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Abstract

This work introduces an enriched description of a mesomodel for laminates in compression. The
improvements are based on micromechanical studies of the kinking phenomenon. Several sources
of kinking-induced nonlinearities, geometric and material, are selected for integration in the meso-
model. For this purpose, a constitutive homogenization strategy based on energies conservation is
proposed and a new energetic potential is defined for the composite ply. The method is illustrated
with the full identification of the reponse of a T300/GSL-914C UD ply. Simple laws and couplings
are defined and allow for an accurate reproduction the microstructure’s behavior. Further, the sta-
tistical waviness of the fibers is explicitly integrated in the model and can be used as a probabilistic
parameter for mesoscale simulations.

Introduction

The aeronautic industry is continuously introducing long-fiber reinforced composites in increasingly
critical components such as shock-absorbers. The main motivation for this application is that lam-
inates, when loaded in compression along the fibers’ direction, may break into multiple fragments,
in which case they dissipate a large amount of energy [1]. One of the reasons that can explain this
high specific absorbed energy is the competition of two highly dissipative degradation mechanisms:
delamination between the plies of the composite; and fragmentation of the plies in compression
along the fibers’ direction. The latter failure mode is mostly due to the microbuckling of the fibers,
once the matrix that support them fails, sheared between adjacent fibers [2]. This competition
between geometrical and material instability causes the strains to ultimately localize into a char-
acteristic volume of finite width, known as a kink-band. The kinking phenomenon is now widely
recognized and understood, thanks to extensive experimental studies (see [3] for a review on fiber
waviness for instance).

However, the numerical simulation of kinking is still a challenge due to the difference of scales
between that of the phenomena (fiber scale) and that of experimental or numerical testing (sample
scale). Computational homogenization strategies, such as the FE2 method [4, 5], can help bridging
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the scales even when nonlinearities occur. Alternatively, using the approach detailed in [6], ho-
mogenization can be used to build constitutive laws. An energy equivalence is written between the
microstructure and an homogenized model, whose potentials and internal variables must be defined
a priori. Therefore, the main limitation of this strategy is that the nonlinear mechanisms and their
representation at the mesoscale must be identified (see [7]). In this study, we propose to enrich a
mesoscale model [8] with results obtained from a previously established microscopic theory [9]. As
such, and since we have a rather accurate description of the microscopic phenomena, the method
proposed by [6] is chosen for its simplicity and its focus on energy equivalence.

The first part of the paper briefly describes the micromodel used as a reference in this study.
Its main characteristics, hypotheses, and results are reminded. Next, the “target” mesomodel and
its main existing properties are presented as well. The third chapter is dedicated to a short litter-
ature survey on homogenization techniques for composite materials modeling. Then the numerical
strategy considered in this study is presented and applied to a T300/GSL-914C composite. Finally,
the possibilities and limits of the method are presented in the light of first results.

1 Microscale theory

The micromodel herein used for the simulation of kinking has been proposed in [9]. Its main
hypotheses and results and reminded here. It is a uniaxial microbuckling model based on the
kinking theory [10], extended to multi-axial loads and with an enriched constitutive behavior for
the matrix introducing the effects of fiber/matrix debonding and matrix microcracking. Additional
hypotheses include: (1) the RVE is periodic along a β-inclined direction toward the transverse
direction, β being the final angle of the kink-band; (2) the fibers are elastic, present a known initial
waviness ω (characterized by its amplitude on half-wavelength ratio λ0), and an Euler-Bernoulli
beam-like behavior; (3) the thin matrix is driven by the kinematic of the fibers; (4) buckling is
linearized along the mode favored by the waviness shape; (5) the fibers break when a strain-driven
brittle criterion is reached, which always occurs post-buckling. This model has been used to simulate
the response of a Representative Volume Element Ω made of homogenized fiber-matrix material,
loaded in compression σ11 ≡ E1ε11 and/or shear σ12 (see Figure 1).

Figure 1: Draft of a RVE representing the material microstructure and loads

A major feature of the model is the introduction of an damageable inelastic behavior for the
matrix in shear and transverse tension. It is a critical ingredient for the prediction of compressive
strength and absorbed energies. In addition, the response depends strongly on the statistical fiber
waviness in terms of critical stresses. Using the largest relastic values of waviness observed by [11],
a good correlation between experimental [12, 13] and numerical tests is obtained for critical stresses
in a compression-shear plane. On the other hand, the influence of fiber waviness on kink-band size
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and absorbed energies has been found of second order, the same as the order of magnitude of scale
effects.

2 Mesomodel fundamentals

In order to perform sample-scale comparisons, we wish to include the responses of this micromodel
into a higher scale model: the damage mesomodel for laminates developed at the LMT-Cachan
(further referenced as mesomodel [14, 8]). It is based on two fundamental hypotheses: (1) a
laminate’s behavior can be derived from that of its plies and interfaces; (2) the degradation state
of each ply is constant through-the-thickness and is described using continuum damage mechanics.
Let us note 1 the ideal direction of the fibers, 2 the transverse in-plane direction, and 3 the out-
of-plane direction. Let us also note σij the components of the Cauchy stress tensor and E0

i , G0
ij ,

and ν0
ij the undamaged elastic moduli and coefficients of the ply. Finally, d and d′ are the damage

variables responsible for the influence of diffuse fiber-matrix debonding and matrix micro-cracking
on shear and transverse tension, respectively; while df is the binary damage representing brittle
fiber fracture. The Helmholtz free energy reads:
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with 〈.〉 the positive part function and p̃ an internal variable describing isotropic inelasticity. The
influence of the nonlinear function ec on compressive failure stress and strain has been experimen-
tally identified in [12] for several composite materials. Here, this function is to be replaced with a
micromechanically defined one.

3 Homogenization of composite materials

Homogenization techniques have been used for many years as a modeling tool for increasingly
complex microstructures. Most of them are based on the principle of respecting one, several, or
preferably all of the following energies: the directly recoverable elastic energy, the energy stored
inside the material (as residual self-equilibrated stress and compatible strain fields), and the energy
dissipated in heat. To represent the variations of these energies, when they exist, internal variables
can be introduced.

Early studies regarding energy storage are due to Taylor and Quinney [15], who investigated
the cold work of metals. The extension to cracked materials involving contact with friction is more
recent [7]. In [6], the authors detailed a simple theoretical procedure for recovering the stored energy
in a more general case, but only applied it in one dimension. More recently, several authors have
extended the basic theories and methods previously proposed to the case of brittle or quasi-brittle
materials in two dimensions [16]. In [17], such a strategy has been applied to a numerical test case
– as opposed to strictly experimental measurements – in order to validate the approach. Similar
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procedures have also been applied to carbon-epoxy micro-cracked elementary cells [18], but rather
from a damage perspective.

All these approaches are based on similar energy conservation principles. These can be adapted
to this case, except that here, the microstructure is considered damageable elastic-plastic and
features geometric nonlinearity. As will be shown in the following chapter, similar equivalences and
considerations can nevertheless be written. The consistency of the method can be discussed when
strong transformation gradients are involved (e.g. close to the edges).

4 Homogenization procedure

The aim of this study is to extract from the micromodel relevant homogenized data in order to feed
a mesomodel. The RVE to be homogenized is the volume of material inside the final kink-band.
Only two loading directions are considered: compression and shear, possibly mixed. The driving
forces are the meso compressive stress σ11 and the meso shear stress σ12. In order to identify all
the other necessary variables at the mesoscale (internal or observable), energy equivalences similar
to those postulated in [7] are considered: The recoverable part of the specific free energy Ψe, the
stored part of the specific free energy Ψp, and the dissipated power Φ are all respected:

Ψe =
〈
Ψe
µ

〉
RV E

and Ψp =
〈
Ψp
µ

〉
RV E

and Φ = 〈Φµ〉RV E (2)

where .µ indicates a microscopic variable and 〈.〉RV E is the computed average over the RVE. No
initial stresses are considered.

Then, new internal variables have to be introduced. Using the micromodel, the RVE is loaded
in pure compression following a cycled path. The result is plotted in Figure 2.a and can be split
in two parts: a linear elastic component with a slope equal to the composite’s Young modulus
(2.b); and a component where all nonlinearities are focused (2.c). On the latter, several sources of
nonlinearities are identified: (1) a loss of stiffness, which can be linked to a damage variable dk; (2)
residual strains, which can be linked to inelastic strains εpr ; (3) and geometric nonlinear unloadings.
Each of them requires a dedicated modelling. Further, geometric nonlinearities will be identified
using one strategy and newly introduced internal variables using another.

Figure 2: −σ11 function of −ε11 at the edges of a kink-band with a width of 105 µm, a waviness
λ0 = 0.01, and a shear load σ12 = 0 MPa (left); linear elastic component (center); nonlinear
component (right)

If we consider that irreversible strains are driven by a single inelastic variable p̃ (see Section
5.3) and that the strain partition hypothesis holds, the free energy reads Ψ = Ψe(σ,D) + Ψp(p̃)
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where D is a fourth order damage tensor including dk. Since the potential depends on several
observable and internal variables that evolve with the loading parameter (σ), partial derivatives
cannot always be computed. Therefore we rely on unloading paths, just like actual experimental
tests, where dΨ

dσ = ∂Ψ
∂σ and with a direct measure of Ψp(p̃) when Ψe = 0. An identification procedure

in two steps featuring several unloadings is set up. First, the elastic nonlinearity is identified on
small mixed loads using a minimization technique between the response of the micromodel and a
simplified form (described below) for which the nonlinearities also have a geometric origin (Section
5.1). This step has to be repeated for each different microstructure (i.e. waviness value). Then,
the damage and inelastic variables’ evolution and/or couplings are identified thanks to mixed load
paths featuring several unloadings, on which slopes the energies can be recovered (Sections 5.2 and
5.3). This step has not to be repeated for different microstructures, as will be shown later, since
fiber waviness has been taken into account in the previous step.

The identification of elastic nonlinearities requires an idea of the form the approximation should
take. Here a simplified form of the fibrous microstructure is postulated, similar to the early kink-
band models for anisotropic rocks [19]. This geometry (see Figure 3) introduces a similar nonlin-
earity that can nevertheless be directly computed. Note that the “spring” E1 corresponds to the
linear elastic part of the response (Figure 2.b).

Figure 3: Rheologic draft illustrating the nonlinearity between σ11 and ε11

This approximation takes the elastic nonlinearity into account rather simply, assuming α has
a non-zero initial value α0. The mesoscopic compressive stress σ11 can then be linked to the
mesoscopic compressive strain ε11 and each local variable (σr, εr, ...):

v = wkb

(
1

2
+
σ11

E1
− ε11

)
tanα = wkbεr + v0 and σr = kεr = −σ11 tanα (3)

5 Identification of a T300/GSL-914C UD ply

5.1 Identification of elastic nonlinearities

Based on the evolution of the elastic strain energy for extremely small mixed loads and various
fiber waviness, the values of k and α0 can be identified. Considering the initial, undamaged value
of the spring is a fixed parameter, k0 is found approximately equal to 18 GPa. The initial defect
α0 is correlated linearly to the fiber waviness λ0 (see Figure 4.a) and the shear strains (see Figure
4.b) : α0 = cαλ0 + cγγ12 where cα = 12.4 rd and cγ = 1.07 rd.
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Figure 4: α0 function of λ0 (left) and σ12 (right)

5.2 Identification of the damage component

The damage variable dk is defined as the loss of stiffness in the spring k such that k = k0(1− dk).
In such conditions, given Equations 1 and 3, the elastic part of the free energy due to kinking reads:

ρΨ
e

=
σ2

11

2E0
1(1− df )

+
σ2
r

2k0(1− dk)
(4)

The thermodynamic forces associated with shear and kinking damage read:

Yd = −ρ∂Ψ
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)
and Yr = −ρ ∂Ψ
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=
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2(1− dk)2

σ2
r

k0

(5)
However, the results of the micromodel suggest a strong coupling between kinking and shear.

Hence, different driving forces are defined in order to couple the associated thermodynamic forces:

Y = f1 (Yd + bYd′ , Yr) and Yk = f2 (Yr, Yd) (6)

where b = 0.5 (already known) is a material parameter, Yd′ the thermodynamic force associated
with transverse damage, and f1 and f2 two functions to be identified. The damage evolution laws
are:

d = max
τ<t

(√
Y −

√
Y0√

Yc −
√
Y0

)
and d′ = cd and dk = max

τ<t
(fk(Yk)) (7)

where Y0 = 0.03 MPa, Yc = 8 MPa, and c = 0.8 (already known) are other material parameters
and fk another function to be identified.

The test is first performed without shear loads and considering Yk = Yr. By loading/unloading
increasingly the microstructure, the partial derivative of the elastic free energy is computed for each
slope and the damage value can be deduced knowing the undamaged moduli. The results of such
a procedure are plotted in Figure 5.a, in terms of damage variable against thermodynamic force.
The identification has been repeated for various values of λ0 and, as expected, the results are rather
insensitive.

Once a form for fk – as simple of complicated as one wishes – is chosen, only f1 and f2 remain
to be identified. Figures 5.b and 5.c allow for the choice of the following expressions:

Y =
(√

Yd + bYd′ +
√
brYr

)2

and Yk = Yr +
√
bkYd (8)
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where br = 0.12 and bk = 36 MPa are material parameters. One can also verify that, without
compressive stresses, the law linking Yd to d is the one implemented in the micromodel, which has
been chosen compatible with the mesomodel in pure shear. The validity of these expressions for
large multi-axial loadings is subject to caution.

5.3 Identification of the inelastic component

The development of fiber/matrix debonding and microcracking leads to local slipping between the
phases of the composite. At a higher scale, the residual stresses and strains due to these trans-
formations can be seen as material inelasticity. This behavior is best reproduced using “effective”
stresses and strains to respect dissipated energy equivalence:

σ̃ = (K0 : K−1) : σ and σ : ε̇p = σ̃ : ˙̃ε
p

(9)

The inelastic strain εpr is defined as the irreversible strains in k, such that σr = k(εr − εpr). As a
first approximation, this strain is considered driven by the same inelastic process as the rest of the
mesomodel, under the hypotheses of associated plastic flow and isotropic hardening. The loading
surface reads:

g(σ̃eq, p̃) = σ̃eq − R̃(p̃)− R̃0 (10)

with R̃0 = 64 MPa the initial elastic threshold and R̃(p̃) = ρ∂Ψ
∂p̃ = Kpp̃

mp where Kp = 1000

MPa and mp = 0.54 are previously identified parameters (on ±45◦ tensile tests). Finally, σ̃eq
is an equivalent stress and is the single parameter of the model that can actually be modified if
all other hypotheses are to be respected. After each computation of the elastic and damageable
components, under the strain partition hypothesis, the stored and dissipated energies of the model
can be computed using Equations 2. The results are plotted in Figure 6.a. The evolution presents
an unusual shape that can be approximated with:

σ̃eq =
√
σ̃2

12 + a2σ̃2
22 + arσ̃r (11)

where a = 0.5 (already known) and ar = 0.25 are coupling coefficients.
These choices allow for a good representation of the evolution law up to a certain point. Hence,

we define a saturation criterion for inelasticity: ˙̃p = 0 when arσ̃r > σT , with σT = 95 MPa. Again,
as expected, the variability introduced by fiber waviness does not significantly affect the shape.
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Figure 6.b also reveals a good reproduction of compression loadings preceded by shear, with the
saturation threshold moving as the compressive criterion is reached “later” on the graph. Similarly,
Figure 6.c displays a good reproduction of shear loadings preceded by compression, without any
saturation threshold. Consequently, the hypothesis of “kinking-driven” inelasticity following the
same process as the rest of the mesomodel is verified. The only unexpected ingredient is the
cumulated inelasticity threshold, but since its criterion is strictly compression-driven, it does not
change standard results in other directions. Once again, the validity of these expressions for large
multi-axial loadings is subject to caution.

6 Conclusion

With all necessary parameters of the model identified, this method offers a good reproduction of
the microstructure compressive behavior up to complete failure, as Figure 7.a shows. Nonlinear
mechanisms are reproduced and the error in terms of stored and dissipated energies is of the order
of magnitude of the percent. The results are less accurate but acceptable when the waviness evolves
and under mixed loadings, as Figures 7.b and 7.c show.
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Figure 7: Stress-strain constitutive law identified at the edges of the kink-band for λ0 = 0.01 and
σ12 = 0 MPa (left); λ0 = 0.0075 and σ12 = 20 MPa (center); λ0 = 0.005 and σ12 = 30 MPa (right)

The implementation of the identified laws in any version of the mesomodel will allow for three
dimensional simulations up to failure to be performed. However, a few precautions have to be
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taken for the numerical integration of the full constitutive law when the bulk elastic component is
added. Because of the snap back, the solution of the constitutive law is not always unique. In an
implicit case, a combination of continuation algorithms may be used to follow the solution and the
equilibrium paths at all time. In an explicit framework, the least precaution to take is to accurately
compute the released, stored, and dissipated energies during stress jumps.
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