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Abstract

We present a nefast vector penalty-projection method (VPR eficiently compute the solution of unsteady Navier-
Stokes problems governing incompressible multiphaseuséows with variable density afat viscosity. The key
idea of the method is to compute at each time step an accurdteusl-free approximation of the pressure gradient
increment in time. This method performsro-step approximate divergence-free vector projecjietding a velocity
divergence vanishing @ 6t), 6t being the time step, with a penalty parametas small as desired until the machine
precision,e.g. € = 1014, whereas the solution algorithm can be extremely fast aedmh Indeed, the proposed
vector correction stepypically requires only a few iterations of a suitable preditioned Krylov solver whatever
the spatial mesh step. The method is numerically validatethee benchmark problems for non-homogeneous or
multiphase flows where we compare it to the Uzawa augmentgchhgian (UAL) and scalar incremental projection
(SIP) methods. Moreover, a new test case for fluid-strugtuezaction problems is also investigated. That results in
a very robust method running faster than usual methods and bbéle to éiciently and accurately compute sharp
test cases whatever the density, viscosity or anisotragimeability jumps, whereas other methods crash.

Keywords: Vector penalty-projection method, Divergence-free pigraitojection, Penalty method, Splitting
prediction-correction scheme, Navier-Stokes equatioesmpressible non-homogeneous or multiphase flows.
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1. Introduction on the models for non-homogeneous or multipase flows

Let Q c RY (d = 2 or 3 in practice) be an open bounded and connected domainawliipschitz continuous
boundarny” = 9Q andn be the outward unit normal vector dh

ForT > 0, we consider the following unsteady Navier-StgBegmkman problem [1, 3, 19] governing incompres-
sible non-homogeneous or multiphase flows where Dirichdeinblary conditions for the velocity = 0 onT, the
volumic forcef and initial datav(t = 0) = vo, p(t = 0) = ¢g € L®(Q) with ¢g > 0 a.e.in Q, are given. For sake of
briefness here, we just focus on the model problem (1-3) atier) = (Vv + (Vv)")/2, as a part of more complex
fluid mechanics problems.

p (O v+ (V- V)V) =2V (ud(V)) + uK v+ Vp=f inQx(0,T) (1)
V-v=0 inQx(0,T) (2)
Ot +Vv:Vp=0 inQx (0, T). 3
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The permeability tensdf in the Darcy term is supposed to be symmetric, uniformly fpesdefinite and bounded in
Q. The equation (3) for the phase functiprgoverns the transport by the flow of the interface betweenphases,
either fluid or solid, respectively in the case of two-phas@fflows or fluid-structure interaction problems. The
forcef may include some volumic forces like the gravity fogcg as well as the surface tension force to describe the
capillarity efects at the phase interfacEs The advection-dfusion equation for the temperatureis not precised
here and we assume some given state laws: u(p,7) andp = p(p, 7) for each phase, where the functions are
continuous and positive. The case of nonhomegeneous teDitichlet boundary conditionsyr = vp onT, also
requires some given boundary conditions¢gawn the inflow parl™~ of I wherevp- ni- < 0.

2. The fast vector-penalty projection method (VPR)

We describe hereafter the two-step vector penalty-prioje¢VPP,) method with a penalty parametek(e <« 1.
It is issued from noticeable improvements of previous wéik 5, 7] or from [17, 18, 9, 14] using the augmented
Lagrangian splitting introduced in [7]. The method is bsdfitroduced in [6] with some preliminary results. The
convergence of the continuous artificial compressibiligysion of the basic (VRR) method proposed in [5, 7] is
proved in [8] for the homogeneous Navier-Stokes equations.

For p°, 2, u® with p°, ¢° > 0, u° > 0 a.e.in Q, v° andp° given, the method reads as below with usual notations
for the semi-discrete setting in timét, > 0 being the time step. For aille N such thatf + 1)6t < T, find v™*?, p™1,
tpm'l and therpm—l — p((pn+1)’ Iun+1 — /l(tpm'l) such that:

on+1 n
nfVv -

L e V)\7”+1) =2V (1" d@™ ) + "KLV =" inQ  (4)

s (:(05_: | + ﬂn K—l) \A/n+1 -V (V- \A/n+1) -V (V- \7n+l) inO (5)

n
Vn+1 — vn+l + \7n+l’ and V(pn+1 _ pn) - _ (g_t | +#n K—l) \A/n+l in Q (6)

n
p™! = p"+ o™ with ¢™! reconstructed from its gradient V™! = — (% |+ " K‘l) gt inQ (7)
‘pn-f-l _ 90”

= vilyet = 0 inQ (8)

with: ¥ = 0, or for non homogeneous Dirichlet conditiof§* = v't, andV™*. nr = 0. Herev", p" are desired
to be first-order approximations of the exact velocity anespure solutions(t,), p(t,) at timet, = nét.
The consistency of the (VRPmethod is ensured with (6) since we have:

Vn+l _ \7n+1 ~ ] . .
pn = + 'un K1 (Vn+1 _ Vn+1) + V(pm—l _ pn) =0 with v™_gmt = Vn+1’ (9)
which yields the #&ective problem solved with this method by summing with EqQ. he key feature of our method
is to calculate an accurate and curl-free approximatioh@fomentum vector correctigf V™! in (5), at least when
there is no Darcy term. Indeed (5-6) ensures thtst | + 1" K1) U™ is exactly a gradient which justifies the choice
for Vg™ = v(p™! — p") since we have:

n . 1 n . 1
p_ | +#n K—l Vn+1 S v (V' Vn+1) N V(er—l _ pﬂ) - _ p_ I +#n K—l Vn+1 — __v(v. Vn+1) ) (10)
ot e ot €

The (VPR) method really takes advantage of the splitting method@sed in [6] for augmented Lagrangian systems
or general saddle-point computations to get a very fastisolof (5); see Theorem 3.1. When we need the pressure
field itself, e.g. to compute stress vectors, it is calcdatean incremental way as an auxiliary step. We propose to
reconstrucyp™* = p™* — p" from its gradienW¢™* given in (6) with the following method.

Reconstruction op™* = p™1 — p" from its gradient.

By circulating on a suitable path starting at a point on thedbowhereg™! = 0 is fixed and going through all
2




the pressure nodes in the mesh, we get with the gradient farbaiween two neighbour poinfsandB using the
mid-point quadrature:

B B n n
o™ Y(B) — o™ (A) = fA Vortod = - fA %vml-ou z—% ™Y hag  With hag = distance A, B).  (11)

The fieldg™?! is calculated point by point from the boundary and then passiiccessively by all the pressure nodes.
This fast algorithm is performed at each time step to get thegure field™* from the known fieldp".

3. On the fast discrete solution to the (VPE) method

The great interest to solve (5) instead of a usual augmerdgrhhgian problem lies in the following result issued
from [7] which shows that the method can be ultra-fast angt eaeap ify = ¢/6t is suficiently small.

Let us now consider any space discretization of our probtethe case with no Darcy term for sake of shortness.
We denote byB = —div, the m x n matrix corresponding to the discrete divergence oper8tok: grad, then x m
matrix corresponding to the discrete gradient operatogredd denotes thexnidentity matrix withn > mandD the
n x n diagonal nonsingular matrix containing all the discretasiy values op" > 0 a.e.in Q. Heren is the number
of velocity unknowns whereas is the number of pressure unknowns. Then, the discrete vpetalty-projection
problem corresponding to (5) with= r 6t reads:

1 - 1 - : U
(D e BTB) U= BBV, with v, =V+7, (12)

We proved in [7] the crucial result below due to theéapted right-hand sidim the correction step (12) which lies in
the range of the limit operatd' B. Indeed, (12) can be viewed as a singular perturbation gnolwith well-suited
data in the right-hand side. More precisely, we give in TeeoB.1 the asymptotic expansion of the solutgric
(12):

o1 1 .\ oo

Vv, =-——(D+-B'B] B'BV (13)

n n

when the penalty parametgis chosen sfiiciently small; see the proofin [7, Theorem 1.1 and CorolkB].

Theorem 3.1(Fast solution of the discrete vector penalty-projectidngt D be an nx n positive definite diagonal
matrix, | the nx n identity matrix and B an R n matrix. If the rows of B are linearly independent, réBk= m, then
for all » small enough0 < 1 < 1/||S71|| where S= BD'BT, there exists an & n matrix G; bounded independently
onn such that the solution of the correction step (13) writesdioy vectorv € R™;

U, =CoV+nC,¥ with C=-D'B'(BD'B")'B, C;= D-lsTs-ZZ(—l)k < SB. (14)
k=0
If rank(B) = p < m, there exists a surjective yon matrix T such that BB = TTT and the similar result holds
replacing Bby T.

Hence, for a constant densjty> 0 and choosing now = p £/6t, we have: D= 1,S = BB and G = -B'S™ 1B =
—-BT(BB")"1B. Moreover, if rankB) = p < m < n, the zero-order solutiofi = Cy ¥ in (14) is the solution of minimal
Euclidean norm irR" to the linear system: B = —B¥ by the least-squares method, and the matfix-B' (BB")™*
is the Moore-Penrose pseudo-inverse of B such thiat GBB. Indeed, a singular value decomposition (SVD) or a
QR factorization of B yields: £= —Io where } is the nx n diagonal matrix having onl{ or 0 cogficients, the zero
entries in the diagonal being the-np null eigenvalues of the operator B.

Hence, forp small enough, the computationdf@t required to solve (12) amounts to approximate the m&igix
which includes botD andD! inside non commutative products. Thus, we always use tlgoda preconditioning
in the case of a variable density which makes tfieative condition number quasi-independent of the densitypjs.
We also use the Jacobi preconditioner in the prediction @ cope with the viscosity or permeability jumps as
performed in [19]. However, for a constant density wiier: |, we getCy = —lg. This explains why the solution can
be obtained with only one iteration of a suitable precondiid conjugate gradient whatever the size of the mesh step
or the dimensiom; see the numerical results in [7] and Figure 3.
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4. Numerical validations with discrete operator calculus nethods

The (VPR) method has been implemented with discrete exterior assco{(lDEC) methods, see the recent review
in [10], for the space discretization of the Navier-Stokgsations on unstructured staggered meshes. The (DEC)
methods ensure primary and secondary discrete conseryatiperties. In particular, the space discretizatiorsfat
for the discrete operator®, x (Vi ¢) = 0 andVy- (Vi x ¢) = 0, as for the structured MAC grid, which is not usually
verified by other methods; see [10]. So, the (VPRethod is validated on unstructured meshes both in 2-DDr 3-

The structure and solver of the computational code are dsBoen previous works, originally implemented with
a Navier-Stokes finite volumes solver on the staggered MAGhhand using the Uzawa augmented Lagrangian
(UAL) method to deal with the divergence-free constraieg §13, 19]. We refer to [4, 1, 3, 19] and the references
therein for the analysis and numerical validations of thetificis domain model using the so-calleéior H-volume
penalty methods to take account of obstacles in flow probleittsthe Navier-Stokg8rinkman equations. Hence,
our approach is essentially Eulerian with a Lagrangiantftcacking of the sharp interfaces accurately reconsdict
on the fixed Eulerian mesh, see e.g. [19, 22, 23] and the refesetherein. Thus we use no Arbitrary Lagrangian-
Eulerian (ALE) method, no global remeshing nor moving mesihod. The augmented Lagrangian method has been
improved by using an adaptive augmentation parameter[23}. to get a more robust (UAL) method. This allows
us to consider the solutions obtained by the (UAL) methodegarence solutions since the augmented Lagrangian
method does not s$ier from splitting errors. Moreover, a scalar incrementaljgetion (SIP) method [15] has been
also implemented within the same computational code inrat@eompare the numerical results. All the linear
algebraic systems for the three methods, e.g. the predistaps, are solved with the Kryl®iCGS tal2 algorithm
preconditionned by the incomplet&) factorization of order zeroLU (0).

4.1. Homogeneous flows: Green-Taylor vortex analyticaltsarh

The first test case is the unsteady Green-Taylor vortex swathitie mean steady velocity field is of ordér= 1.
The analytical solution in the square dom&ir=] — 0.5, 0.5[? reads as follows witlp = 1 andu given by J/Re:

u(x, y,t) = =Vp cosfr X) sin@ry) (1 —exp(-nVot)), V(X Y,t) = Vo sin(rx) cosfry) (1 - exp(-r Vot))
2

p(X, Y, t) = —pTVO (coS(n x) + cog(rry)) (1 - exp(-m Vo))

Su(x, Y, t) = =272 u Vo cosr X) sin(ry) (1 —exp(-rVot)) +pdiu

Su(X, Y, 1) = 272 u Vo sin(r X) cosgry) (1 - exp(-mVot)) + p o, V.

The scheme i®)(st) accurate in time for the velocity, pressure and pressuadignt, see Figure 1 (left), whereas it
is O(h?) accurate in space, see Figure 1 (right). We also observegimd=2 (left) that the_?-norm of the velocity
divergence vanishes 8Xe 6t), like for the (VPR.) method proposed in [5, 7].
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10 "¢ ——p El 10 F
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Figure 1: (VPR) method withe = 10~ for the Green-Taylor vortex at Re 1 - Lerr: Time convergence with time stejp att = 0.1 for the
unsteady vortex with = 1/128, |red|» < 1071°. Rint: Space convergence with mesh sizier the steady vortex.



4.2. Dilatable flows: Rayleigh-Bénard thermal convection

The second benchmark problem is the Rayleigim#d thermal natural convection inside a squaffedintially
heated cavity at Rayleigh numbB the vertical walls being isothermal and the horizontallsvaisulating, see
[20, 13]. The fluid is air, with Prandt numb®r = 0.71, initially at rest at the reference temperatiige= 300K and
atmospheric pressugp = 101325Pa. The vertical wall temperatures are respectively maiegiat7, = 7o + 67 /2
and7. = 7o — 67 /2. Then, the convection flow is driven by the gravity fofce p g at a low Mach number regime
with Ma ~ 1073. When the characteristic temperatur@atiences7 is less than a few degrees, the Boussinesq
approximation is valid, the flow remains stationary upRa = 2 10°, and we refer to [20] for reference solutions
computed with pseudo-spectral methods. The Nusselt nulibyegepresenting the ratio between the total heat transfer
and the ditusive heat transfer, is very sensitive to the quality of thmarical solution since it incorporates both the
dynamics and thermalffiects. We use a Richardson extrapolation to estimate thesrefe Nusselt numbeX Ut
from [20] or Nu, from the present computations, when the number of mesh9birper space direction tends to
infinity. The comparison given in Table 1 fé7 = 1.06K andRa = 10° shows a perfect agreement until the fifth
digit between the three methods which have all a second-omtwergence of the Nusselt number with the mesh step
h = 1/M. Let us notice that the present computations does not usBahssinesq approximation, but suppose that
the fluid is dilatable as a perfect gas.

[Mesh]| 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 [ Nu, | Order][ Nuewr |
UAL [ 3.3543] 4.1332] 4.4134] 4.4937] 4.5146] 4.5198] 4.5212] 45215] 45216] 2 | 4.5216
SIP | 3.3543] 4.1332| 4.4134| 4.4937 | 4.5146| 45198| 4.5212| 45215| 45216 2 | 4.5216
VPP | 3.3543| 4.1332| 4.4134| 4.4937| 45146 45198 4.5212| 45215 45216] 2 | 4.5216

Table 1: Natural convection &a= 10° - Comparison of the (UAL), (SIP) and (VPP) methods on uniform@®ieshes of siz#/.

Moreover, we study the convergence properties of the \glooirrection step (5) for this sharp test case. Again,
we get the convergence of the velocity divergena@(@sst): more precisely, we obtaifiV- V|| 2y ~ 4.3 10 ¢ 6t; see
also Figure 2 (right). We can reach the machine precisior0of°Xor double precision floating point computations.
Besides, the solution of thegenalty-correction stel§5) proves to be all the cheaper as= ¢/6t tends to zero, as
expected from Theorem 3.1. Indeed, we have observed that fors/st < 107°, only one or two iterations of
the ILU(0)-BiCGStab2 preconditioned Krylov solver ardiitient to get an accurate approximation up to machine
precision of the operatd, = —lg in Theorem 3.1, and that independently of the meshisas shown in Figure 3.

107 T T T 10 T

—6— Divv Pid
| |— — - order1l e |

5t=10""
10° || —*—ot=107 . 10°
——5t=10"

Divergence - L2-norm

‘ ;
107 10" 10° 107 107
penalty parameter &

10° 10° 10" 10” 10
penalty parameter ¢

Figure 2: (VPR) method - Lerr: velocity divergence versus penaliyfor the Green-Taylor vortex at Re100,t=10 -h=1/512, |[reg], < 10710,
Ricut; divergencel.2-norm vanishing aé)(¢) for the thermal convection &a=10°, t = 1 with 6t = 1, h=1/256,|[reg|, < 10716,
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Figure 3: Convergence of ILU(0)-BiCGstab2 for (VPP) cotiat step — lerr: number of iterations versug = &/6t for natural convection at
Ra= 10° with t = 26t, 6t =1, h=1/256, |[req|, < 106. Ricar: normalized residual (by initial residual) versus numbertefstions for diferent
mesh sizes 32 32 (red), 128« 128 (green), 51% 512 (blue) and 204& 2048 (black) withy = 10-14.

4.3. Multiphase flows: dispersed two-phase bubble dynamics

The (VPR) method is now numerically validated for multiphase incoegsible flows by performing with the
three methods (UAL), (SIP) and (VPP), the benchmark proldamied in [16] for 2-D bubble dynamics. In that
problem, we compute the first test case which considers @alicircular bubble of diameter.05m with density and
viscosity ratios equal to 10 which undergoes moderate stefmemation. The results from all codes in [16] agree
here very well allowing for target reference values to baldsgthed, whereas they are veryfdient for the second test
case with larger density or viscosity jumps. In this case fthbble is driven up by the external gravity fofce p g,
whereas the surface tensiofiiext on the interfac& between the two fluid phases is taken into account through the
following force balance at the interfage

[VI:=0 and [(-pl+u (VWv+(W)'))-nly=ckng, or fa=okngss

whereo = 245 is the surface tension cbeient, x the local curvature of the interfaceg the outward unit normal

to the interface ands the Dirac measure supported by the interfacsee the well-posedness of fluid flow problems
with such jump embedded conditions in [2]. The solution @& fhase transport (3) is carried out by the so-called
VOF-PLIC method,i.e. the famousvVOF method using a piecewise linear interface constructiopgsed in [24] to
precisely reconstruct the sharp interfatat the isolingp = 0.5, with ¢° = 0in Q; and¢® = 1 in Qy; see [22, 23].

As usual, the stability of the explicit transport schemer(8gds to satisfy &FL condition. This method has been
precisely validated in several works for multiphase flowsbgnparison with other interface front-tracking methods,
e.g. [21]. The sharp interface tracking for two immisciblapes is then achieved by calculating at each time step the
density and viscosity fields from the phase field [0, 1] as follows,H denoting the Heaviside function:

p(@) =p1(L-H(p-05)) +p2H(¢ - 05),  u(p) = u1 (1~ H(p - 0.5)) + p2 H(¢ — 0.5)

The results of the three methods (UAL), (SIP) and (VPP) a8 time iterations are presented in Figure 4 by
superposing the fferent fields to get a more precise comparison. In partictiiardiscontinuity of the pressure field
at the interfac& induced by the normal stress jump is well resolved as showigiare 4 (left). Here also, we observe
an excellent agreement both between the three methodsereféinence solution in [16]. Indeed, a zoom comparison
for the isolinepy = 0.5 of the phase function at the interfateshows a dference of orde@(h/50) with respect to the
mesh stefh between the three methods. However, the (VPP) method rates.fa

4.4. Atest case for fluid-structure interaction problems

To evaluate the robustness of the (\{PBhethod with respect to large density or viscosity ratios, fimally
compute the motion of an heavy solid ball which freely falistically in air with the gravity forcd = psg. The
rigid behaviour of the body is obtained by letting the vistogs tend to infinity inside the ball in order to penalize
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Figure 4: Benchmark for 2-D bubble dynamics with (\PFhethod, = 10-8: motion of a circular bubble with surface tension at time 3 and
Re = 35 - bubble initial diametep = 0.05, p1/p2 = 1000/100= 10, u3/u2 = 10/1 = 10, domain QL x 0.2, mesh size 128 256,6t = 0.007143,
circular bubble initially with no motion at heiglyt= 0.05. Lert: isobars and isoling = 0.5 of the phase function at interfaceex@er: horizontal
velocity field. Reurt: superposition of isoling = 0.5 at interface for (UAL), (SIP), (VPP) and vertical velocitgld (in absolute referential).

the tensor of deformation rati{v). This fictitious domain method using a volume penalty wadygaroposed in

[4] to design a numerical wind-tunnel, and then numericediidated in several works, see [23], and also analysed
theoretically in [1, 3] where optimal global error estima@re proved for théd! penalty method. Moreover, this
fictitious domain method allows us to easily compute thedsrapplied on the obstacle as proposed in [11] and
numerically validated in [19]; the error estimate beingyain [1] when the nonlinear convection term is neglected
inside the solid obstacle.

The results obtained with the (VPPmethod are presented in Figure 5 at titre 0.15s after 750 time iterations
when the ball nearly reaches the theoretical velodity:= gt = 1.4715m/s obtained by neglecting the drag force
which is very small in air. In this case, the density ratio @gquL® and the viscosity ratio is 0. The computation
shows that the strain rate tensor inside the Dalvanishes agd(V)[l 2, = O(ut/us) in agreement with the error
estimate for theéd* volume penalty in [3]j.e. here of the order of the machine precision. Hence, the (YRRthod
efficiently ensures both the rigidity of the solid body and a eijodivergence vanishing &3(¢ 6t) [5, 6], whereas it
avoids the locking #ect observed with other methods, e.g. [23].

The (SIP) method crashes after a few time iterations. TheLjurethod is still able to compute the flow with a
much larger velocity divergence and computational timex thwith the (VPR) method. Hence, a key feature of the
proposed (VPP method is that the solution to the linear system associattidthe vector penalty-projection step
can be very fast and cheap whatever the spatial mesh sizedgechthe adapted form of the right-hand side. Indeed,
the (VPR) method really takes advantage of the splitting of augmehgrangian systems within a prediction and
an adapted correction steps as proposed and analysed in [7].

5. Conclusion and perspectives

We have presented and numerically validated a new vectalfyeprojection method (VP for the solution of
non-homogeneous or multiphase incompressible flows. Tleihod proves to be really promising since it is fast,
cheap, and very robust whatever the density or viscositypginindeed, our method caiffieiently and accurately
compute some severe test cases, whereas other famous mfihod
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