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Short-time asymptotics for marginal distributions of semimartingales

We study the short-time aymptotics of conditional expectations of smooth and non-smooth functions of a (discontinuous) Ito semimartingale; we compute the leading term in the asymptotics in terms of the local characteristics of the semimartingale. We derive in particular the asymptotic behavior of call options with short maturity in a semimartingale model: whereas the behavior of out-of-the-money options is found to be linear in time, the short time asymptotics of at-the-money options is shown to depend on the fine structure of the semimartingale.

We study the short-time asymptotics of expectations of the form E[f (ξ t )] where ξ t a discontinuous Itô semimartingale. We study two different cases: first, the case where f is a smooth (C 2 ) function, then the case where f (x) = (x -K) + . We compute the leading term in the asymptotics in terms of the local characteristics of the semimartingale.

As an application, we derive the asymptotic behavior of call option prices close to maturity in a semimartingale model: whereas the behavior of out-of-themoney options is found to be linear in time, the short time asymptotics of at-themoney options is shown to depend on the fine structure of the semimartingale.

These results generalize and extend various asymptotic results previously derived for diffusion models [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF], Lévy processes [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF][START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF][START_REF] Tankov | Pricing and Hedging in Exponential Lévy Models: Review of Recent Results[END_REF], Markov jumpdiffusion models [START_REF] Benhamou | Smart expansion and fast calibration for jump diffusions[END_REF] and one-dimensional martingales [START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF] to the more general case of a discontinuous semimartingale. In particular, the independence of increments or the Markov property do not play any role in our derivation.

Introduction

In applications such as stochastic control, statistics of processes and mathematical finance, one is often interested in computing or approximating conditional expectations of the type

E [f (ξ t )|F t0 ] , (1) 
where ξ is a stochastic process. Whereas for Markov process various wellknown tools -partial differential equations, Monte Carlo simulation, semigroup methods-are available for the computation and approximation of conditional expectations, such tools do not carry over to the more general setting of semimartingales. Even in the Markov case, if the state space is high dimensional exact computations may be computationally prohibitive and there has been a lot of interest in obtaining approximations of (1) as t → t 0 . Knowledge of such short-time asymptotics is very useful not only for computation of conditional expectations but also for the estimation and calibration of such models. Accordingly, short-time asymptotics for (1) (which, in the Markov case, amounts to studying transition densities of the process ξ) has been previously studied for diffusion models [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF][START_REF] Feng | Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model[END_REF], Lévy processes [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF][START_REF] Léandre | Densité en temps petit d'un processus de sauts[END_REF][START_REF] Rüschendorf | Expansion of transition distributions of lévy processes in small time[END_REF][START_REF] Barndorff-Nielsen | Probability measures, Lévy measures and analyticity in time[END_REF][START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF][START_REF] Figueroa-López | The small-maturity smile for exponential Lévy models[END_REF][START_REF] Tankov | Pricing and Hedging in Exponential Lévy Models: Review of Recent Results[END_REF], Markov jump-diffusion models [START_REF] Alòs | On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility[END_REF][START_REF] Benhamou | Smart expansion and fast calibration for jump diffusions[END_REF] and scalar martingales driven by a one-dimensional Poisson random measure [START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF], using a variety of techniques. The proofs of these results in the case of Lévy processes makes heavy use of the independence of increments; proofs in other case rely on the Markov property, estimates for heat kernels for second-order differential operators or Malliavin calculus. What is striking, however, is the similarity of the results obtained in these different settings.

We reconsider here the short-time asymptotics of conditional expectations in a more general framework which contains existing models but allows to go beyond the Markovian setting and to incorporate path-dependent features. Such a framework is provided by the class of Itô semimartingales, which contains all the examples cited above but allows to use the tools of stochastic analysis.

An Itô semimartingale on a filtered probability space (Ω, F, (F t ) t≥0 , P) is a stochastic process ξ with the representation

ξ t = ξ 0 + t 0 β s ds+ t 0 δ s dW s + t 0 R d κ(y) M (dsdy)+ t 0 R d
(y -κ(y)) M (dsdy),

(2) where ξ 0 is in R d , W is a standard R n -valued Wiener process, M is an integervalued random measure on [0, ∞]×R d with compensator µ(ω, dt, dy) = m(ω, t, dy)dt and M = M -µ its compensated random measure, β (resp. δ) is an adapted process with values in R d (resp. M d×n (R)) and κ(y) = y 1 + y 2 is a truncation function.

We study the short-time asymptotics of conditional expectations of the form (1) where ξ is an Ito semimartingale of the form (2), for various classes of functions f : R d → R. First, we prove a general result for the case of f ∈ C 2 b (R d , R). Then we will treat, when d = 1, the case of

E (ξ t -K) + |F t0 , (3) 
which corresponds to the value at t 0 of a call option with strike K and maturity t in a model described by equation [START_REF] Barndorff-Nielsen | Probability measures, Lévy measures and analyticity in time[END_REF]. We show that whereas the behavior of (3) in the case K > ξ t0 ( out-of-the-money options) is linear in t -t 0 , the asymptotics in the case K = ξ t0 (which corresponds to at-the-money options) depends on the fine structure of the semimartingale ξ at t 0 . In particular, we show that for continuous semimartingales the short-maturity asymptotics of atthe-money options is determined by the local time of ξ at t 0 . In each case we identify the leading term in the asymptotics and express this term in terms of the local characteristics of the semimartingale at t 0 .

Our results unify various asymptotic results previously derived for particular examples of stochastic models and extend them to the more general case of a discontinuous semimartingale. In particular, we show that the independence of increments or the Markov property do not play any role in the derivation of such results.

Short-time asymptotics for expectations of the form (1) have been studied in the context of statistics of processes [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF] and option pricing [START_REF] Alòs | On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility[END_REF][START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF][START_REF] Benhamou | Smart expansion and fast calibration for jump diffusions[END_REF][START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF][START_REF] Tankov | Pricing and Hedging in Exponential Lévy Models: Review of Recent Results[END_REF][START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF]. Berestycki, Busca and Florent [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF] derive short maturity asymptotics for call options when ξ t is a diffusion, using analytical methods. Durrleman [START_REF]From implied to spot volatilities[END_REF] studied the asymptotics of implied volatility in a general, non-Markovian stochastic volatility model. Jacod [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF] derived asymptotics for (1) for various classes of functions f , when ξ t is a Lévy process. Lopez [START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF] and Tankov [START_REF] Tankov | Pricing and Hedging in Exponential Lévy Models: Review of Recent Results[END_REF] study the asymptotics of (3) when ξ t is the exponential of a Lévy process. Lopez [START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF] also studies short-time asymptotic expansions for [START_REF] Alòs | On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility[END_REF], by iterating the infinitesimal generator of the Lévy process ξ t . Alos et al [START_REF] Alòs | On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility[END_REF] derive short-maturity expansions for call options and implied volatility in a Heston model using Malliavin calculus. Benhamou et al. [START_REF] Benhamou | Smart expansion and fast calibration for jump diffusions[END_REF] derive short-maturity expansions for call options in a model where ξ is the solution of a Markovian SDE whose jumps are described by a compound Poisson process. These results apply to processes with independence of increments or solutions of a "Markovian" stochastic differential equation.

Durrleman studied the convergence of implied volatility to spot volatility in a stochastic volatility model with finite-variation jumps [START_REF] Durrleman | Convergence of at-the-money implied volatilities to the spot volatility[END_REF]. More recently, Nutz and Muhle-Karbe [START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF] study short-maturity asymptotics for call options in the case where ξ t is a one-dimensional Itô semimartingale driven by a (onedimensional) Poisson random measure whose Lévy measure is absolutely continuous. Their approach consists in "freezing" the characteristic triplet of ξ at t 0 , approximating ξ t by the corresponding Lévy process and using the results cited above [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF][START_REF] Figueroa-López | Small-time expansions for the transition distributions of Lévy processes[END_REF] to derive asymptotics for call option prices.

Our contribution is to extend these results to the more general case when ξ is a d-dimensional semimartingale with jumps. In contrast to previous derivations, our approach is purely based on Itô calculus and makes no use of the Markov property or independence of increments. Also, our multidimensional setting allows to treat examples which are not accessible using previous results. For instance, when studying index options in jump-diffusion model, one considers an index I t = w i S i t where (S 1 , ..., S d ) are Itô semimartingales. In this framework, I is indeed an Itô semimartingale whose stochastic integral representation is implied by those of S i but it is naturally represented in terms of a d-dimensional integer-valued random measure, not a one-dimensional Poisson random measure, so the setting of [START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF] does not apply. Our setting provides a natural framework for treating such examples.

Note that these 'short-time' asymptotics are different from the 'extremestrike' asymptotics studied by Lee [START_REF] Lee | The moment formula for implied volatility at extreme strikes[END_REF] and extended by Friz, Gulisashvili and others [START_REF] Benaim | On black-scholes implied volatility at extreme strikes[END_REF][START_REF] Friz | On refined volatility smile expansion in the Heston model[END_REF][START_REF] Gulisashvili | Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes[END_REF][START_REF] Gulisashvili | Asymptotic behavior of distribution densities in models with stochastic volatility[END_REF]. But, in specific models, the two asymptotic regimes may be related using scaling arguments.

2 Short time asymptotics for conditional expectations

Main result

We make the following assumptions on the characteristics of the semimartingale ξ:

Assumption 2.1 (Right-continuity of characteristics at t 0 ). lim t→t0, t>t0 E [ β t -β t0 |F t0 ] = 0, lim t→t0, t>t0 E δ t -δ t0 2 |F t0 = 0,
where . denotes the Euclidean norm on R d and for

ϕ ∈ C b 0 (R d × R d , R), lim t→t0, t>t0 E R d y 2 ϕ(ξ t , y) m(t, dy)|F t0 = R d y 2 ϕ(ξ t0 , y) m(t 0 , dy).
The second requirement, which may be viewed as a weak (right) continuity of m(t, dy) along the paths of ξ, is satisfied for instance if m(t, dy) is absolutely continuous with a density which is right-continuous in t at t 0 . Assumption 2.2 (Integrability condition). ∃T > t 0 ,

E T t0 β s ds F t0 < ∞, E T t0 δ s 2 ds F t0 < ∞, E T t0 R d y 2 m(s, dy) ds F t0 < ∞.
Under these assumptions, the following result describes the asymptotic be-

havior of E [f (ξ t )|F t0 ] when t → t 0 : Theorem 2.1. Under Assumptions 2.1 and 2.2, for all f ∈ C 2 b (R d , R), lim t↓t0 1 t -t 0 (E [f (ξ t )|F t0 ] -f (ξ t0 )) = L t0 f (ξ t0 ). ( 4 
)
where L t0 is the (random) integro-differential operator given by

∀f ∈ C 2 b (R d , R), L t0 f (x) = β t0 .∇f (x) + 1 2 tr t δ t0 δ t0 ∇ 2 f (x) (5) 
+ R d [f (x + y) -f (x) - 1 1 + y 2 y.∇f (x)]m(t 0 , dy).
Before proving Theorem 2.1, we recall a useful lemma: Lemma 2.1. Let f : R + → R be right-continuous at 0, then

lim t→0 1 t t 0 f (s) ds = f (0). (6) 
Proof. Let F denote the primitive of f , then

1 t t 0 f (s) ds = 1 t (F (t) -F (0)) .
Letting t → 0 + , this is nothing but the right derivative at 0 of F , which is f (0) by right continuity of f .

We can now prove Theorem 2.1.

Proof. of Theorem 2.1

We first note that, by replacing P by the conditional measure P |Ft 0 given F t0 , we may replace the conditional expectation in (4) by an expectation with respect to the marginal distribution of ξ t under P |Ft 0 . Thus, without loss of generality, we put t 0 = 0 in the sequel and consider the case where F 0 is the σ-algebra generated by all P-null sets.

Let f ∈ C 2 b (R d , R). Itô's formula yields f (ξ t ) = f (ξ 0 ) + t 0 ∇f (ξ s -)dξ i s + 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + s≤t f (ξ s -+ ∆ξ s ) -f (ξ s -) - d i=1 ∂f ∂x i (ξ s -)∆ξ i s = f (ξ 0 ) + t 0 ∇f (ξ s -).β s ds + t 0 ∇f (ξ s -).δ s dW s + 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + t 0 R d ∇f (ξ s -).κ(y) M (ds dy) + t 0 R d (f (ξ s -+ y) -f (ξ s -) -κ(y).∇f (ξ s -)) M (ds dy).
We note that

• since ∇f is bounded and given Assumption 2.2,

t 0 R d ∇f (ξ s -).κ(y) M (ds dy) is a square-integrable martingale.
• since ∇f is bounded and given Assumption 2.2, t 0 ∇f (ξ s -).δ s dW s is a martingale.

Hence, taking expectations, we obtain

E [f (ξ t )] = E [f (ξ 0 )] + E t 0 ∇f (ξ s -).β s ds + E 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + E t 0 R d (f (ξ s -+ y) -f (ξ s -) -κ(y).∇f (ξ s -)) M (ds dy) = E [f (ξ 0 )] + E t 0 ∇f (ξ s -).β s ds + E 1 2 t 0 tr ∇ 2 f (ξ s -) t δ s δ s ds + E t 0 R d (f (ξ s -+ y) -f (ξ s -) -κ(y).∇f (ξ s -)) m(s, dy) ds ,
that is

E [f (ξ t )] = E [f (ξ 0 )] + E t 0 L s f (ξ s ) ds . ( 7 
)
where L denote the integro-differential operator given, for all t ∈ [0, T ] and for

all f ∈ C 2 b (R d , R), by L t f (x) = β t .∇f (x) + 1 2 tr t δ t δ t ∇ 2 f (x) + R d [f (x + y) -f (x) - 1 1 + y 2 y.∇f (x)]m(t, dy), (8) 
Equation ( 7) yields

1 t E [f (ξ t )] - 1 t f (ξ 0 ) -L 0 f (ξ 0 ) = E 1 t t 0 ds (∇f (ξ s ).β s -∇f (ξ 0 ).β 0 ) + 1 2 E 1 t t 0 ds tr ∇ 2 f (ξ s ) t δ s δ s -∇ 2 f (ξ 0 ) t δ 0 δ 0 + E R d 1 t t 0 ds m(s, dy) (f (ξ s + y) -f (ξ s ) -κ(y).∇f (ξ s )) -m(0, dy), (f (ξ 0 + y) -f (ξ 0 ) -κ(y).∇f (ξ 0 )) . Define ∆ 1 (t) = E 1 t t 0 ds (∇f (ξ s ).β s -∇f (ξ 0 ).β 0 ) , ∆ 2 (t) = 1 2 E 1 t t 0 ds tr ∇ 2 f (ξ s -) t δ s δ s -∇ 2 f (ξ 0 ) t δ 0 δ 0 , ∆ 3 (t) = E R d 1 t t 0 ds m(s, dy) (f (ξ s + y) -f (ξ s ) -κ(y).∇f (ξ s -)) -m(0, dy) (f (ξ 0 + y) -f (ξ 0 ) -κ(y).∇.f (ξ 0 )) .
Thanks to Assumptions 2.1 and 2.2,

E t 0 ds |∇f (ξ s ).β s -∇f (ξ 0 ).β 0 | ≤ E t 0 ds ∇f ( β s + β 0 ) < ∞.
Fubini's theorem then applies:

∆ 1 (t) = 1 t t 0 ds E [∇f (ξ s ).β s -∇f (ξ 0 ).β 0 ] .
Let us prove that

g 1 : [0, T [ → R t → E [∇f (ξ t ).β t -∇f (ξ 0 ).β 0 ] ,
is right-continuous at 0 with g 1 (0) = 0, yielding ∆ 1 (t) → 0 when t → 0 + if one applies Lemma 2.1.

|g 1 (t)| = |E [∇f (ξ t ).β t -∇f (ξ 0 ).β 0 ]| = |E [(∇f (ξ t ) -∇f (ξ 0 )) .β 0 + ∇f (ξ t ). (β t -β 0 )]| ≤ ∇f ∞ E [ β t -β 0 ] + β 0 ∇ 2 f ∞ E [ ξ t -ξ 0 ] , (9) 
where ∞ denotes the supremum norm on

C 2 b (R d , R). Assumption 2.1 implies that: lim t→0 + E [ β t -β 0 ] = 0.
Thanks to Assumption 2.2, one may decompose ξ t as

ξ t = ξ 0 + A t + M t , A t = t 0 β s ds + R d (y -κ(y)) m(s, dy) ds, M t = t 0 δ s dW s + t 0 R d y M (ds dy), (10) 
where A t is of finite variation and M t is a local martingale. First, applying Fubini's theorem (using Assumption 2.2),

E [ A t ] ≤ E t 0 β s ds + E t 0 R d y -κ(y) m(s, dy) ds = t 0 ds E [ β s ] + t 0 ds E R d y -κ(y) m(s, dy) . Thanks to Assumption 2.1, one observes that if s ∈ [0, T [→ E [ β s -β 0 ] is right-continuous at 0 so is s ∈ [0, T [→ E [ β s ]. Furthermore, Assumption 2.1 yields that s ∈ [0, T [→ E R d y -κ(y) m(s, dy)
is right-continuous at 0 and Lemma 2.1 implies that lim

t→0 + E [ A t ] = 0. Furthermore, writing M t = (M 1 t , • • • , M d t ), E M t 2 = 1≤i≤d E |M i t | 2 .
Burkholder's inequality [START_REF] Protter | Stochastic integration and differential equations[END_REF]Theorem IV.73] implies that there exists

C > 0 such that sup s∈[0,t] E |M i s | 2 ≤ C E [M i , M i ] t = C E t 0 ds |δ i s | 2 + t 0 ds R d |y i | 2 m(s, dy) .
Using Assumption 2.2 we may apply Fubini's theorem to obtain

sup s∈[0,t] E M s 2 ≤ C 1≤i≤d E t 0 ds |δ i s | 2 + E t 0 ds R d |y i | 2 m(s, dy) = C E t 0 ds δ s 2 + E t 0 ds R d y 2 m(s, dy) = C t 0 ds E δ s 2 + t 0 ds E R d y 2 m(s, dy) .
Thanks to Assumption 2.1, Lemma 2.1 yields

lim t→0 + E M t 2 = 0.
Using the Jensen inequality, one obtains

E [ M t ] = E   1≤i≤d |M i t | 2   ≤ E   1≤i≤d |M i t | 2   = E M t 2 .
Hence, lim

t→0 + E [ M t ] = 0, and lim t→0 + E [ ξ t -ξ 0 ] ≤ lim t→0 + E [ A t ] + lim t→0 + E [ M t ] = 0.
Going back to the inequalities (9), one obtains lim t→0 + g 1 (t) = 0. Similarly, ∆ 2 (t) → 0 and ∆ 3 (t) → 0 as t → 0 + . This ends the proof.

Remark 2.1. In applications where a process is constructed as the solution to a stochastic differential equation driven by a Brownian motion and a Poisson random measure, one usually starts from a representation of the form

ζ t = ζ 0 + t 0 β s ds + t 0 δ s dW s + t 0 ψ s (y) Ñ (ds dy), (11) 
where ξ 0 ∈ R d , W is a standard R n -valued Wiener process, β and δ are nonanticipative càdlàg processes, N is a Poisson random measure on [0, T ] × R d with intensity ν(dy) dt where ν is a Lévy measure In particular, if one rewrites Assumption 2.1 in the framework of equation [START_REF]From implied to spot volatilities[END_REF], one recovers the Assumptions of [START_REF] Muhle-Karbe | Small-Time Asymptotics of Option Prices and First Absolute Moments[END_REF] as a special case.

R d 1 ∧ y 2 ν(dy) < ∞, Ñ = N -ν(dy)dt,
and ψ : [0, T ] × Ω × R d → R d is

Examples

If one has further information on the behavior of f in the neighborhood of ξ 0 , then the quantity L 0 f (ξ 0 ) may be computed more explicitly. We summarize some commonly encountered situations in the following Proposition.

Proposition 2.1. Under Assumptions 2.1 and 2.2,

1. If f (ξ 0 ) = 0 and ∇f (ξ 0 ) = 0, then lim t→0 + 1 t E [f (ξ t )] = 1 2 tr t δ 0 δ 0 ∇ 2 f (ξ 0 ) + R d f (ξ 0 + y) m(0, dy). (12) 2. If furthermore ∇ 2 f (ξ 0 ) = 0, then lim t→0 + 1 t E [f (ξ t )] = R d f (ξ 0 + y) m(0, dy). ( 13 
)
Proof. Applying Theorem 2.1, L 0 f (ξ 0 ) writes

L 0 f (ξ 0 ) = β 0 .∇f (ξ 0 ) + 1 2 tr ∇ 2 f (ξ 0 ) t δ 0 δ 0 (ξ 0 ) + R d [f (ξ 0 + y) -f (ξ 0 ) - 1 1 + y 2 y.∇f (ξ 0 )]m(0, dy).
The proposition follows immediately.

Remark 2.2. As observed by Jacod [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF]Section 5.8] in the setting of Lévy processes, if f (ξ 0 ) = 0 and ∇f

(ξ 0 ) = 0, then f (x) = O( x -ξ 0 2 ). If furthermore ∇ 2 f (ξ 0 ) = 0, then f (x) = o( x -ξ 0 2 ).
Let us now compute in a more explicit manner the asymptotics of (1) for specific semimartingales.

Functions of a Markov process

An important situations which often arises in applications is when a stochastic processe ξ is driven by an underlying Markov process, i.e.

ξ t = f (Z t ) f ∈ C 2 (R d , R), (14) 
where Z t is a Markov process, defined as the weak solution on [0, T ] of a stochastic differential equation

Z t = Z 0 + t 0 b(u, Z u-) du + t 0 Σ(u, Z u-) dW u + t 0 ψ(u, Z u-, y) Ñ (du dy), (15) 
where (W t ) is an n-dimensional Brownian motion, N is a Poisson random measure on [0, T ] × R d with Lévy measure ν(y) dy, Ñ the associated compensated random measure, Σ :

[0, T ] × R d → M d×d (R), b : [0, T ] × R d → R d and ψ : [0, T ] × R d × R d are measurable functions such that ψ(., ., 0) = 0 ψ(t, z, .) is a C 1 (R d , R d ) -diffeomorphism ∀t ∈ [0, T ], E t 0 { y ≥1} sup z∈R d 1 ∧ ψ(s, z, y) 2 ν(y) dy ds < ∞. (16) 
In this setting, as shown in Proposition [6, Proposition 3], one may verify the regularity of Assumption 2.1 and Assumption 2.2 by requiring easy-to-check assumptions on the coefficients:

Assumption 2.3. b(., .), Σ(., .) and ψ(., ., y) are continuous in a neighborhood of (0, Z 0 ) Assumption 2.4. There exist T > 0, R > 0 such that

Either ∀t ∈ [0, T ] inf z-Z0 ≤R inf x∈R d , x =1 t x.Σ(t, z).x > 0 or Σ ≡ 0.
We then obtain the following result:

Proposition 2.2. Let f ∈ C 2 b (R d , R) such that ∀(z 1 , • • • , z d-1 ) ∈ R d-1 , u → f (z 1 , . . . , z d-1 , u) is a C 1 (R, R)-diffeomorphism. Define          β 0 = ∇f (Z 0 ).b(0, Z 0 ) + 1 2 tr ∇ 2 f (Z 0 ) t Σ(0, Z 0 )Σ(0, Z 0 ) + R d (f (Z 0 + ψ(0, Z 0 , y)) -f (Z 0 ) -ψ(0, Z 0 , y).∇f (Z 0 )) ν(y) dy, δ 0 = ∇f (Z 0 )Σ(0, Z 0 ) ,
and the measure m(0, .) via

m(0, [u, ∞[) = R d 1 {f (Z0+ψ(0,Z0,y))-f (Z0)≥u} ν(y) dy u > 0, m(0, [-∞, u]) = R d 1 {f (Z0+ψ(0,Z0,y))-f (Z0)≤u} ν(y) dy u < 0. ( 17 
)
Under Assumptions 2.3 and 2.4, ∀g ∈ C 2 b (R d , R), lim t→0 + E [g(ξ t )] -g(ξ 0 ) t = β 0 g (ξ 0 )+ δ 2 0 2 g (ξ 0 )+ R d [g(ξ 0 +u)-g(ξ 0 )-ug (ξ 0 )] m(0, du). (18) 
Proof. Under the conditions ( 16) and the Assumption 2.4, [6, Proposition 3] shows that ξ t admits the semimartingale decomposition

ξ t = ξ 0 + t 0 β s ds + t 0 δ s dB s + t 0 u K(ds du),
where

         β t = ∇f (Z t -).b(t, Z t-) + 1 2 tr ∇ 2 f (Z t-) t Σ(t, Z t-)Σ(t, Z t-) + R d (f (Z t -+ ψ(t, Z t-, y)) -f (Z t -) -ψ(t, Z t-, y).∇f (Z t -)) ν(y) dy, δ t = ∇f (Z t-)Σ(t, Z t-) ,
and K is an integer-valued random measure on [0, T ] × R with compensator k(t, Z t-, u) du dt defined via

k(t, Z t-, u) = R d-1 |det∇ y Φ(t, Z t-, (y 1 , • • • , y d-1 , u))| ν(Φ(t, Z t-, (y 1 , • • • , y d-1 , u))) dy 1 • • • dy d-1 , with Φ(t, z, y) = φ(t, z, κ -1 z (y)) κ -1 z (y) = (y 1 , • • • , y d-1 , F z (y)), F z (y) : R d → R f (z + (y 1 , • • • , y d-1 , F z (y))) -f (z) = y d .
From Assumption 2.3 it follows that Assumptions 2.1 and 2.2 hold for β t , δ t and k(t, Z t -, .) on [0, T ]. Applying Theorem 2.1, the result follows immediately.

Remark 2.3. Benhamou et al. [START_REF] Benhamou | Smart expansion and fast calibration for jump diffusions[END_REF] studied the case where Z t is the solution of a 'Markovian' SDE whose jumps are given by a compound Poisson Process. The above results generalizes their result to the (general) case where the jumps are driven by an arbitrary integer-valued random measure.

Time-changed Lévy processes

Models based on time-changed Lévy processes provide another class of examples of non-Markovian models which have generated recent interest in mathematical finance. Let L t be a real-valued Lévy process, (b, σ 2 , ν) be its characteristic triplet, N its jump measure. Define

ξ t = L Θt Θ t = t 0 θ s ds, (19) 
where (θ t ) is a locally bounded F t -adapted positive càdlàg process, interpreted as the rate of time change.

Proposition 2.3. If R |y| 2 ν(dy) < ∞ and lim t→0, t>0 E [|θ t -θ 0 |] = 0 ( 20 
)
then ∀f ∈ C 2 b (R, R), lim t→0 + E [f (ξ t )] -f (ξ 0 ) t = θ 0 L 0 f (ξ 0 ) ( 21 
)
where L 0 is the infinitesimal generator of the L:

L 0 f (x) = b f (x) + σ 2 2 f (x) + R d [f (x + y) -f (x) - 1 1 + |y| 2 yf (x)]ν(dy). ( 22 
)
Proof. Considering the Lévy-Itô decomposition of L:

L t = b - {|y|≤1} (y -κ(y)) ν(dy) t + σW t + t 0 R κ(z) Ñ (dsdz) + t 0 R (z -κ(z)) N (dsdz),
then ξ has the representation

ξ t = ξ 0 + t 0 σ θ s dZ s + t 0 b - {|y|≤1} (y -κ(y)) ν(dy) θ s ds + t 0 R κ(z)θ s Ñ (ds dz) + t 0 R (z -κ(z)) θ s N (ds dz).
where Z is a Brownian motion. With the notation of equation ( 2), one identifies

β t = b - {|y|≤1} (y -κ(y)) ν(dy) θ t , δ t = σ θ t , m(t, dy) = θ t ν(dy).
If [START_REF] Lee | The moment formula for implied volatility at extreme strikes[END_REF] holds, then Assumptions 2.1 and 2.2 hold for (β, δ, m) and Theorem 2.1 may be applied to obtain the result.

3 Short-maturity asymptotics for call options Consider a (strictly positive) price process S whose dynamics under the pricing measure P is given by a stochastic volatility model with jumps:

S t = S 0 + t 0 r(s)S s -ds + t 0 S s -δ s dW s + t 0 +∞ -∞ S s -(e y -1) M (ds dy), (23) 
where r(t) > 0 represents a (deterministic) bounded discount rate. For convenience, we shall assume that r ∈ C b 0 (R + , R + ). δ t represents the volatility process and M is an integer-valued random measure with compensator µ(ω; dt dy) = m(ω; t, dy) dt, representing jumps in the log-price, and M = M -µ its compensated random measure. We make the following assumptions on the characteristics of S: Assumption 3.1 (Right-continuity at t 0 ). lim t→t0, t>t0 We recall that the value C t0 (t, K) at time t 0 of a call option with expiry t > t 0 and strike K > 0 is given by

E |δ t -δ t0 | 2 |F t0 = 0. For all ϕ ∈ C b 0 (R + × R, R), lim t→t0, t>t0 E R e 2y ∧
C t0 (t, K) = e -t t 0 r(s) ds E[max(S t -K, 0)|F t0 ]. (24) 
The discounted asset price Ŝt = e

-t t 0 r(u) du S t ,
is the stochastic exponential of the martingale ξ defined by

ξ t = t 0 δ s dW s + t 0
(e y -1) M (ds dy).

Under Assumption 3.2, we have

E exp 1 2 ξ, ξ d T + ξ, ξ c T < ∞,
where ξ, ξ c and ξ, ξ d denote the continuous and purely discontinuous parts of [ξ, ξ] and [START_REF] Protter | Markov processes and related topics: A Festschrift for Thomas G[END_REF]Theorem 9] implies that ( Ŝt ) t∈[t0,T ] is a P-martingale. In particular the expectation in ( 24) is finite.

Out-of-the money call options

We first study the asymptotics of out-of-the money call options i.e. the case where K > S t0 .

Theorem 3.1 (Short-maturity behavior of out-of-the money options). Under Assumption 3.1 and Assumption 3.2, if S t0 < K then

1 t -t 0 C t0 (t, K) -→ t→t + 0 ∞ 0 (S t0 e y -K) + m(t 0 , dy). (25) 
This limit can also be expressed using the exponential double tail ψ t0 of the compensator, defined as

ψ t0 (z) = +∞ z dx e x ∞ x m(t 0 , du) z > 0. ( 26 
)
Then, as shown in [5, Lemma 1],

∞ 0 (S t0 e y -K) + m(t 0 , dy) = S t0 ψ t0 ln K S t0 .

Proof. The idea is to apply Theorem 2.1 to smooth approximations f n of the function x → (x -K) + and conclude using a dominated convergence argument. First, as argued in the proof of Theorem 2.1, we put t 0 = 0 in the sequel and consider the case where F 0 is the σ-algebra generated by all P-null sets. Applying the Itô formula to X t ≡ ln (S t ), we obtain Note that there exists C > 0 such that

X t = ln (S 0 ) + t 0 1 S s - dS s + 1 2 t 0 -1 S 2 s - (S s-δ s ) 2 ds + s≤t ln (S s -+ ∆S s ) -ln (S s -) - 1 S s - ∆S s = ln (S 0 ) + t 0 r(s) - 1 
|e y -1 -y 1 1 + |y| 2 | ≤ C (e y -1) 2 .
Thanks to Jensen's inequality, Assumption 3.2 implies that this quantity is finite, allowing us to write 

+ t 0 +∞ -∞ y -y 1 1 + |y| 2 M (ds dy) = t 0 +∞ -∞ (e y -1) M (ds dy) - t 0 +∞ -∞ e y -1 -y 1 1 + |y| 2
M (ds dy)

- t 0 +∞ -∞ e y -1 -y 1 1 + |y| 2 m(s, y) ds dy + t 0 +∞ -∞ y -y 1 1 + |y| 2 M (ds dy) = t 0 +∞ -∞ y 1 1 + |y| 2 M (ds dy) - t 0 +∞ -∞ e y -1 -y 1 1 + |y| 2 m(s, y) ds dy + t 0 +∞ -∞ y -y 1 1 + |y| 2 M (ds dy).
We can thus represent X t as in ( 2)):

X t = X 0 + t 0 β s dt + t 0 δ s dW s + t 0 +∞ -∞ y 1 1 + |y| 2 M (ds dy) + t 0 +∞ -∞ y -y 1 1 + |y| 2 M (ds dy), (27) 
with

β t = r(t) - 1 2 δ 2 t - ∞ -∞ e y -1 -y 1 1 + |y| 2 m(t, y) dt dy.
Hence, if δ and m(., dy) satisfy Assumption 3.1 then β, δ and m(., dy) satisfy Assumption 2.1. Thanks to Jensen's inequality, Assumption 3.2 implies that β, δ and m satisfy Assumption 2.2. One may apply Theorem 2.1 to X t for any function of the form f

• exp, f ∈ C 2 b (R, R). Let us introduce a family f n ∈ C 2 b (R, R) such that f n (x) = (x -K) + |x -K| > 1 n (x -K) + ≤ f n (x) ≤ 1 n |x -K| ≤ 1 n . Then for x = K, f n (x) -→ n→∞ (x -K) + . Define, for f ∈ C ∞ 0 (R + , R), L 0 f (x) = r(0)xf (x) + x 2 δ 2 0 2 f (x) + R [f (xe y ) -f (x) -
x(e y -1).f (x)]m(0, dy).

(28) First, observe that if N 1 ≥ 1/|S 0 -K|, ∀n ≥ N 1 , f n (S 0 ) = (S 0 -K) + = 0, so 1 t E (S t -K) + ≤ 1 t E [f n (S t )] = 1 t (E [f n (S t )] -f n (S 0 )) .
Letting t → 0 + yields lim sup

t→0 + 1 t e -t 0 r(s) ds E (S t -K) + ≤ L 0 f n (S 0 ). ( 29 
)
Furthermore,

E (S t -K) + ≥ E f n (S t )1 {|St-K|> 1 n } = E [f n (S t )] -E f n (S t )1 {|St-K|≤ 1 n } ≥ E [f n (S t )] -f n (S 0 ) - 1 n E 1 {|St-K|≤ 1 n } . But E 1 {|St-K|≤ 1 n } ≤ P S t -K ≥ - 1 n ≤ P S t -S 0 ≥ K -S 0 - 1 n .
There exists N 2 ≥ 0 such that for all n ≥ N 2 ,

P S t -S 0 ≥ K -S 0 - 1 n ≤ P S t -S 0 ≥ K -S 0 2 ≤ 2 K -S 0 2 E (S t -S 0 ) 2 ,
by the Bienaymé-Chebyshev inequality. Hence,

1 t E (S t -K) + ≥ 1 t (E [f n (S t )] -f n (S 0 ))- 1 n 2 K -S 0 2 1 t E [φ(S t ) -φ(S 0 )] , with φ(x) = (x -S 0 ) 2 . Applying Theorem 2.1 yields lim inf t→0 + 1 t e -t 0 r(s) ds E (S t -K) + ≥ L 0 f n (S 0 ) - 1 n 2 K -S 0 2 L 0 φ(S 0 ). Letting n → +∞, lim t→0 + 1 t e -t 0 r(s) ds E (S t -K) + = lim n→∞ L 0 f n (S 0 ). Since S 0 < K, f n = 0 in a neighborhood of S 0 for n ≥ N 1 so f n (S 0 ) = f n (S 0 ) = f n (S 0 ) = 0 and L 0 f n (S 0 ) reduces to L 0 f n (S 0 ) = R [f n (S 0 e y ) -f n (S 0 )]m(0, dy).
A dominated convergence argument then yields

lim n→∞ L 0 f n (S 0 ) = R [(S 0 e y -K) + -(S 0 -K) + ]m(0, dy).
Using integration by parts, this last expression may be rewritten [5, Lemma 1] as

S 0 ψ 0 ln K S 0
where ψ 0 is given by ( 26). This ends the proof.

Remark 3.1. Theorem 3.1 also applies to in-the-money options, with a slight modification: for K < S t0 ,

1 t -t 0 (C t0 (t, K) -(S t0 -K)) -→ t→t + 0 r(t 0 ) S t0 + S t0 ψ t0 ln K S t0 , (30) 
where

ψ t0 (z) = z -∞ dx e x x -∞ m(t 0 , du), for z < 0 (31)
denotes the exponential double tail of m(0, .).

At-the-money call options

When S t0 = K, Theorem 3.1 does not apply. Indeed, as already noted in the case of Lévy processes by Tankov [START_REF] Tankov | Pricing and Hedging in Exponential Lévy Models: Review of Recent Results[END_REF] and Figueroa-Lopez and Forde [START_REF] Figueroa-López | The small-maturity smile for exponential Lévy models[END_REF], the short maturity behavior of at-the-money options depends on whether a continuous martingale component is present and, in absence of such a component, on the degree of activity of small jumps, measured by the Blumenthal-Getoor index of the Lévy measure which measures its singularity at zero [START_REF] Jacod | Asymptotic properties of power variations of Lévy processes[END_REF]. We will show here that similar results hold in the semimartingale case. We distinguish three cases:

1. S is a pure jump process of finite variation: in this case at-the-money call options behave linearly in t -t 0 (Proposition 3.1).

2. S is a pure jump process of infinite variation and its small jumps resemble those of an α-stable process: in this case at-the-money call options have an asymptotic behavior of order |t -t 0 | 1/α as t -t 0 → 0 + (Proposition 3.2).

3. S has a continuous martingale component which is non-degenerate in the neighborhood of t 0 : in this case at-the-money call options are of order √ t -t 0 as t → t + 0 , whether or not jumps are present (Theorem 3.2).

These statements are made precise in the sequel. We observe that, contrarily to the case of out-of-the money options where the presence of jumps dominates the asymptotic behavior, for at-the-money options the presence or absence of a continuous martingale (Brownian) component dominates the asymptotic behavior.

For the finite variation case, we use a slightly modified version of Assumption 3.1:

Assumption 3.3 (Weak right-continuity of jump compensator). For all ϕ ∈ C b 0 (R + × R, R), lim t→t0, t>t0 E R e 2y ∧ |y| ϕ(S t , y) m(t, dy)|F t0 = R e 2y ∧ |y| ϕ(S t0 , y) m(t 0 , dy).
Proposition 3.1 (Asymptotic for ATM call options for pure jump processes of finite variation). Consider the process

S t = S 0 + t 0 r(s)S s-ds + t 0 +∞ -∞ S s -(e y -1) M (ds dy). (32) 
Under the Assumptions 3.3 and 3.2 and the condition,

∀t ∈ [t 0 , T ], R |y| m(t, dy) < ∞, 1 t -t 0 C t0 (t, S t0 ) -→ t→t + 0 1 {r(t 0 ) > R (e y -1)m(t 0 , dy)} S t0 r(t 0 ) + R (1 -e y ) + m(t 0 , dy) + 1 {r(t 0 ) ≤ R (e y -1)m(t 0 , dy)} S t0 R (e y -1) + m(t 0 , dy). (33) 
Proof. Replacing P by the conditional probability P Ft 0 , we may set t 0 = 0 in the sequel and consider the case where F 0 is the σ-algebra generated by all P-null sets. The Tanaka-Meyer formula applied to (S t -S 0 ) + gives

(S t -S 0 ) + = t 0 ds 1 {Ss->S0} S s-r(s) - R (e y -1) m(s, dy) + 0<s≤t (S s -S 0 ) + -(S s--S 0 ) + .
Hence, applying Fubini's theorem,

E (S t -S 0 ) + = E t 0 ds 1 {Ss->S0} S s-r(s) - R (e y -1)m(s, dy) + E t 0 R (S s-e y -S 0 ) + -(S s--S 0 ) + m(s, dy) ds = t 0 ds E 1 {Ss->S0} S s-r(s) - R (e y -1)m(s, dy) + t 0 ds E R (S s e y -S 0 ) + -(S s -S 0 ) + m(s, dy) .
Furthermore, under the Assumptions 2.1 and 2.2 for X t = log(S t ) (see equation ( 27)), one may apply Theorem 2.1 to the function

f : x ∈ R → exp(x), yielding lim t→0 + 1 t E [S t -S 0 ] = S 0 r(0) - R (e y -1)m(0, dy) .
Furthermore, observing that

S t 1 {St>S0} = (S t -S 0 ) + + S 0 1 {St>S0} ,
we write

E S t 1 {St>S0} = E (S t -S 0 ) + + S 0 1 {St>S0} ≤ E [|S t -S 0 |] + S 0 P (S t > S 0 ) ,
using the Lipschitz continuity of x → (x -S 0 ) + . Since t → E [S t ] is rightcontinuous at 0, for t small enough :

0 ≤ E S t 1 {St>S0} ≤ 1 2 + S 0 . Thus, lim t→0 + 1 t E t 0 ds 1 {Ss->S0} S s-r(s) - R (e y -1)m(s, dy) = S 0 r(0) - R (e y -1)m(0, dy) 1 {r(0) - R (e y -1)m(0, dy) > 0}.
Let us now focus on the jump term and show that

t ∈ [0, T [ → E R (S t e y -S 0 ) + -(S t -S 0 ) + m(t, dy) ,
is right-continuous at 0 with right-limit S 0 R (e y -1) + m(0, dy).

One shall simply observes that

(xe y -S 0 ) + -(x -S 0 ) + -(S 0 e y -S 0 ) + ≤ (x + S 0 ) |e y -1|,
using the Lipschitz continuity of x → (x -S 0 ) + and apply Assumption 3.3. To finish the proof, one shall gather both limits together :

= S 0 r(0) - R (e y -1)m(0, dy) 1 {r(0) - R (e y -1)m(0, dy) > 0} + S 0 R (e y -1) + m(0, dy).
This ends the proof.

Proposition 3.2 (Asymptotics of ATM call options for pure-jump martingales of infinite variation). Consider a semimartingale whose continuous martingale part is zero:

S t = S 0 + t 0 r(s)S s-ds + t 0 +∞ -∞ S s -(e y -1) M (ds dy). (34) 
Under the Assumptions 3.1 and 3.2, if there exists α ∈]1, 2[ and a family m α (t, dy) of positive measures such that

∀t ∈ [t 0 , T ], m(ω, t, dy) = m α (ω, t, dy) + 1 |y|≤1 c(y) |y| 1+α dy a.s., (35) 
where c(.) > 0 is continuous at 0 and

∀t ∈ [t 0 , T ] R |y| m α (t, dy) < ∞, (36) then 1 
(t -t 0 ) 1/α C t0 (t, S t0 ) -→ t→t + 0 S t0 1 2π ∞ -∞ e -c(0) |z| α -1 z 2 dz. (37) 
Proof. Without loss of generality, we set t 0 = 0 in the sequel and consider the case where F 0 is the σ-algebra generated by all P-null sets. The at-the-money call price can be expressed as

C 0 (t, S 0 ) = E (S t -S 0 ) + = S 0 E S t S 0 -1 + . ( 38 
) Define, for f ∈ C 2 b (]0, ∞[, R) L 0 f (x) = r(0)xf (x) + R [f (xe y ) -f (x) -x(e y -1).f (x)]m(0, dy). (39) 
We decompose L 0 as the sum L 0 = K 0 + J 0 where

K 0 f (x) = r(0)xf (x) + R [f (xe y ) -f (x) -
x(e y -1).f (x)] m α (0, dy),

J 0 f (x) = 1 -1 [f (xe y ) -f (x) -x(e y -1).f (x)] c(y) |y| 1+α dy.
The term K 0 may be be interpreted in terms of Theorem 2.1: if (Z t ) [0,T ] is a finite variation semimartingale of the form (34) starting from Z 0 = S 0 with jump compensator m α (t, dy), then by Theorem 2.1,

∀f ∈ C 2 b (]0, ∞[, R), lim t→0 + 1 t e -t 0 r(s) ds E [f (Z t )] = K 0 f (S 0 ). ( 40 
)
The idea is now to interpret 

L 0 = K 0 + J 0 in
1 t 1/α E (Y t -1) + t→0 + → 1 2π ∞ -∞ e -c(0)|z| α -1 z 2 dz. (41) 
We will show that the term (41) is the dominant term which gives the asymptotic behavior of C 0 (T, S 0 ). Indeed, by the Lipschitz continuity of x → (x -S 0 ) + ,

|(S t -S 0 ) + -S 0 (Y t -1) + | ≤ Y t |Z t -S 0 |,
so, taking expectations and using that Y is independent from Z, we get

E[e -t 0 r(s) ds |(S t -S 0 ) + C0(t,S0) -S 0 (Y t -1) + |] ≤ E(Y t ) =1 E[e -t 0 r(s) ds |Z t -S 0 |].
To estimate the right hand side of this inequality note that |Z t -S 0 | = (Z t -S 0 ) + + (S 0 -Z t ) + . Since Z has finite variation, from Proposition 3.1

E[e -t 0 r(s) ds (Z t -S 0 ) + ] t→0 + ∼ tS 0 ∞ 0 dx e x m([x, +∞[).
Using the martingale property of e -t 0 r(s) ds Z t ) yields

E[e -t 0 r(s) ds (S 0 -Z t ) + ] t→0 + ∼ tS 0 ∞ 0 dx e x m([x, +∞[).
Hence, dividing by t 1/α and taking t → 0 + we obtain

1 t 1/α e -t 0 r(s) ds E |Z t -S 0 | + t→0 + → 0.
Thus, dividing by t 1/α the above inequality and using (41) yields

1 t 1/α e -t 0 r(s) ds E [(S t -S 0 ) + ] t→0 + → S 0 1 2π ∞ -∞ e -c(0)|z| α -1 z 2 dz.
We now focus on a third case, when S is a continuous semimartingale, i.e. an Ito process. From known results in the diffusion case [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF], we expect in this case a short-maturity behavior ins O( √ t). We propose here a proof of this behavior in a semimartingale setting using the notion of semimartingale local time. (42)

Under the Assumptions 3.1 and 3.2 and the following non-degeneracy condition in the neighborhood of t 0 ,

∃ > 0, P (∀t ∈ [t 0 , T ], δ t ≥ ) = 1,
we have

1 √ t -t 0 C t0 (t, S t0 ) -→ t→t + 0 S t0 √ 2π δ t0 . (43) 
Proof. Set t 0 = 0 and consider, without loss of generality, the case where F 0 is the σ-algebra generated by all P-null sets. Applying the Tanaka-Meyer formula to (S t -S 0 ) + , we have

(S t -S 0 ) + = t 0 1 {Ss>S0} dS s + 1 2 L S0 t (S).
where L S0 t (S) corresponds to the semimartingale local time of S t at level S 0 under P. As noted in Section 3. 

: x ∈ R → (exp(x) -S 0 ) 2 , yielding lim t→0 + 1 t E (S t -S 0 ) 2 = L 0 f (X 0 ),
where L 0 is defined via equation ( 5) with m ≡ 0. Since L 0 f (X 0 ) < ∞, then in particular, t → E (S t -S 0 ) 2 is right-continuous at 0 with right limit 0. Observing that

S t 1 {St>S0} = (S t -S 0 ) + + S 0 1 {St>S0} ,
we write

E S t 1 {St>S0} = E (S t -S 0 ) + + S 0 1 {St>S0} ≤ E [|S t -S 0 |] + S 0 P (S t > S 0 ) , using the Lipschitz continuity of x → (x -S 0 ) + . Since t → E [S t ] is right- continuous at 0, for t small enough : 0 ≤ E S t 1 {St>S0} ≤ 1 2 + S 0 .
Thus, applying Fubini, Hence (if the limit exists)

lim t→0 1 √ t C(t, S 0 ) = lim t→0 1 √ t e -t 0 r(s) ds E 1 2 L S0 t (S) = lim t→0 1 √ t E 1 2 L S0 t (S) . ( 46 
) By the Dubins-Schwarz theorem [24, Theorem 1.5], there exists a Brownian motion B such that

∀t < [U ] ∞ , U t = t 0 δ s dW s = B [U ]t = B t 0 δ 2 s ds . So ∀t < [U ] ∞ S t = S 0 exp t 0 r(s) - 1 2 δ 2 s ds + B [U ]t = S 0 exp t 0 r(s) - 1 2 δ 2 s ds + B t 0 δ 2 s ds .
The occupation time formula then yields, for φ 

∈ C ∞ 0 (R, R), ∞ 0 φ(K)L K t S 0 exp B [U ] dK = t 0 φ S 0 exp B [U ]u S 2 0 exp B [U ]u 2 δ 2 u du = ∞ -∞ φ(S 0 exp(y))S 2 0 exp(y) 2 L y t B [U ]
t S 0 exp B [U ] dy = ∞ -∞ φ(S 0 exp(y))S 2 0 exp(y) 2 L y t B [U ] . Hence L S0 t S 0 exp B [U ] = S 0 L 0 t B [U ] . We also have L 0 t B [U ] = L 0 t 0 δ 2 s ds ( 
E L S0 t S 0 exp B [U ] = S 0 E L 0 t 0 δ 2 s ds (B) = S 0 E   t 0 δ 2 s ds L 0 1 (B)   . Hence lim t→0 + 1 √ t E L S0 t S 0 exp B [U ] = lim t→0 + 1 √ t S 0 E   t 0 δ 2 s ds L 0 1 (B)   = lim t→0 + S 0 E   1 t t 0 δ 2 s ds L 0 1 (B)   .
Let us show that

lim t→0 + S 0 E   1 t t 0 δ 2 s ds L 0 1 (B)   = S 0 δ 0 E L 0 1 (B) . (47) 
Using the Cauchy-Schwarz inequality,

E     1 t t 0 δ 2 s ds -δ 0   L 0 1 (B)   ≤ E L 0 1 (B) 2 1/2 E      1 t t 0 δ 2 s ds -δ 0   2    1/2 . The Lipschitz property of x → ( √ x -δ 0 ) 2 on [ , +∞[ yields E      1 t t 0 δ 2 s ds -δ 0   2    ≤ c( )E 1 t t 0 δ 2 s -δ 2 0 ds ≤ c( ) t t 0 ds E δ 2 s -δ 2 0 .
where c( ) is the Lipschitz constant of x → ( √ x -δ 0 ) 

E L 0 1 (B) = 2 π .
Clearly, since

L K t (S) = L K t S 0 exp B [U ] , lim t→0 1 √ t E 1 2 L S0 t (S) = S 0 √ 2π δ 0 . (48) 
This ends the proof.

We can now treat the case of a general Itô semimartingale with both a continuous martingale component and a jump component. 1 t E (S t -S 0 ) 2 = L 0 f (X 0 ), where L 0 is defined via equation [START_REF] Bentata | Forward equations for option prices in semimartingales[END_REF]. Since L 0 f (X 0 ) < ∞, then in particular, t → E (S t -S 0 ) 2 is right-continuous at 0 with right limit 0. Observing that Since δ 0 ≥ , equation (48) yields the result.

S
Remark 3.2. As noted by Berestycki et al [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF][START_REF] Berestycki | Computing the implied volatility in stochastic volatility models[END_REF] in the diffusion case, the regularity of f at S t0 plays a crucial role in the asymptotics of E [f (S t )]. Theorem 2.1 shows that E [f (S t )] ∼ ct for smooth functions f , even if f (S t0 ) = 0, while for call option prices we have ∼ √ t asymptotics at-the-money where the function x → (x -S 0 ) + is not smooth. 

(e y - 1 -

 1 y) M (ds dy)

e y - 1 -y 1 1 +

 11 |y| 2 M (ds dy)

  terms of a multiplicative decomposition S t = Y t Z t where Y = E(L) is the stochastic exponential of a pure-jump Lévy process with Lévy measure c(y)/|y| 1+α dy, which we can take independent from Z. Indeed, let Y = E(L) where L is a pure-jump Lévy martingale with Lévy measure 1 |y|≤1 c(y)/|y| 1+α dy, independent from Z, with infinitesimal generator J 0 . Then Y is a martingale and [Y, Z] = 0. Then S = Y Z and Y is an exponential Lévy martingale, independent from Z, with E[Y t ] = 1. A result of Tankov [26, Proposition 5, Proof 2] for exponential Lévy processes then implies that

Proposition 3 . 3 ( 0 S

 330 Asymptotic for at-the-money options for continuous semimartingales). Consider the process S t = S 0 + t 0 r(s)S s ds + t s δ s dW s .

  u) du r(s)S s 1 {Ss>S0} ds = O(t), u) du r(s)S s 1 {Ss>S0} ds = o √ t .

S 0

 0 exp B [U ] (resp. L y t B [U ] ) denotes the semimartingale local time of the process S 0 exp B [U ] at K and (resp. B [U ] at y). A change of variable leads to ∞ -∞ φ(S 0 exp(y))S 0 exp(y)L S0e y

B) , where L 0 t 0 δ 2 s

 2 ds (B) denotes the semimartingale local time of B at time t 0 δ 2 s ds and level 0. Using the scaling property of Brownian motion,

Theorem 3 . 2 ((

 32 Short-maturity asymptotics for at-the-money call options). Consider the price process S whose dynamics is given byS t = S 0 + t 0 r(s)S s -ds + t 0 S s -δ s dW s + s -(e y -1) M (ds dy).Under the Assumptions 3.1 and 3.2 and the folllowing non-degeneracy condition in the neighborhood of t 0∃ > 0, P (∀t ∈ [t 0 , T ], δ t ≥ ) = 1,we have1 √ t -t 0 C t0 (t, S t0) Applying the Tanaka-Meyer formula to (S t -S 0 ) + , we have(S t -S 0 ) + = -S 0 ) + -(S s--S 0 ) + -1 {Ss->S0} ∆S s .(50)As noted above, Assumption 3.2 implies that the discounted price Ŝt = e -t 0 r(s) ds S t is a martingale under P. So we can write dS t = e t 0 r(s) ds r(t)S t-dt + d Ŝt , and u) du r(s)S s-1 {Ss->S0} ds,where the first term is a martingale. Taking expectations, we gete t 0 r(s) ds C(t, S 0 ) = E t 0 e s 0 r(u) du r(s)S s 1 {Ss->S0} ds + S s -S 0 ) + -(S s--S 0 ) + -1 {Ss->S0} ∆S s   . Since Ŝ is a martingale, ∀t ∈ [0, T ] E [S t ] = e t 0 r(s) ds S 0 < ∞. (51)Hence t → E [S t ] is right-continuous at 0:lim t→0 + E [S t ] = S 0 .(52) Furthermore, under the Assumptions 2.1 and 2.2 for X t = log(S t ) (see equation (27)), one may apply Theorem 2.1 to the function f : x ∈ R → (exp(x) -S 0 ) 2 , yielding lim t→0 +

(

  u) du r(s)S s 1 {Ss>S0} ds = O(t), u) du r(s)S s 1 {Ss>S0} ds = o √ t .Let us now focus on the jump part, S s -S 0) + -(S s--S 0 ) + -1 {Ss->S0} ∆S s s, dx) (S s-e x -S 0 ) + -(S s--S 0 ) + -1 {Ss->S0} S s-(e xx -S 0 ) + -(z -S 0 ) + -1 {z>S0} z(e x -1) ≤ C (S 0 e x -z) 2 ,then, together with Assumption 3.1 and Lemma 2.1 implies,-S 0 ) + -(S s--S 0 ) + -1 {Ss->S0} ∆S s   = O(t) = o( √ t).

Remark 3 . 3 .

 33 In the particular case of a Lévy process, Proposition 3.1, Proposition 3.2 and Theorem 3.2 imply a recent result of Tankov [26, Proposition 5, Proof 2].

  |y| 2 ϕ(S t , y) m(t, dy)|F t0 =

						e 2y ∧ |y| 2 ϕ(S t0 , y) m(t 0 , dy).
						R
	Assumption 3.2 (Integrability condition).
	∃T > t 0 , E exp	1 2	T t0	δ 2 s ds +	T t0	ds

R

(e y -1) 2 m(s, dy) |F t0 < ∞ .

  t 1 {St>S0} = (S t -S 0 ) + + S 0 1 {St>S0} ,we writeE S t 1 {St>S0} = E (S t -S 0 ) + + S 0 1 {St>S0} ≤ E [|S t -S 0 |] + S 0 P (S t > S 0 ) , using the Lipschitz continuity of x → (x -S 0 ) + . Since t → E [S t ] is rightcontinuous at 0, for t small enough : 0 ≤ E S t 1 {St>S0} ≤ 1 2 + S 0 .

	Thus, applying Fubini,