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come    

A fast vector penalty-projection method for incompressible non-homogeneous or multiphase

Navier-Stokes problems

Introduction on the models for non-homogeneous or multiphase flows

Let Ω ⊂ R d (d = 2 or 3 in practice) be an open bounded and connected domain with a Lipschitz continuous boundary Γ = ∂Ω and n be the outward unit normal vector on Γ.

For T > 0, we consider the following unsteady Navier-Stokes/Brinkman problem [START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] governing incompressible non-homogeneous or multiphase flows where Dirichlet boundary conditions for the velocity v |Γ = 0 on Γ, the volumic force f and initial data v(t = 0) = v 0 , ϕ(t = 0) = ϕ 0 ∈ L ∞ (Ω) with ϕ 0 ≥ 0 a.e. in Ω, are given. For sake of briefness here, we just focus on the model problem [START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Ph | A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions[END_REF][START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] where d(v) = (∇v + (∇v) T )/2, as a part of more complex fluid mechanics problems.

ρ (∂ t v + (v• ∇)v) -2 ∇• (µ d(v)) + µ K -1 v + ∇p = f in Ω × (0, T ) (1) 
∇• v = 0 in Ω × (0, T ) (2) ∂ t ϕ + v• ∇ϕ = 0 in Ω × (0, T ). ( 3 
)
The permeability tensor K in the Darcy term is supposed to be symmetric, uniformly positive definite and bounded in Ω. The equation [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] for the phase function ϕ governs the transport by the flow of the interface between two phases, either fluid or solid, respectively in the case of two-phase fluid flows or fluid-structure interaction problems. The force f may include some volumic forces like the gravity force ρ g as well as the surface tension force to describe the capillarity effects at the phase interfaces Σ. The advection-diffusion equation for the temperature T is not precised here and we assume some given state laws: µ = µ(ϕ, T ) and ρ = ρ(ϕ, T ) for each phase, where the functions are continuous and positive. The case of nonhomegeneous velocity Dirichlet boundary conditions, v |Γ = v D on Γ, also requires some given boundary conditions for ϕ on the inflow part Γ -of Γ where v D • n |Γ < 0.

The fast vector-penalty projection method (VPP ε )

We describe hereafter the two-step vector penalty-projection (VPP ε ) method with a penalty parameter 0 < ε ≪ 1. It is issued from noticeable improvements of previous works [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF][START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] or from [START_REF] Jobelin | A finite element penalty-projection method for incompressible flows[END_REF][START_REF] Jobelin | Une méthode de pénalité-projection pour les écoulements dilatables[END_REF][START_REF] Ph | Error analysis of the penalty-projection method for the time-dependent Stokes equations[END_REF][START_REF] Févrière | On the penalty-projection method for the Navier-Stokes equations with the MAC mesh[END_REF] using the augmented Lagrangian splitting introduced in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF]. The method is briefly introduced in [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] with some preliminary results. The convergence of the continuous artificial compressibility version of the basic (VPP r,ε ) method proposed in [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] is proved in [START_REF] Ph | Convergence results for the vector penalty-projection and two-step artificial compressibility methods, Discrete and Continuous Dynamical Systems[END_REF] for the homogeneous Navier-Stokes equations.

For ρ 0 , ϕ 0 , µ 0 with ρ 0 , ϕ 0 ≥ 0, µ 0 > 0 a.e. in Ω, v 0 and p 0 given, the method reads as below with usual notations for the semi-discrete setting in time, δt > 0 being the time step. For all n ∈ N such that (n + 1) δt ≤ T , find v n+1 , p n+1 , ϕ n+1 and then ρ n+1 = ρ(ϕ n+1 ), µ n+1 = µ(ϕ n+1 ) such that:

ρ n ṽn+1 -v n δt + (v n • ∇)ṽ n+1 -2 ∇• µ n d(ṽ n+1 ) + µ n K -1 ṽn+1 + ∇p n = f n in Ω (4) ε ρ n δt I + µ n K -1 vn+1 -∇ ∇• vn+1 = ∇ ∇• ṽn+1 in Ω (5) v n+1 = ṽn+1 + vn+1 , and ∇(p n+1 -p n ) = - ρ n δt I + µ n K -1 vn+1
in Ω (6)

p n+1 = p n + φ n+1 with φ n+1 reconstructed from its gradient ∇φ n+1 = - ρ n δt I + µ n K -1 vn+1
in Ω (7)

ϕ n+1 -ϕ n δt + v n+1 • ∇ϕ n = 0 in Ω (8)
with: ṽn+1 |Γ = 0, or for non homogeneous Dirichlet conditions: ṽn+1 |Γ = v n+1 D , and vn+1 • n |Γ = 0. Here v n , p n are desired to be first-order approximations of the exact velocity and pressure solutions v(t n ), p(t n ) at time t n = n δt.

The consistency of the (VPP ε ) method is ensured with (6) since we have:

ρ n v n+1 -ṽn+1 δt + µ n K -1 v n+1 -ṽn+1 + ∇(p n+1 -p n ) = 0 with v n+1 -ṽn+1 = vn+1 , (9) 
which yields the effective problem solved with this method by summing with Eq. ( 4). The key feature of our method is to calculate an accurate and curl-free approximation of the momentum vector correction ρ n vn+1 in (5), at least when there is no Darcy term. Indeed [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] ensures that (ρ n /δt I + µ n K -1 ) vn+1 is exactly a gradient which justifies the choice for ∇φ n+1 = ∇(p n+1p n ) since we have:

ρ n δt I + µ n K -1 vn+1 = 1 ε ∇ ∇• v n+1 ⇒ ∇(p n+1 -p n ) = - ρ n δt I + µ n K -1 vn+1 = - 1 ε ∇ ∇• v n+1 . ( 10 
)
The (VPP ε ) method really takes advantage of the splitting method proposed in [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] for augmented Lagrangian systems or general saddle-point computations to get a very fast solution of (5); see Theorem 3.1. When we need the pressure field itself, e.g. to compute stress vectors, it is calculated in an incremental way as an auxiliary step. We propose to reconstruct φ n+1 = p n+1p n from its gradient ∇φ n+1 given in [START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF] with the following method.

Reconstruction of φ n+1 = p n+1p n from its gradient. By circulating on a suitable path starting at a point on the border where φ n+1 = 0 is fixed and going through all the pressure nodes in the mesh, we get with the gradient formula between two neighbour points A and B using the mid-point quadrature:

φ n+1 (B) -φ n+1 (A) = B A ∇φ n+1 • dl = - B A ρ n δt vn+1 • dl ≈ - ρ n δt |v n+1 | h AB with h AB = distance (A, B). ( 11 
)
The field φ n+1 is calculated point by point from the boundary and then passing successively by all the pressure nodes. This fast algorithm is performed at each time step to get the pressure field p n+1 from the known field p n .

On the fast discrete solution to the (VPP ε ) method

The great interest to solve (5) instead of a usual augmented Lagrangian problem lies in the following result issued from [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] which shows that the method can be ultra-fast and very cheap if η = ε/δt is sufficiently small.

Let us now consider any space discretization of our problem in the case with no Darcy term for sake of shortness. We denote by B = -div h the m × n matrix corresponding to the discrete divergence operator, B T = grad h the n × m matrix corresponding to the discrete gradient operator, whereas I denotes the n×n identity matrix with n > m and D the n × n diagonal nonsingular matrix containing all the discrete density values of ρ n > 0 a.e. in Ω. Here n is the number of velocity unknowns whereas m is the number of pressure unknowns. Then, the discrete vector penalty-projection problem corresponding to (5) with ε = η δt reads:

D + 1 η B T B vη = - 1 η B T B ṽ, with v η = ṽ + vη . ( 12 
)
We proved in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] the crucial result below due to the adapted right-hand side in the correction step [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF] which lies in the range of the limit operator B T B. Indeed, ( 12) can be viewed as a singular perturbation problem with well-suited data in the right-hand side. More precisely, we give in Theorem 3.1 the asymptotic expansion of the solution vη to [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF]:

vη = - 1 η D + 1 η B T B -1 B T B ṽ ( 13 
)
when the penalty parameter η is chosen sufficiently small; see the proof in [7, Theorem 1.1 and Corollary 1.3].

Theorem 3.1 (Fast solution of the discrete vector penalty-projection). Let D be an n × n positive definite diagonal matrix, I the n × n identity matrix and B an m × n matrix. If the rows of B are linearly independent, rank(B) = m, then for all η small enough, 0 < η < 1/ S -1 where S = BD -1 B T , there exists an n × n matrix C 1 bounded independently on η such that the solution of the correction step [START_REF] Caltagirone | On a local multigrid mesh refinement method for solving Navier-Stokes Equations[END_REF] writes for any vector ṽ ∈ R n :

vη = C 0 ṽ + η C 1 ṽ with C 0 = -D -1 B T (BD -1 B T ) -1 B, C 1 = D -1 B T S -2 ∞ k=0 (-1) k η k S -k B. ( 14 
)
If rank(B) = p < m, there exists a surjective p × n matrix T such that B T B = T T T and the similar result holds replacing B by T . Hence, for a constant density ρ > 0 and choosing now η = ρ ε/δt, we have: 14) is the solution of minimal Euclidean norm in R n to the linear system: B v = -B ṽ by the least-squares method, and the matrix B † = B T (BB T ) -1 is the Moore-Penrose pseudo-inverse of B such that C 0 = -B † B. Indeed, a singular value decomposition (SVD) or a QR factorization of B yields: C 0 = -I 0 where I 0 is the n × n diagonal matrix having only 1 or 0 coefficients, the zero entries in the diagonal being the np null eigenvalues of the operator B T B.

D = I, S = BB T and C 0 = -B T S -1 B = -B T (BB T ) -1 B. Moreover, if rank(B) = p ≤ m ≤ n, the zero-order solution v = C 0 ṽ in (
Hence, for η small enough, the computational effort required to solve [START_REF] Caltagirone | Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes[END_REF] amounts to approximate the matrix C 0 which includes both D and D -1 inside non commutative products. Thus, we always use the diagonal preconditioning in the case of a variable density which makes the effective condition number quasi-independent of the density jumps. We also use the Jacobi preconditioner in the prediction step (4) to cope with the viscosity or permeability jumps as performed in [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF]. However, for a constant density when D = I, we get C 0 = -I 0 . This explains why the solution can be obtained with only one iteration of a suitable preconditioned conjugate gradient whatever the size of the mesh step or the dimension n; see the numerical results in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] and Figure 3.

Numerical validations with discrete operator calculus methods

The (VPP ε ) method has been implemented with discrete exterior calculus (DEC) methods, see the recent review in [START_REF] Perot | Discrete conservation properties of unstructured mesh schemes[END_REF], for the space discretization of the Navier-Stokes equations on unstructured staggered meshes. The (DEC) methods ensure primary and secondary discrete conservation properties. In particular, the space discretization satisfies for the discrete operators: ∇ h × (∇ h φ) = 0 and ∇ h • (∇ h × ψ) = 0, as for the structured MAC grid, which is not usually verified by other methods; see [START_REF] Perot | Discrete conservation properties of unstructured mesh schemes[END_REF]. So, the (VPP ε ) method is validated on unstructured meshes both in 2-D or 3-D.

The structure and solver of the computational code are issued from previous works, originally implemented with a Navier-Stokes finite volumes solver on the staggered MAC mesh and using the Uzawa augmented Lagrangian (UAL) method to deal with the divergence-free constraint; see [START_REF] Caltagirone | On a local multigrid mesh refinement method for solving Navier-Stokes Equations[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF]. We refer to [START_REF] Ph | New graphical and computational architecture concept for numerical simulation on supercomputers[END_REF][START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF][START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF] and the references therein for the analysis and numerical validations of the fictitious domain model using the so-called L 2 or H 1 -volume penalty methods to take account of obstacles in flow problems with the Navier-Stokes/Brinkman equations. Hence, our approach is essentially Eulerian with a Lagrangian front-tracking of the sharp interfaces accurately reconstructed on the fixed Eulerian mesh, see e.g. [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF][START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF][START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF] and the references therein. Thus we use no Arbitrary Lagrangian-Eulerian (ALE) method, no global remeshing nor moving mesh method. The augmented Lagrangian method has been improved by using an adaptive augmentation parameter, e.g. [START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF], to get a more robust (UAL) method. This allows us to consider the solutions obtained by the (UAL) method as reference solutions since the augmented Lagrangian method does not suffer from splitting errors. Moreover, a scalar incremental projection (SIP) method [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] has been also implemented within the same computational code in order to compare the numerical results. All the linear algebraic systems for the three methods, e.g. the prediction steps, are solved with the Krylov BiCGS tab2 algorithm preconditionned by the incomplete LU factorization of order zero ILU(0).

Homogeneous flows: Green-Taylor vortex analytical solution

The first test case is the unsteady Green-Taylor vortex such that the mean steady velocity field is of order V 0 = 1. The analytical solution in the square domain Ω =] -0.5, 0.5[ 2 reads as follows with ρ = 1 and µ given by 1/Re:

                   u(x, y, t) = -V 0 cos(π x) sin(π y) 1 -exp (-π V 0 t) , v(x, y, t) = V 0 sin(π x) cos(π y) 1 -exp (-π V 0 t) p(x, y, t) = - ρ V 2 0 2 cos 2 (π x) + cos 2 (π y) 1 -exp (-π V 0 t) 2 S u (x, y, t) = -2 π 2 µ V 0 cos(π x) sin(π y) 1 -exp (-π V 0 t) + ρ ∂ t u S v (x, y, t) = 2 π 2 µ V 0 sin(π x) cos(π y) 1 -exp (-π V 0 t) + ρ ∂ t v.
The scheme is O(δt) accurate in time for the velocity, pressure and pressure gradient, see Figure 1 (left), whereas it is O(h 2 ) accurate in space, see Figure 1 (right). We also observe in Figure 2 (left) that the L 2 -norm of the velocity divergence vanishes as O(ε δt), like for the (VPP r,ε ) method proposed in [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF]. 

Dilatable flows: Rayleigh-Bénard thermal convection

The second benchmark problem is the Rayleigh-Bénard thermal natural convection inside a square differentially heated cavity at Rayleigh number Ra, the vertical walls being isothermal and the horizontal walls insulating, see [START_REF] Quéré | Accurate solutions to the square thermally driven cavity at high Rayleigh numbers[END_REF][START_REF] Caltagirone | On a local multigrid mesh refinement method for solving Navier-Stokes Equations[END_REF]. The fluid is air, with Prandt number Pr = 0.71, initially at rest at the reference temperature T 0 = 300 K and atmospheric pressure p 0 = 101325 Pa. The vertical wall temperatures are respectively maintained at T h = T 0 + δT /2 and T c = T 0 -δT /2. Then, the convection flow is driven by the gravity force f = ρ g at a low Mach number regime with Ma ≈ 10 -3 . When the characteristic temperature difference δT is less than a few degrees, the Boussinesq approximation is valid, the flow remains stationary up to Ra = 2 10 8 , and we refer to [START_REF] Quéré | Accurate solutions to the square thermally driven cavity at high Rayleigh numbers[END_REF] for reference solutions computed with pseudo-spectral methods. The Nusselt number Nu, representing the ratio between the total heat transfer and the diffusive heat transfer, is very sensitive to the quality of the numerical solution since it incorporates both the dynamics and thermal effects. We use a Richardson extrapolation to estimate the reference Nusselt number Nu re f from [START_REF] Quéré | Accurate solutions to the square thermally driven cavity at high Rayleigh numbers[END_REF] or Nu ∞ from the present computations, when the number of mesh points M per space direction tends to infinity. The comparison given in Table 1 for δT = 1.06 K and Ra = 10 5 shows a perfect agreement until the fifth digit between the three methods which have all a second-order convergence of the Nusselt number with the mesh step h = 1/M. Let us notice that the present computations does not use the Boussinesq approximation, but suppose that the fluid is dilatable as a perfect gas. Moreover, we study the convergence properties of the velocity correction step [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] for this sharp test case. Again, we get the convergence of the velocity divergence as O(ε δt): more precisely, we obtain: ∇• v L 2 (Ω) ≈ 4.3 10 -4 ε δt; see also Figure 2 (right). We can reach the machine precision of 10 -15 for double precision floating point computations. Besides, the solution of the penalty-correction step [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF] proves to be all the cheaper as η = ε/δt tends to zero, as expected from Theorem 3.1. Indeed, we have observed that for η = ε/δt ≤ 10 -6 , only one or two iterations of the ILU(0)-BiCGStab2 preconditioned Krylov solver are sufficient to get an accurate approximation up to machine precision of the operator C 0 = -I 0 in Theorem 3.1, and that independently of the mesh size h as shown in Figure 3. 

Multiphase flows: dispersed two-phase bubble dynamics

The (VPP ε ) method is now numerically validated for multiphase incompressible flows by performing with the three methods (UAL), (SIP) and (VPP), the benchmark problem studied in [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF] for 2-D bubble dynamics. In that problem, we compute the first test case which considers an initial circular bubble of diameter 0.05 m with density and viscosity ratios equal to 10 which undergoes moderate shape deformation. The results from all codes in [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF] agree here very well allowing for target reference values to be established, whereas they are very different for the second test case with larger density or viscosity jumps. In this case, the bubble is driven up by the external gravity force f = ρ g, whereas the surface tension effect on the interface Σ between the two fluid phases is taken into account through the following force balance at the interface Σ:

[[v]] Σ = 0 and [[ -p I + µ ∇v + (∇v) T • n]] Σ = σ κ n |Σ , or f st = σ κ n |Σ δ Σ
where σ = 24.5 is the surface tension coefficient, κ the local curvature of the interface, n |Σ the outward unit normal to the interface and δ Σ the Dirac measure supported by the interface Σ; see the well-posedness of fluid flow problems with such jump embedded conditions in [START_REF] Ph | A fictitious domain model for the Stokes/Brinkman problem with jump embedded boundary conditions[END_REF]. The solution of the phase transport (3) is carried out by the so-called VOF-PLIC method, i.e. the famous VOF method using a piecewise linear interface construction proposed in [START_REF] Youngs | Time-dependent multimaterial flow with large fluid distortion[END_REF] to precisely reconstruct the sharp interface Σ at the isoline ϕ = 0.5, with ϕ 0 = 0 in Ω 1 and ϕ 0 = 1 in Ω 2 ; see [START_REF] Sarthou | Eulerian-Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects[END_REF][START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF]. As usual, the stability of the explicit transport scheme (8) needs to satisfy a CFL condition. This method has been precisely validated in several works for multiphase flows by comparison with other interface front-tracking methods, e.g. [START_REF] Pianet | Simulating compressible gas bubbles with a smooth volume tracking 1-Fluid method[END_REF]. The sharp interface tracking for two immiscible phases is then achieved by calculating at each time step the density and viscosity fields from the phase field ϕ ∈ [0, 1] as follows, H denoting the Heaviside function:

ρ(ϕ) = ρ 1 (1 -H(ϕ -0.5)) + ρ 2 H(ϕ -0.5), µ(ϕ) = µ 1 (1 -H(ϕ -0.5)) + µ 2 H(ϕ -0.5)
The results of the three methods (UAL), (SIP) and (VPP) after 420 time iterations are presented in Figure 4 by superposing the different fields to get a more precise comparison. In particular, the discontinuity of the pressure field at the interface Σ induced by the normal stress jump is well resolved as shown in Figure 4 (left). Here also, we observe an excellent agreement both between the three methods and the reference solution in [START_REF] Hysing | Quantitative benchmark computations of twodimensional bubble dynamics[END_REF]. Indeed, a zoom comparison for the isoline ϕ = 0.5 of the phase function at the interface Σ shows a difference of order O(h/50) with respect to the mesh step h between the three methods. However, the (VPP) method runs faster.

A test case for fluid-structure interaction problems

To evaluate the robustness of the (VPP ε ) method with respect to large density or viscosity ratios, we finally compute the motion of an heavy solid ball which freely falls vertically in air with the gravity force f = ρ s g. The rigid behaviour of the body is obtained by letting the viscosity µ s tend to infinity inside the ball in order to penalize the tensor of deformation rate d(v). This fictitious domain method using a volume penalty was early proposed in [START_REF] Ph | New graphical and computational architecture concept for numerical simulation on supercomputers[END_REF] to design a numerical wind-tunnel, and then numerically validated in several works, see [START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF], and also analysed theoretically in [START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF][START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] where optimal global error estimates are proved for the H 1 penalty method. Moreover, this fictitious domain method allows us to easily compute the forces applied on the obstacle as proposed in [START_REF] Caltagirone | On the fluid-porous interaction; application to the calculation of efforts exerted on an obstacle by a viscous fluid[END_REF] and numerically validated in [START_REF] Khadra | Fictitious domain approach for numerical modelling of Navier-Stokes equations[END_REF]; the error estimate being proved in [START_REF] Ph | Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows[END_REF] when the nonlinear convection term is neglected inside the solid obstacle.

The results obtained with the (VPP ε ) method are presented in Figure 5 at time t = 0.15 s after 750 time iterations when the ball nearly reaches the theoretical velocity: V b = g t = 1.4715 m/s obtained by neglecting the drag force which is very small in air. In this case, the density ratio equals 10 6 and the viscosity ratio is 10 17 . The computation shows that the strain rate tensor inside the ball Ω s vanishes as d(v) L 2 (Ω s ) = O(µ f /µ s ) in agreement with the error estimate for the H 1 volume penalty in [START_REF] Ph | A penalization method to take into account obstacles in incompressible viscous flows[END_REF], i.e. here of the order of the machine precision. Hence, the (VPP ε ) method efficiently ensures both the rigidity of the solid body and a velocity divergence vanishing as O(ε δt) [START_REF] Ph | Vector penalty-projection methods for the solution of unsteady incompressible flows[END_REF][START_REF] Ph | A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems[END_REF], whereas it avoids the locking effect observed with other methods, e.g. [START_REF] Vincent | Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[END_REF].

The (SIP) method crashes after a few time iterations. The (UAL) method is still able to compute the flow with a much larger velocity divergence and computational time than with the (VPP ε ) method. Hence, a key feature of the proposed (VPP ε ) method is that the solution to the linear system associated with the vector penalty-projection step can be very fast and cheap whatever the spatial mesh size because of the adapted form of the right-hand side. Indeed, the (VPP ε ) method really takes advantage of the splitting of augmented Lagrangian systems within a prediction and an adapted correction steps as proposed and analysed in [START_REF] Ph | A new fast method to compute saddle-points in constrained optimization and applications[END_REF].

Conclusion and perspectives

We have presented and numerically validated a new vector penalty-projection method (VPP ε ) for the solution of non-homogeneous or multiphase incompressible flows. This method proves to be really promising since it is fast, cheap, and very robust whatever the density or viscosity jumps. Indeed, our method can efficiently and accurately compute some severe test cases, whereas other famous methods fail. 
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 1 Figure 1: (VPP ε ) method with ε = 10 -4 for the Green-Taylor vortex at Re = 1 -Left: Time convergence with time step δt at t = 0.1 for the unsteady vortex with h = 1/128, res 2 ≤ 10 -10 . Right: Space convergence with mesh size h for the steady vortex.

Figure 2 :Figure 3 :

 23 Figure 2: (VPP ε ) method -Left: velocity divergence versus penalty ε for the Green-Taylor vortex at Re = 100, t = 10 -h = 1/512, res 2 ≤ 10 -10 . Right: divergence L 2 -norm vanishing as O(ε) for the thermal convection at Ra = 10 5 , t = 1 with δt = 1, h = 1/256, res 2 ≤ 10 -16 .

Figure 4 :

 4 Figure 4: Benchmark for 2-D bubble dynamics with (VPP ε ) method, ε = 10 -8 : motion of a circular bubble with surface tension at time t = 3 and Re = 35 -bubble initial diameter ⊘ = 0.05, ρ 1 /ρ 2 = 1000/100 = 10, µ 1 /µ 2 = 10/1 = 10, domain 0.1 × 0.2, mesh size 128 × 256, δt = 0.007143, circular bubble initially with no motion at height y = 0.05. Left: isobars and isoline ϕ = 0.5 of the phase function at interface. Center: horizontal velocity field. Right: superposition of isoline ϕ = 0.5 at interface for (UAL), (SIP), (VPP) and vertical velocity field (in absolute referential).

Figure 5 :

 5 Figure 5: ACF11-ball with (VPP ε ) method, ε = 10 -6 : free fall of a heavy solid ball in air at time t = 0.15 and Re = 7358 -Cylinder diameter ⊘ = 0.05, ρ s = 10 6 , ρ f = 1, µ s = 10 12 , µ f = 10 -5 , domain 0.1 × 0.2, mesh size 256 × 512, δt = 0.0002, cylinder initially with no motion at height y = 0.15. Left: isobars and isoline ϕ = 0.5 of the phase function at interface. Right: vertical velocity field and horizontal velocity isolines.

Table 1 :

 1 

	Mesh	8	16	32	64	128	256	512	1024	Nu ∞	Order	Nu f
	UAL	3.3543 4.1332 4.4134 4.4937 4.5146 4.5198 4.5212 4.5215 4.5216	2	4.5216
	SIP	3.3543 4.1332 4.4134 4.4937 4.5146 4.5198 4.5212 4.5215 4.5216	2	4.5216
	VPP	3.3543 4.1332 4.4134 4.4937 4.5146 4.5198 4.5212 4.5215 4.5216	2	4.5216

Natural convection at Ra = 10 5 -Comparison of the (UAL), (SIP) and (VPP) methods on uniform MAC meshes of size M.