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Abstract 

The frequent use of predictive models for analysing of complex, natural or artificial, phenomena is 
changing the traditional approaches to environmental and hazard problems. The continuous improvement 
of computer performances allows more detailed numerical methods, based on space-time discretisation, to 
be developed and run for a predictive modeling of complex real systems, reproducing the way their spatial 
patterns evolve and pointing out the degree of simulation accuracy. In this contribution we present an 
application of several models (Geomatics, Neural Networks, Land Cover Modeler and Dinamica EGO) in a 
tropical training area of Peten, Guatemala. During the last decades this region, included into the Biosphere 
Maya reserve, has known a fast demographic raise and a subsequent uncontrolled pressure on its own 
geo-resources; the test area can be divided into several sub-regions characterized by different land use 
dynamics. Understand and quantify these differences permits a better approximation of real system; 
moreover we have to consider all the physic, socio-economic parameters which will be of use for represent 
the complex and sometime at random, human impact. Because of the absence of detailed data for our test 
area, nearly all information were derived from the image processing of 41 ETM+, TM and SPOT scenes; 
we pointed out the past environmental dynamics and we built the Input layers for the predictive models. 
The data from 1998 and 2000 were used during the calibration to simulate the Land Cover changes in 
2003, selected as reference date for the validation. The basic statistics permit to highlight the qualities or 
the weaknesses for each model on the different sub-regions. 

 

Keywords:  Predictive Models; Space-time discretisation; Remote Sensing; Neural Networks; 
Markov Chains; MCE; Dinamica; Risk management; Deforestation; Peten; Guatemala 

Resumen 

La utilización cada día más frecuente de los modelos predictivos para describir sistemas 
complejos, naturales o artificiales, está cambiando progresivamente los enfoques tradicionales de las 
problemáticas medioambientales y de la gestión del riesgo. El notable potencial de las calculadoras 
electrónicas actuales hace posible el desarrollo de modelos numéricos de cálculo basado en una 
discretización espacio-temporal que permiten simular el comportamiento de fenómenos complejos así 
como prever situaciones futuras, con diferentes grados de aproximación. Se presenta aquí una aplicación 
de distintos modelos predictivos (Géomatique, Redes de Neuronas, LCM Idrisi Andes y Dinámica), en una 
región de bosque tropical de Peten, Guatemala. Esta región, inscrita en la reserva de biosfera Maya, a 
conocido en las últimas décadas, un crecimiento demográfico y una presión fuera de control sobre los 
recursos naturales; en la región de estudio podemos indicar sub-regiones con diferentes dinámicas de 
utilización del suelo.Comprender y cuantificar tales diferencias permite la obtención de una buena 
aproximación de la situación real, y es necesario integrar los parámetros físicos, sociales y económicos 
esenciales para describir el complejo, y a veces aleatorio, componente antropico. La primera fase de 
estudio de esta región se ha basado exclusivamente en el análisis de información de satélites, ya que no 
existen otros datos útiles disponibles sobre esta zona. El tratamiento de 41 imágenes ETM +, TM e SPOT 
ha hecho posible la observación de dinámicas medioambientales pasadas, así como la construcción de 
"Input" para los distintos enfoques predictivos. Los resultados obtenidos a partir de la información recogida 
en 1998 y 2000 serán corroborados con una imagen real de 2003; las estadísticas de base permitirán 
destacar los puntos fuertes y los puntos débiles de cada modelo sobre las diferentes sub-regiones. 
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Résumé 

L’ utilisation chaque jour plus fréquent des modèles prédictives pour décrire systèmes complexes, 
naturels ou artificiels, est en train de changer progressivement les approches traditionnelles des 
problématiques environnementales et de gestion du risque.  Le remarquable potentiel des calculatrices 
électroniques actuelles rend possible le développement de modèles numériques de calcule basé sur une 
discrétisation spatio-temporelle que permettent de simuler le comportement de phénomènes complexes 
ainsi que prévoir des scénarios futures, avec différents dégréés d’approximation. On  présent ici une 
application de différents modèles prédictives (Géomatique, Réseaux de Neurones, LCM Idrisi Andes et 
Dinamica), dans une région de forêt tropicale au Peten, Guatemala. Cette région, inscrite dans la réserve 
de biosphère Maya, a connu dans les dernières décades, une croissance démographique et une pression 
hors contrôle sur les ressources naturelles; dans la région d’étude nous pouvons signaler des sous-
régions avec différentes dynamiques  d’utilisation du sol. Comprendre et quantifier tels différences permet 
l’obtention d’une bonne approximation de la situation réel, et il est nécessaire intégrer les paramètres 
physiques, sociales et économiques essentielles pour décrire la complexe, et parfois aléatoire, 
composante anthropique. La première phase d’étude de cette région a été basée exclusivement sur 
l’analyse d’informations des satellites, car il n’existe pas d’autres données utiles disponibles sur cette 
étendue.  Le traitement de 41 images ETM+, TM e SPOT  a rendu possible l’observation des dynamiques 
environnementales passées ainsi que la construction de l’Input pour les différentes approches prédictives. 
Les résultats obtenues en partent des informations collectées en 1998 et 2000 seront validés avec une 
image réelle de 2003 ; les statistiques de base vont permettre de souligner les points fort et les points 
faibles de chaque modèle sur les différentes sous-régions.  

Mots clefs: Modèles prédictives ; Discretisation spatio-temporelle ; télédétection ; Réseaux de 
Neurones ;  Markov chaine ; MCE ; Dinamica ; Gestion du risque ; Déforestation ; Peten ; Guatemala  

1. Introduction 

1.1. Overview 

The human activities in tropical forest areas determine an increasing resources 
consumption, often driven by demographic raise or by large-scale industrial, mining or 
agricultural projects. The frequent use of simulation methodologies to understand these 
environmental impacts and their long terms consequences represents an important tools for a 
rational management of hazard problems. The continuous improvement of computer 
performances allows more detailed numerical methods, based on space-time discretisation, to 
be developed and run for a predictive modeling of complex real systems, reproducing the way 
their spatial patterns evolve.  

We remember that a model is an abstraction which simplifies the studied phenomena 
only considering its principal components and properties (Coquillard & Hill, 1997 ); the modeler 
should take several decisions which demand a deep knowledge of the model and the links 
between model and reality (La Moingne,1994), in order to define the objectives coherently with 
the available data. To better understand the complex land cover properties and the socio-
economic factors which influence the human activities, it is necessary an interdisciplinary 
cooperation among different research areas and an integrated use of several tools and 
methodologies. After an exploratory analysis (what, where, when), the next step is study the 
causes and rules that characterize a phenomena and its evolution (how, why); the level of 
understanding is valued comparing the first raw model outcome with a set of experimental data, 
pointing out the limits of our approach and often determining some parameters previously 
ignored (Kavouras, 2001).  

To improve the data sets, particularly where field measures are not allowed (large regions 
with hard environmental conditions; developing countries with political instability; research 
projects without time and money consumption possibilities), we can take advantage from 
remote sensed information; the GIS represent a powerful tool for integrated these multiscale 
data from ground-based and satellite images. The spatial scale of investigation may vary with 
the type of land cover as different parameters vary in different ways across the space (Moore et 
al., 1993); the choice of right support size depends on our objectives and on spatial frequencies 
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of environmental system. Moreover we have to consider the computer processing power, 
because a large size matrix (larger number of rows and columns due to downscaling) may 
demand a very long computing time and often this represents a serious obstacle for model 
running. In this contribution we used a pixel size of 20m by 20m that allows to satisfy both 
processing capabilities and accuracy of spatial pattern representation (Hengl,T., 2006), 
providing a finer definition of land cover and partially solving the mixed-pixel problems 
(Atkinson,2003; Foody, 2000).  

Other important question during the model developing and calibration is the choice of 
temporal scale as every land cover change presents a particular spatio-temporal structure. This 
temporal lag must be representative of the main dynamics during the studied period but it 
strictly depends on data availability and on specific planning problems. If we want to project the 
ecological and socio-economic consequences into the immediate future we adopted an higher 
temporal resolution than strategic planning addressing longer terms goals (Kavouras, 2001). In 
this contribution we adopted a lag of approximately two years, using the data sets from 1998 
and 2000 to reproduce the landscape evolution in 2003, selected as reference date for the 
validation.  

1.2. Description of Predictive Models 

Four predictive models are presented here; they simulate the land cover changes in La 
Joyanca region occurred from 2000 to 2003, using different theoretical approaches. The basic 
statistics of predicted results and the analysis of residuals point out the limits and the 
potentialities of each model in the different sub-regions of test areas, characterized by different 
environmental dynamics. 

1.2.1. PNNET: Predictive Neural Networks 

Here we adopted a Multi-layer Perceptron (MLP), a feed forward Neural Networks (NN) 
composed of three layers: the Input layer (the number of neurons depends on the number of 
input data, e.g., thematic maps and environmental criteria), the Output layer (the number of 
neurons depends on our goal, i.e. predicted land cover maps) and an intermediate Hidden layer 
(its size was decided performing a cross validation of NN to optimized the models). Several NN 
with different topology but the same Input layer, were trained using a supervised learning 
algorithm (error-back propagation); the best NN was selected on the basis of statistical criteria, 
(i.e., root mean-squared error) to minimize the difference between  the real and the predicted 
Output (Joshi et al., 2006; Lee et al., 2006; Villa et al., 2007). The nnet function (Venables and 
Ripley,1999) was loaded in R© computing environment, for the training process; the R© 
language was used to compile our three program for producing a predictive map of land cover, 
freely downloaded from http://nathalie.vialaneix.free.fr/maths/article.php3?id_article=49:.  

1.2.2. Geomatics model 

This model derives from the integration of Markov chains analysis (MCA) for time 
prediction and Multi Criteria Evaluation (MCE), Multi Objective (MOLA) and cellular automata to 
perform a spatial allocation of simulated land cover scores. MCA of second order  is a discrete 
process and its values at instance t+1 depend on values at instances t0 and t-1. The prediction 
is given as estimation of transition probabilities. MCA produces a transition matrix recording the 
probability that each land cover class change to each other class and the number of pixels 
expected to change. MCE is a method that is used to create a land cover specific suitability 
maps, based on the rules that link the environmental variables to the studied phenomena 
(deforestation).These rules can be set integrating statistical techniques   with  a supervised 
analysis of modeler. The suitability maps are used for spatial allocation of predicted time 
transitions. A MOLA and cellular automata are performed to integrated the predicted land cover 
maps and improve the spatial contiguity. 

http://nathalie.vialaneix.free.fr/maths/article.php3?id_article=49
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1.2.3. Land Change Modeller: the new Idrisi Andes model 

This model aggregates a Markov Chains analysis (MCA) for time prediction, Multi-layer 
Perceptron (MLP) and a zoning based on incentives-constraints, for a spatial allocation of 
simulated land cover scores. We have to use only continuous quantitative variables (PNNET 
can use both quantitative and qualitative variables, coded in disjunctive form). After the sample 
size definition, we set the number of neuron in the hidden layer and stop the model running 
when the accuracy rate is approximately 90%; MPL permits to repeat the training more time to 
achieve the desiderate error score. The classification produces two transition potential maps, 
which express for each pixel its potential for both deforestation and reforestation. The Change 
Prediction step integrates the amount of changes, calculated in MCA, with the potential maps 
for the modelled transitions, to produce both hard and soft classification. The last one points out 
all the zones with different probability to change, showing the more vulnerable spots. During this 
phase we can introduce an incentive-disincentive for each transition, to influence its potential 
map on the basis of our environmental system knowledge (e.g., future government planning, 
forest reserves). 

1.2.4. Dinamica EGO: Environment for Geoprocessing Objects 

Dinamica EGO is the new simulation model of environmental dynamics developed by the 
Remote Sensing Laboratory (CSR) at Federal University of Minas Gerais (UFMG), Brazil. This 
powerful freeware (http://www.csr.ufmg.br/dinamica/EGO ) aggregates the traditional GIS tools 
with several operators for simulating spatial phenomena. The model, from calibration to 
validation, follows a data flow in form of diagram; a friendly graphical interface permits to create 
models by connecting algorithms (functors) via their ports. We remark that it is possible divide 
the test area into sub-regions, characterized by different environmental dynamics, and apply a 
specific approach for each one of them (Rodrigues et al.,2006)  The calibration calculates the 
matrix of transition rates (net rates) for a time period (initial-final landscape); a probability map of 
occurrence for each transition is produced, using the Weight of Evidence method. The absolute 
number of pixels to be changed was divided between two transition functions, Expander which 
analyses the expansion or contraction of precedent patches for a given category, and Patcher 
which generates new patches (e.g., new cleared areas). The validation produce a fuzzy 
similarity map (a comparison within a determined zone of influence for each cell) between real 
and predicted outcomes; this method considers not only the pixel by pixel agreement (hard 
comparison), but also the probability to find the correct value in the pixel neighbourhood. 

2. Test areas and data sets 

2.1. La Joyanca training site, Peten, Guatemala 

Our test area is located on the boarder between Guatemala and Mexico; it is included 
into the Biosphere Maya, the largest continuous tropical forest of Central America (Fig.1). Our 
studies were focused around La Joyanca site, Peten; it is a part of “Bosque Humedo 
Subtropical” (Cruz 1976) with mean annual temperature of 25°C, precipitation average 
fluctuating between 1160 and 1700 mm/year and a semi-evergreen tropical forest cover. The 
topography is generally suave with an elevation from 50 to 250 m on mean sea level (IGM, 
Instituto Geogràfico Militar Guatemala, Mapa 1-DMA, E754, 2067I).This region is characterized 
by hilly landscape with small escarps; the soils are comprised of evaporitic limestone and micro 
granular dolomite (Arnauld 2000). The first historical occupation of Peten with its nearly overall 
deforestation began during the Classic period of Maya empire and ended with its collapse and 
subsequent reforestation (Geoghegan et al., 2001).  During the last decades  this region has 
known a new progressive demographic raise, due to the immigration of Ladinos and native 
people from the south of Guatemala running away from poverty and looking for new lands. The 
human impact became evident after 1988 with the first settlements on the North boarder of Rio 
San Pedro; in the following years a fast deforestation, obtained by the traditional slash and burn 
technique, for agriculture and mainly for ranching activities, determined a dangerous situation 
for environmental sustainability (Follador & Renno. 2005). 

http://www.csr.ufmg.br/dinamica/EGO
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Fig 1: Training area in Peten, Guatemala. The selected rectangle was approximately marked by UL( W 90°38'08" 
- N 17°19'22"), LR( W 90°31'27" - N 17°08'44"). Image sources: IGN and CONAP. Drawing: Follador Marco. 

2.2. A poor data set 

Remoted sensed images represent an important, cheap and no time consuming font of 
data. Because of the absence of detailed maps and numeric attributes for our test area , nearly 
all information were derived from Image processing of 41 ETM, TM (Path 20, Row 48) and 
SPOT (Path 606 and 607, Row 315) scenes, from 1988 to 2003, acquired with irregular 
periodicity depending on clouds cover and data availability. 

Their preprocessing included the Relative Radiometric Correction (DOC) to reduce the 
atmospheric scattering within the 1998 SPOT image (the ETM+ scenes was already corrected); 
the water bodies Laguna Tuspan e Agua Dulce were chosen as reference. A binary map was 
created to mask the clouds, their shadows, the water and perennial wet lands as they are 
considered as no interest for deforestation dynamics. The statistical study of pixel values (ND) 
permits to calculate the more informative data set reducing the between band correlation and 
data volume; we use the OIF, Optimum Index Factor , based on ratio between the standard 
deviation and correlation index of NDs, to choose the best Color Composite for each date. The 
analysis of scattergram display the probability ellipses for training regions (forest, cleared 
areas), highlighting the importance of Red, Near Infrared (NIR) and Medium Infrared (SWIR) 
bands for this study. We calculated the Normalized Vegetal Index (R-NIR) and Normalized 
Infrared Index (NIR-SWIR) to reduce the data set volume and to point out the cleared and 
hydric stressed zones. At the end an inter-medium image called NDIm (Normalized Difference 
Index medium) was used as input for our RGB change detection method for the time-series 
1998-2000-2003 (Follador & Renno, 2005; Bruno et al., 2006). The RGB(NDIm) displays the 
past land cover dynamics with different colors, corresponding to different values of NDIm in the 
studied period. This represents a first tool for improving our knowledge of the key variables and 
their relationship with the phenomena evolution. In particular we pointed out the difference 
between the expansion of precedent large patches (ranching activities) in Bajio region and the 
generation of new small scattered cleared areas into the tribes’ communitarian concession on 
the highlands (selva alta); here the native people deforest small polygons which are periodically 
disused permitting a secondary forest return. New small crops were created nearby permitting a 
more sustainable use of lands. 
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A supervised classification was applied to more informative RGB for each date; we 
aggregate the MaxLikelihood Algorithm, considering the pixel by pixel probability of membership 
to each category and ICM (Interacted conditional Models, developed in Spring freeware: 
http://www.dpi.inpe.br/spring) a vicinity-method which analyses the spatial distribution of nearest 
pixels. The result displays 4 classes: high forest (Foresta Alta), low wet forest (Bajio), perennial 
wet land (Cibal) and disturbed areas (cleared areas, nude soil, crops, roads, etc.), after reduced 
to binary Forest-Milpa during the simulation. The word Milpa traditionally identifies a mixed 
crops of maize, beans and pumpkin (Effantin-Touyer, 2006), generally obtained in forest zone 
by the slash and burn technique; here we use “Milpa” to represent the whole loss of original 
closed tropical vegetation. The accuracy was very good (Kappa >0.9) for the last two categories 
but we have met a big confusion (25%) in separating Foresta Alta e Bajio, due to a partial 
spectra overlap. To improve this result a texture analyses using geostatistical tools (variogram) 
will be necessary.  

Integrating the Image processing and GIS spatial operators we have built the 
environmental criteria strongly linked with landscape trajectory: several distance maps was 
calculated and a DEM was derived from Radar Image. No qualitative information are used.  

2.3. Phenomena evolution and driving processes 

There is a visible change in driving processes between the training period 1988-2000 and 
the simulated period 2000-2003 (Fig.2); from 1988 to 1998 the deforestation dynamics was 
clearly concentred on the north side of Rio San Pedro which represented for a long time the 
main way of access to the region. These lands are more elevated than the southern ones which 
are periodically flooded during the rainy season. The cleared areas presented a regular 
geometric form and they are mainly used for maize crops and pasture. The clearing progression 
was driven by the expansion of previous patches and, secondarily, by the generation of new 
small deforested polygons. From 1998 to 2000 the human impact in the central and southern 
zones became evident with the first settlements and roads; the subsequent disturbance 
developed as enlargement of villages and axes’ perimeter. The clearing process in the northern 
side of Rio San Pedro maintained the above-mentioned characteristics. Into the communitarian 
concession, the deforestation was limited on the high lands (limestone substrate) which are 
more suitable for agriculture activities, and it is represented by small irregular polygons. 

 

Fig 2: Deforestation trend from 1988 to 2003. Gains of forest and disturbance (Milpa) during the simulated 
period. Data derived from image processing of Spot and ETM scenes. 

From 2000 we recognized an evident rupture in previous disturbance trends, partially due 
to the narcotraffic interest in the Northern lands and subsequent difficulty of movement in these 

http://www.dpi.inpe.br/spring
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areas. The deforestation quickly increased in the southern regions around the settlements, 
along the roads buffer and near the lakes. At the same time we pointed out the generation of 
new cleared areas, irregularly scattered; the farmer and the immigrants slash and burn small 
part of forest in no suitable zones (wet lands or lands with hard environmental conditions) 
looking for new possible productive areas. The localization of these patches is at random and 
depends on people arbitrariness; “l’évolution est créatrice et non plus seulement logique”1 (Le 
Moigne, 1994). It’s impossible well quantify and localize these land cover changes.  

The transition matrixes were calculated using the 1998 and 2000 data sets; they don’t 
match the fast rhythm of deforestation from 2000 to 2003, due to the strong change in social-
environmental conditions (above-mentioned) between the training and simulated period. So the 
number of pixels expected to change from forest to cleared areas was underestimated. The 
model performance will be poor if the driving processes change over the time and the training 
data don’t match the real complexity of land cover dynamics (Pontius & Chen, 2006). When the 
results are not satisfactory it’s very difficult point out whether the model structure is weak or our 
environmental knowledge is limited; however they represent a new coarse information about the 
modelled system, improving a further analysis. “Il y a des moments où nous devons simplement 
agir, en toute connaissance de notre ignorance des conséquence possibles, et nous devons 
toujours nous donner la possibilité de reconnaitre nos erreurs passées et de changer le cours 
de notre action”2 (Arrow, 1974). 

3. Methodology and practical application to the data sets 

3.1. PNNET approach 

In order to model the deforestation, we consider the following regression problem: the 
map is divided into several squared pixels; for each of them, the target variable is bimodal and 
its value depends on this question: “Will this pixel be forest at next date t+1?”. The variable is 
coded in a disjunctive form: [1 0] for a positive answer and [0 1] for negative answer. To 
address this question, we use several predictive variables : 

 the land cover pixels at date t, coded in a disjunctive form (time series); 

 the frequency of forest and no forest pixels in an influence zone at date t (spatial 
process): for each pixel, we define an influence zone which is a square shape 
neighborhood centered on the pixel and whom size, V, has to be chosen. The 
frequency of forest (and no forest) pixels  in the influence zone is calculated by a 
decreasing function of the distance from the central pixel; 

 environmental criteria at date t: dynamic (Distance from cleared areas and Distance 
from developing roads) or static (distance from Pipeline, from Rio San Pedro, from 
lakes, from villages, from southern river and  DEM). The model can take into account 
both numerical and categorical variables (coded in a disjunctive form). For our study we 
didn’t consider any categorical variable.  

We modeled this regression problem by a single layer perceptron (Fig. 3); it comprises 14 
neurons as Inputs: land cover pixels (2 neurons), frequencies in the influence zone of forest and 
no-forest (2 neurons) and environmental variables (10 neurons) at date t. It has one hidden 
layer with k neurons (where k is chosen by the user for more – large k – or less – small k – 
flexibility) and an Output layer with 2 neurons showing the probabilities of membership to each 
land cover class (forest or no forest) at date t+1. Finally, the studied pixel is allocated to the 
class with which it has the highest likelihood of membership. 

 
1 The phenomena evolution is not only logical but also creating. 
2 Sometimes we have to work knowing our ignorance about the possible consequences; this allows recognizing our past 
errors and changing our future activities. 
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Fig 3: PNNET, single layer perceptron topology 

We recall that the link between the Input and the Output layer is made by: 

pw
j x

i 1

k

wij
2 g xT wi

1 wi
0 

        (1) 

where x is the vector of input variable, pw
j x is the jth output depending on weights w, wi

1
is the 

vector of weights between the Input layer and the ith hidden neuron, wi
0

is the bias of  the ith 

hidden neuron and wij
2

is the weight between the  ith hidden neuron and  the jth Output. The 
weights are chosen during the training step on a representative data set, in such a way to 
reduce the error between the real and NN predicted values. The activation function g is the 
sigmoid function 

g z 1 1 exp z          (2) 

We considered three land cover maps derived from remoted sensed data acquired in 
1998 (Spot2, W606-315, 1998_02_24), 2000 (ETM, 20-48, 2000_03_27) and 2003 (ETM, 20-
48, 2003_05_07). Each map had 979 rows and 601 columns with a spatial resolution of 20m by 
20m; this size and the number of environmental variables are too large to treat it at once by the 
R  programs presented below. So we were obliged to reduce the dimension of the data set, 
using a simplification: we decided to consider only the “frontier pixels” to perform the training 
step and the prediction. We called frontier pixel a pixel which has, at least, one different land 
cover in its influence zone. The methodology used to visualize the neural network performances 
included three steps (Fig.4):  

 a training step which optimize the network weights, for a given k (number of hidden 
layer neurons) and a given V (size of the influence zone); 

 a validation step which select the optimal k and V ; 
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 a test step which compared the predicted land cover map with the real  map in 2003. 

More precisely, the training step used about 10 % of the frontier pixels of the 1998/2000 
maps as inputs/outputs (training set) and lead to determine the optimal weights w given in Eq. 
(1). For each couples of input/output pixels (xi,yi)i=1..n, w is chosen to minimize the mean squared 

error between the predictive values ( pw
j xi , Eq. (1)) constructed from inputs xi , and the real 

values yi
j
: 

E
i 1

n

j 1,2
pw

j xi yi
j 2

           (3)
       

This optimization step was performed via usual optimization algorithms (gradient descent 
types); to overcome the local minima difficulties we repeated the optimization step 10 times with 
various training sets, randomly chosen respecting the proportion of forest / no forest pixels in 
the entire 1998 map. Finally we select the perceptron with the minimum mean squared error. 
Once optimized a perceptron for each value of k and V, we determined the best values for the 
two parameters k and V by a validation step. About 30 % of the frontier pixels in the 1998 and 
2000 maps were randomly chosen with respect to the proportion of forest / no forest pixels in 
the entire 1998 map; they were different from those used in the training step. The inputs pixels 
(from 1998 map) were used in each optimal perceptron to produce a predictive land cover map 
which was compared to the desired output (real pixels from 2000 map). Once again, we select 
the perceptron with the minimum mean squared error. For our case study we have chosen k = 5 
and V = 3. 

Finally, we used the whole frontier pixels of the 2000 map as Input data set for this 
optimal MPL to construct a predictive map for 2003. The test step offers a measure of overall 
divergence between the networks’ and real land cover map (Fig.4).  At the end we added 
cellular automata (contiguity filter) to increase the spatial contiguity of land cover classes; in fact 
the row output presented many isolated pixels and a low isometric form of the patches, probably 
due to the “frontier pixels” approximation which limits the number of predicted cells. 

 

Fig 4: PNNET approach for LUCC modelling 
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3.2. Geomatics approach 

Unlike pure mathematic models, geomatic prediction models applied to environmental 
dynamics include a part of human performed geographic analysis, to carry out the relationship 
between land cover dynamics and potential explanatory criteria. Among the multiple 
methodological approaches for predictive simulation in geomatics (Coquillard and Hill 1997) we 
used a combination of three modelling tools: a multi-criteria evaluation (MCE) to perform 
suitability maps for each category of the variable to be modelled, Markov chain analysis for 
prediction and, finally, in integrating step using MCE suitability scores for spatial implementation 
of Markovian conditional probabilities. This latest step arbitrates by multi-objective evaluation 
and cellular automata for realistic landscape pattern (Paegelow & Camacho, 2006). 

The prediction model is stochastic, handles with discrete time and finite states of land 
cover (modelled variable). To do so we use available GIS software components (implanted in 
Idrisi 32 Kilimanjaro) and a restrictive list of criteria so that the methodology would be easy to 
apply to other terrains. The calibration will be performed by modelling a known land cover state, 
the last available date. Therefore we use as training data the two earlier land cover layers and 
known and relevant environmental and social criteria. Validation will be obtained by comparison 
with a later, also known – but not used for predictive modelling – land cover state.  The chosen 
approach may be considered as a “supervised” model with manual establishment of a 
knowledge base in comparison to “automatic” approaches like neural networks. It’s derived from 
the aggregation of several available GIS tools: 

 Multi-criteria evaluation (MCE) – Spatial allocation  

The knowledge about former dynamics is essential to attempt the prediction of the future 
evolution or to build prospective scenarios (decision support). Therefore any model has to be 
supplied with values of initial conditions. In this contribution  we considered two earlier land 
cover maps as training dates (1998 and 2000) to initialize the model and to improve our 
knowledge about phenomena4 behaviour in space and time. MCE is a method that is used to 
create a land cover specific suitability maps, based on the rules that link the environmental 
criteria (independent variables) to the studied phenomena (deforestation, reforestation). These 
rules can be set integrating statistical techniques (PCA, logistic regression, Cramer test)   with a 
supervised analysis of modeller. The suitability maps are used for spatial allocation of predicted 
time transitions values. 

The criteria might be split up into Boolean constraints and factors which express a land 
cover specific degree of suitability, variable in space. The constraints will simply mask space 
while the factors may be weighted and allowed to trade-off each other. Because each factor is 
expressed in proper units they have to be standardized to become comparable.  
Standardization signifies the recoding of original values (degrees, meters, per cent) to suitability 
values on a common byte scale reaching from 0  to 255 (highest suitability). Based on statistical 
tests, recoding is processed by different ways: manual or by fuzzy functions. After the 
standardization, the factors are weighted by pairs using Saaty matrix (Saaty 1977) and 
performing the eigenvector. A second set of context-depending weights allows choice of risk 
and trade off levels. 

 Markov chains – Time transition probabilities 

To perform land cover extrapolation, we use Markov chain analysis (MCA, 2nd order), a 
discrete process with discrete time periods which values at instance t+1 (2003) depend on 
values at instances t0 (2000) and t-1 (1998). MCA produces a transition matrix recording the 
probability that each land cover class change to each other class in the next time period and the 
number of pixels expected to change. The algorithm also generates a set of conditional 
probability maps for each land cover showing the probability with which it would be found at 
each pixel after a specified number of time units. They are calculated as projection from the 
2000 land cover map. 
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 Integrating step based on multi-objective evaluation and cellular automata 

The spatial allocation of predicted land cover time transition probabilities uses MCE 
performed suitability maps and a multi-objective evaluation (MOE) arbitrating between the set of 
finite land cover states. Finally we add an element of spatial contiguity by applying a cellular 
automaton (contiguity filter); it decreases the suitability of isolated pixel and favours the 
generation of more compacted patches. The algorithm is iterative so as to match with time 
distances between t-1 - t0 and between t0 - t+1. 

3.3. Land Change Modeller approach 

LCM is the new integrated modelling environment of Idrisi Andes for studying landscape 
trajectories and land use dynamics; it includes tools for analyzing the past land cover change, 
modelling the potential for future change, predicting the phenomena evolution, assessing its 
implication on biodiversity and ecological equilibrium and integrating planning regimes into 
predictions. 

 Land Cover Change analysis 

The first step permits us to analyze the past land cover change between 1998 and 2000, 
chosen as training dates. We can easily calculate the gains and losses, the net change for each 
class (Fig ) and the surface trends for each transition.  

 Land Cover Change modelling 

The land cover change modelling allows us to define 2 sub-model (forest to cleared 
areas=deforestation and cleared areas to forest=reforestation) and explore the explanatory 
power of environmental criteria (using the Cramer test). The quantitative variables can be 
included into the model either as static or dynamic factors; the static ones are unchanging over 
the time (e.g., distance from pipeline, distance from Rio San Pedro) and express the basic 
suitability for each transition. The dynamic variables change over the training and simulated 
period (distance of clearing areas, distance from developing roads) and are recalculated for 
each interaction during the course of prediction. Once the criteria were set, we calculated two 
transition potential maps using the Multi Layer Perceptron (MPL) neural networks. These 
express for each pixel the potential it has for both reforestation and deforestation. The MPL is 
more flexible than logistic regression procedure and allows one to model non-linear 
relationships. For the training process it creates a random sample of transition cell and a 
sample of persistent cells; it uses half the samples to train and to develop a multivariate function 
(adjusting the weights) that predicts the potential for change based on the value of 
environmental criteria at any location, and the second half of sample to test its performances 
(validation). The number of training pixels will affect the accuracy of the training result: a small 
sample size may not represent the population for each category, while too many samples may 
cause an over training of the network. We construct a network aggregating an Input layer with 
10 neurons, an Hidden layer with 4 neurons and the Output layer with 2 neurons (suitability for 
deforestation and reforestation); we used a learning rate of 0.000121 and a momentum factor of 
0,5 . After 5000 interaction we achieved an accuracy rate of approximately 87%. The next 
classification phase performs the Neural Network classification which produces the transition 
potential maps for deforestation and reforestation. 

 Land Cover Change Prediction 

 The quantity of change for each transition was calculated using the Markov Chains 
Analysis (MCA, above mentioned), from the 1998 and 2000 classified images and specifying 
the 2003 end date. We created both hard and soft maps; the first ones are definitive maps in 
which each pixel belongs to a certain class. The soft ones are a group of images showing the 
degree of membership of each pixel to each possible class and yield a map of vulnerability to 
deforestation, pointing out possible hot spots. We use 3 recalculation steps during which the 
dynamic variables are update. At the end we added the planning interventions tool, creating  a 
disincentive for deforestation (1,5 multiplicative factor for southern areas) in the north side of 
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Rio San Pedro ( affected by narcotraffic interests which limit the movement freedom; the roads 
in the southern part will be the main vector of penetration in this test area, replacing the Rio San 
Pedro) and an incentive for reforestation in central highlands (communitarian zone) where a 
nomad agriculture permits a more sustainable use of natural resources.  

3.4. Dinamica EGO approach 

Dinamica use a cellular automata approach to reproduce the landscape dynamics and 
the way its spatial patterns evolve. The simulation environment aggregates several steps which 
are easily built by connecting algorithms (functors) via their port, using a friendly graphical 
interface or XLM language. We resume here the main stages from calibration to validation of 
predicted Output and the adopted parameters: 

 Amount of change estimate 

The first easy model allows calculating the amount of change for each transition through 
the Markov chains Analysis of second order (comparing two land use/cover map in different 
dates); we used the 1998 classified map as early image and 2000 map as last information for 
computing the transition matrix. 

 Weights of Evidence Method – Change allocation 

A probability map of occurrence for each transition is produced using the Weight of 
Evidence (WOE) method. This is a Bayesian approach to highlight the relationships between 
environmental criteria and land use/ cover change. The favourability for one transition (e.g., 
deforestation D), given a binary map describing a spatial pattern C, can be expressed by the 
conditional probability:  
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Algebraic manipulation allows representing this formula in terms of Logit (log odds) and 
Weights of Evidence (Bonham-Carter, 1994): 
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This method can be extended to handle multiple predictive maps and to relate a change 
with respect several geographical patterns; some restrictive hypothesis on analysed area and 
prior odds ratio for each transition will be necessary. At the end the conditional probability for 
deforestation, given a group of environmental criteria for each pixel, is expressed by: 
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The WOE model allows categorizing the continuous quantitative variables, evaluating the 
correlation of explanatory maps and displaying the weights of evidence with respect each 
environmental criteria. The Output is saved as text file. 

 Land Use/Cover Change prediction 

The simulation model allows reproducing the spatial patterns evolution taking into 
account a large number of parameters specified in the used containers, such as: 

Select percent Matrix: we express the percentage of pixels, for each transition, that will 
be modified using the Expander function; this process expands or contracts the previous 
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patches of certain class (e.g., previous cleared areas). The (1 – Expander %) percentage is 
treated with the Patcher function, which creates new patches through a seeding mechanism. 
We have chosen a percentage of 50% for deforestation and 70% for reforestation. 

Select transition Parameter Matrix: this container take into account three parameters for 
Expander and Patcher functions. The mean patch size describe the mean size (hectares) of 
new pixels groups that will be modified for each transition; increasing this value leads to model 
a less fragmented landscape with large patches for every classes. The second parameter is the 
patch size variance, which determines how much the patch size can vary regarding the medium 
value; increasing this number leads to a more diverse landscape. Finally the isometry 
determines the degree of aggregation of the patches (values >1 permit a better cohesion of 
cells groups). We have chosen a mean size of 4 and 2 ha, a variance values of 2 and 1 ha and 
an isometry of 1,3 and 1,1,  respectively for deforestation and reforestation. 

4. Results 

Four 2003 Land Cover maps were produced using the above-mentioned predictive 
models (Fig.5). We have semplified the complexity of land use/cover change only considering 
two transitions: deforestation and reforestation. The different simulation models were employed 
to projected future landscape evolution under the same scenario. A scenario describes possible 
future situation based on different hypotesis about socio-economic, demographic, political, 
ecological, etc., conditions (Hauglustaine et al.,2004; De Castro et al., 2007). We have drawn 
our scenario using the information observed in the last years of training period (1998-2000). 

 

Fig 5:  Outputs of predictive models 
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5. Validation and discussion of results 

To understand how well the models performed, many statistical methods measuring the 
agreement between two categorical maps have been developed in the last years. However they 
didn’t offer an exhaustive answer to validation problem, particularly to analyse the spatial 
allocation of disagreement. Our first approach is to perform a visual examination between the 
reference image (real 2003 land cover map) and the models Output; we can quickly obtain a 
general idea about model performance, highlighting possible strong incongruence in terms of 
quantity and location. 

 

Fig 6: PPNET output vs. Real map in 2003 

We can remark that the PNNET model underestimates the deforestation amount in the 
southern zone (Fig.6); the performance improves for the central and northern regions. The 
spatial allocation of cleared areas is quite realistic, but their form is sometime fragmented, 
probably due to frontier pixel approximation.  

 

Fig 7: Geomatic model Output vs. Real map in 2003 
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The geomatics model improves the number of deforested pixels as regards to PNNET 
output; we remark an overestimation of cleared areas around the La Joyanca site (image 
centre) and a compact aggregation of the same ones in the southern and central zones (Fig.7). 

 

Fig 8: LCM Output vs. Real map in 2003 

The Land Cover Modeler produced the worse spatial distribution of cleared areas with 
several deforested spots scattered in the central region. Some of them present a low realistic 
structure with a concentric alternation of Forest-Milpa (Fig.8). 

 

Fig 9: Dinamica Output vs. Real map in 2003 

At the end we visually examine the Dinamica Ego Output; we point out an 
underestimation of deforestation in southern area and an overestimation in the northern one. 
The form of cleared spots is more realistic as regards to the other models output, especially 
nearby the La Joyanca site (Fig.9).  
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For each simulated map we calculate the number of predicted pixels, to have a first idea 
on quantity agreement (Fig.10); the PNNET shows the lower predicted value as to the last three 
models, which use the same MCA (Markov Chains Analysis 2nd order) for computing the 
number of pixels for each transition . All models have poor predictive power because the driving 
processes of LUCC change over the time; the deforestation during the training period 1998-
2000  don’t match the faster phenomena evolution (or persistence) from 2000 to 2003. It 
partially depends on the arrival of a new front of deforestation from the south of region, not 
included in our test area, but which became evident in 2003 on the southern side of Laguna 
Agua Dulce.  

 

Fig 10: Agreement of quantity - numerical and graphical representation 

So we can remark a quantity disagreement of 22% for PNNET predicted map (40939 
pixels) and 17% for the other models (30687 pixels), with an evident under-estimation of 
deforested patches. 

The analysis of location disagreement is more complex; it results from swapping location 
between forest and non-forest cells (Pontius, 2002). It’s very important separate the change in 
quantity from the change of location for a better knowledge of environmental dynamics and   to 
improve the model weakness. 

A cell-by-cell cross-validation (Tab.1) is a very simple methodology but it is quite limited 
because it doesn’t take into account the spatial proximity to agreement. So we can point out a 
large number of misclassified cells even if the correct classification is found in their 
neighbourhood (Pontius & Pacheco, 2004).  

 

Tab 1: Pixel-by-Pixel validation 
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The cell-by-cell validation highlights that all models present a poor performance for the 
Milpa with a medium value of 54.5% of agreement; this percentage increase for the Forest class 
to 82.25%. Considering this table we can conclude that the Geomatic model performs better for 
deforested patches (58%) and the PNNET for the forest prediction (85%). 

We calculated now the LUCC budget (Tab.2) to point out the gains and loss for each 
category (we only consider the Milpa class because the map is binary) and the amount of 
changes from 2000 to 2003, as regard to real dynamics. 

 

Tab 2: LUCC budget 

For real evolution of deforestation (real 2000 x real 2003) we can remark an important 
total change (29%) which doesn’t appear in the LUCC-budget of 2003 simulated situations. In 
particular PNNET shows the lower value (10%), due to the absence of reforestation dynamic 
from 2000 to 2003 (0% loss for Milpa or, if you prefer, 0% forest gain); PNNET only predicts the 
evolution of clearing processes considering that there will be not forest regrowth in the old 
deforested patches. Dinamica performs the higher value for total change (18%) and a ratio 
Swap/Net-change (0.46) close to the real one (0.51), showing the best land cover dynamics 
approximation. The other models, particularly the neural networks, underestimate the land cover 
change, predicting the persistence. 

We intersect now the simulated land cover maps and the real one, to point out the consistency 
between models (Tab.3). The correctly predicted area by the four models is about 53% which 
represents a poor consistency, against an individual prediction rate of about 70%. For each 
intersection the forest prediction is better than the Milpa one, due to the persistence and large 
area of this category in opposition to the fast and fragmented evolution of clearing phenomena. 
The best three models combination is the PNNET-Geomatic model-LCM, with an improvement 
rate of 6.25%; when we separately use the PNNET or Geomatic model with the other ones, we 
obtain a poor improvement. This consideration is remarked during subsequent analysis, where 
the higher value (13.57%) is obtained by the intersection between the PNNET and Geomatic 
model, indicating a good consistency. The lower improvement is done by the LCM and 
Dinamica (4.83%). Finally we analyze the contribution of single simulated output; we remark 
that the Geomatic model performs the best prediction (74%) followed by the PNNET (72.2%) 
with an improvement of about 21%. The last one shows a better ability in forest prediction 
(85.4% of real forest), while the Geomatic model performs better for the Milpa (58.62% of real 
disturbance).  

We have seen that for each model, the correct prediction score is linked to the nature of 
the classes and to their spatial patterns evolution. We have remarked that the PNNET performs 
better for forest prediction and Geomatic model for Milpa prediction. Now we prove as these 
performances depend on the number of land cover change between 1998-2000-2003 (Fig.11). 
The neural network show the higher prediction score (93%) on the areas with land cover 
persistence (mainly closed forest areas), but it has the lower value for the more dynamic 
patches. The Geomatic model and Dinamica perform better for the zones with 1 or 2 land cover 
changes (mainly cleared areas with partial forest regrowth). All models show a good ability for 
persistence prediction driven by the simplicity of this phenomenon; unfortunately our attention is 
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focused on deforestation processes which are more complex and interdependent on several 
factors. The models perform similarly on the areas which changed one time (only 50% of real 
amount) but we have a strong difference in model behaviour when land cover changes become 
more numerous, with a better prediction scores for Geomatic model (23%) and Dinamica (21%). 
We remark that these values are very small as regards to real amount of change. 

 

Tab 3: Prediction rates by crossing the models Outputs 

 

 

Fig 11: Prediction scores depending on the number of Land Cover Change – graph and table 
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We have explained that the pixel-by-pixel agreement is a simple but limited method to 
value the goodness of fit of validation, because it doesn’t consider the spatial proximity of 
agreement. We want to do a comparison within a neighbourhood context, as two maps that do 
not match exactly pixel-by-pixel could still present similar spatial patterns and the correct 
classification could be found in the adjacent cells. To address this issue, we used the Dinamica 
EGO vicinity-based comparison method, based on the fuzziness of location, in which the pixel 
value is influenced by itself and by the cells in neighbourhood window (5x5). The fuzzy similarity 
map shows the spatial match between simulated and real image; it varies from 0 (no match) to 
1 (perfect match); the intermediate values are calculated using a decay function into the window 
size. Using the fuzzy theory we can work with different degree of membership and not only with 
a Boolean analysis 0 (error) and 1 (correct match) like in the pixel-by-pixel cross validation. We 
remark a lowering in the number of cells classified as erroneous, with a medium improvement of 
6% (Tab.4); the fuzzy method reflects better the goodness-of-fit of general patterns between 
simulated and real maps, like emerged in the visual examination. 

 

Tab  4: Pixel-by-Pixel agreement vs. Fuzzy validation 

6. Conclusion and outlook 

It is difficult to compare the performances of numerous models because we have to 
consider many different aspects during the LUCC modelling. Often the model is focused on 
specific test area and problematic, usually with big amount of information; so it has a good 
performance in these conditions but it can’t be apply when the data base is not robust or when 
the training characteristics change. We tried to present here four models which are simple to 
use, which can run with easily available data (without an excessive time and money 
consumption) and which can be adapted to different regions and problematic.   

We have remarked that all models have a poor predictive power due to the changing of 
driving processes of LUCC over the time; the spatial patterns evolution observed during the 
training period (1988-2000) doesn’t match the deforestation trends in the simulated one(2000-
2003). So it’s difficult to separate the ability of the model from the complexity of landscape and 
quality of data. All simulated maps present the same difficulties to reproduce the clearing 
phenomena in the southern zone, with different degree of approximation; the land cover change 
in this region is to complex to be completely predicted because the human free will can strongly 
and quickly modify the original landscape. We have produced four predictive maps under the 
same scenario; this scenario describes a future with the same demographic raise and socio-
economic hypothesis observed in the last years of training period (1998-2000). 

The analysis of quantitative agreement highlights an underestimation of cleared areas 
both for PNNET (77%) and other MCA models (82%). A pixel-by-pixel validation shows very 
similar performances, pulling down the correct prediction score for deforested patches (55% of 
real ones); the PNNET has higher value (85%) for forest prediction and the Geomatic model for 
the Milpa (disturbance) prediction (58%).   

The LUCC budget from 2000 to 2003 shows the limits of PNNET approach; it doesn’t 
predict forest regrowth during this period and for consequence its Swap value in null. The 
Dinamica EGO approximates better the real dynamics from 2000 to 2003 with a ratio Swap/net 
change (0.46) closed to real one (0.5). The analysis of model performance versus number of 
land cover changes during 1998-2000-2003, shows similar scores for Geomatic and Dinamica 
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models, which have the best predictive power on the more dynamic areas (numerous changes), 
while PNNET performs better for persistent forest zones. 

This contribution wants to point out the potentialities of predictive modelling for integrating 
the traditional approaches to environmental and hazard problems. Parallelly we want to remark 
that the model performance and utility depend on our geo-system knowledge and on the quality 
of  data, often more than on the model conceptual foundation. The objectives will be clear to 
address an exhaustive answer: do we want to better know the observed object or to understand 
the long term effects of specific government planning or industrial project? Taking in account its 
goals, the modeller often prefer to work in simplified environment with very uniform dynamics 
and clear relationships; it’s an ideal situation to run a model and perform a good result, but its 
utility is quite limited. When we analyse a complex phenomena evolution we have to consider all 
interconnections between the natural and artificial dynamics; the early raw model Output could 
be quite poor but it helps us to improve our knowledge of hidden relationships between the 
studied phenomena and the key variables. The subsequent simulation will be better considering 
these new information. 

The spatiotemporal models are simplified representations of reality. Represent is also re-
represent, represent again, after a selected period; we have to accept that this result will be not 
an exact copy of reality. The re-representation has its own legitimacy: it has memory and 
project; it bases its legitimacy on the coherence with the past history and the future goals (La 
Moigne, 1994).  
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