signal in the frequency domain it seems to be inefficient atusging components with close frequency
characteristics. Now, to test formula (9) we still consitlee decomposition of the linear chirp signal
with the bump wavelet taking = 0.2 and o = 0.02. We notice that it clearly fails to reconstruct the
modes because trying to determine two modes from the sméhes it becomes trapped by the poor
representation given by the wavelet transform at thesestiffgures 7 B and C illustrate this point for

A = 1000, other values of\ would offer no improvement.

VII. SIGNAL SAMPLING AND DENOISING USINGSYNCHROSQUEEZING
A. Multicomponent Signals Sampling and Synchrosqueezing

Based on the previous study, we now investigate how to useéSMeto determine relevant signal
samples. Before getting into the technique we should briefiplesize what motivates our study. The
central paradigm of modern signal processing is the Nyeistnnon theorem which states that any
signal f admitting a compactly supported Fourier transform inctude [—£2, 2] can be reconstructed

from its regular samples througlfi{t) = 3,5 f(ng)sindQ(t — ng)).
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When one considers irregular samples as in [14], the reamtgin can be ensured provided the
sampling points are a perturbation of regular sampling.eMwecisely ifl" < 1/Q and ift;, = {Tk+ay}
such thatsup [t — Tk| < % then one can find out a series convergingftand based on these samples.
The idea b]Zahind such a result is to determine uniform samplgsrom the nonuniform sampled (¢x))x
and then use classical estimation on Fourier series. Theses kif representations based on the Fourier
series do not take into account local signal frequency dbariatics whereas it would be natural to relate
the signal sampling to these characteristics. The approaamow describe is an attempt in this direction.

A study of the robustness of the SM to bounded perturbatiorenvithis applied to a superposition of
IMTs was given in [1]. In that study, the authors state that # f + e, wheree is a small perturbation
such thatle|| .~ < Ce. Defining for allk, M, as the largest real number such thgf (¢)| € [M, *, My],
then the SM enables the reconstructionfpfvith an error of the ordei,¢'/3. From this we deduce that
in such a case the SM enables a reconstruction of the sjgmath an error of the ordeml?x My,el/3,

In our following study,g will be an interpolant off at some sample points and thaswill be the
interpolation error. We aim at showing how the SM helps us firdvest samples by considering the
interpolation error.

Let assume thay is obtained by sampling’ at the points(¢,,). Then if D = m%x|tm+1 — tmls
the interpolation error using cubic spline interpolanis bounded byle[ 1« < 2;D*||f®||1~. Note
also that by applying piecewise cubic Hermite interpolarstéad, the upper bound for the interpolation
error is even much lower, since we hayiei| .~ < ﬁD‘le(‘*)HLoo, which suggests that given a set of
samples(t,,), a better reconstruction of the modes through synchrogingé¢and consequently of the
signal) should be achieved by using piecewise cubic intanpoHowever, writting the upper bound of
the error as previously wipes up the locality of the erroineation. Indeed, we had rather write when

the piecewise cubic interpolant is used:

1
lellze < g mas { (tasr = ta) 1F i o il } (20)

which means that wherg® is large, the sampling points should be close.

We aim to show that the extrema of the high frequency compooktained after synchrosqueezing
are more relevant than the extrema of the signal itself im$enf the preservation of the signal frequency
content after sampling. Indeed let us consider the follgwtinmo signal reconstruction procedures. The
first (resp. second) one consists in considering the extrdrtteedhigh frequency mode given by the SM
(resp of the original signal) and then piecewise cubic Hexnmterpolation of the original signal at these

points (adding the first and the last point as interpolatiomtsd.
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Fig. 8: Audisplay of the functiont — 3= 2t (tnr1 — tw) | F D (8)Ix(t,. 1, +1((t), Wheref is the signal of
Figure 4 A and,, are the extrema of the original signal, B: same computatibaret,,, are the extrema
of the high frequency mode obtained after synchrosqueedioge the difference in the interpolation

error changing the interpolation points

As an illustrative example, we again consider the signal @jufé 4 A to which we apply the
SM using the same parameters as previously. Each method leadd extrema points. The Nyquist
frequency associated 500 Hz and the Nyquist-Shannon repatie®m would lead to 1000 equally-
spaced points ofD), 1]. The time-scale representation of the interpolants beitigfaetory, this suggests
that the sampling should be based on local frequency and manaximal frequency computation.
Going further, we assess the quality of the two types of palnt by computing the function —
> ami (bt — t) @ () xps,. 1, +17(t). We notice that the amplitude of this function is much snralle
xhen the extrema of the first mode after synchrosqueezingeis instead of those of the original signal
(compare Figure 8 A and B). This suggests that the value of rakat the extrema location of the first
mode given by the SM is more relevant than the value of the kigniis extrema location in terms of
frequency content. In spite, the numerical simulationgpsed here is very limited the obtained results

are encouraging and will be the subject for further develepis

B. Denoising with Synchrosqueezing

In this subsection we show that the SM enables us to define adilegalgorithm that outperforms

the traditional wavelet denoising technique.

December 15, 2011 DRAFT



23

We first note that by computing the thresholg, and by considering the wavelet coefficients whose
amplitude are above that threshold, we perform wavelesttuigling even if we use formula (19). Our
point is to show that the algorithm we have proposed to comthé mode is a very efficient tool for the
denoising of multicomponent signals. We again considemnthiticomponent signal which we previously
studied for signal sampling to which we add a Gaussian wtoisenwith a varying standard deviation.
We then compute the SNR before denoising between the origim@lnoisy signals. Then, we apply
our synchrosqueezing algorithm to the noisy signal (stilhgidering the bump wavelet witlhh = 1 and
o = 0.2 as in the noise-free case) and we obtain the so-called d=mhgignal by summing up all of
the modes obtained. We finally compute the SNR after denoisigden the denoised and the original
signals and plot these in Figure 9. The SNR after denoising sditsel SNR before denoising (curve
labelled SR for Synchrosqueezing Reconstruction on that &jgM¥e now compare the behavior of our
novel denoising technique to traditional wavelet thredimg techniques. We decompose our signal with
a symmlet having six null moments and the depth of decompasis set to three (denoted by WD
for "wavelet decomposition”, on Figure 9). We apply soft ordhéhresholding techniques (ST and HT
on Figure 9 respectively, using the classical estimationhef dtandard deviation of the noise [5]) on
either the first or the first two levels of decomposition (1 s@al@ scales on Figure 9 respectively). On
such a multicomponent signal, the synchrosqueezing récmtion algorithm preserves much better the
characteristics of the original signal.

We believe that our algorithm behaves better for the redsaintlhe wavelet coefficients of a modulated
frequency mode can belong to several octaves and are theshtided differently depending on the time
while the thresholding procedure embedded in the SM is the= sa@matever the frequency content of the
mode. In future work, we will certainly address this issuarinre detail but it is beyond the scope of

the current paper.

Fig. 9: SNR after denoising as a function of the SNR before dergpias a function either using the

synchrosqueezing reconstruction technique (SR) or wititouarwavelet thresholding techniques (WD)

December 15, 2011 DRAFT



24

VIIl. CONCLUSION

In this paper, we have presented a novel algorithm for thelsyisqueezing method. After emphasising
the importance of the accuracy of the wavelet representatiowhich the synchrosqueezing algorithm
is based, we then profited from the structure of the waveletstomm of multicomponent signals to
develop a novel algorithm. We then showed that with regarthéo mode-mixing issue, the proposed
algorithm behaves better than EMD or any other existing impglatation of the synchrosqueezing
method. We then showed that in the noise-free configuratienptioposed algorithm can be used to
find out an appropriate sampling of multicomponent signalsciwmo longer obey the constraints of
the Shannon-Nyquist Theorem. Finally we showed that the dfgorialso provides a natural way to
denoise multicomponent signals and which outperformssidak wavelet thresholding techniques on
these signals. Future work requires a deeper study of theisieg@nd sampling procedure provided by
the synchrosqueezing method along with some new develdsnoensynchrosqueezing-like techniques
especially when the wavelet representations are not a@ecarsugh. Finally, we are very concerned in

future work with developing a better mathematical formiolatof the proposed reconstruction algorithm.
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