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Full-dimensional multiconfigurational time-dependent Hartree calculations on the tunneling
splitting of the vibrational ground state and the low lying excited states of malonaldehyde are
presented. Methodological developments utilizing the symmetry of double well systems for the
efficient calculation of tunneling splittings are described and discussed. Important aspects of the
theory underlying the previously communicated results for the ground state tunneling splitting �M.
D. Coutinho-Neto et al., J. Chem. Phys. 121, 9207 �2004�� are detailed and further developments
facilitating the calculation of tunneling splittings for vibrationally excited states are introduced.
Utilizing these developments, the 14 lowest vibrational states of malonaldehyde, i.e., seven
tunneling splittings, have been computed. The tunneling splittings are found to vary significantly
depending on the particular vibrational excitation. This results in a complex pattern of vibrational
levels. Studying the dependence of the tunneling splittings on the vibrational excitation, good
agreement with available experimental results is found and intuitive interpretations of the results can
be given. © 2009 American Institute of Physics. �doi:10.1063/1.3272610�

I. INTRODUCTION

Proton transfer processes are ubiquitous in chemistry
and play an important role in many processes of biochemical
and biological interest. Due to the light mass of the proton,
quantum mechanical tunneling plays often a central part in
these processes. Focusing particularly on intramolecular pro-
ton transfer and the quest for its accurate theoretical descrip-
tion, malonaldehyde has been a benchmark system for about
3 decades. Exhibiting two equivalent tautomeric forms, the
potential energy surface �PES� of the system presents a sym-
metric double well structure with a relatively small barrier of
approximately 4 kcal/mol.1 This small barrier gives rise to
large splittings of the vibrational states.

Experimentally, the tunneling splitting of the ground vi-
brational state has been accurately measured already by a
series of experiments in the 1980s �Refs. 2–5� and further
work6,7 finally yielded the exceedingly accurate value of
21.583 138 3�6� cm−1. In contrast, the measurement of tun-
neling splittings of the vibrationally excited states is an open
and still developing field. Only few experiments on these
excited state splittings have been published.8–11 The number
of vibrationally excited states investigated is rather limited
and the accuracy of the measured data is many orders of
magnitude lower than that for the ground state tunneling
splitting.

Theoretically, the accurate description of the proton tun-
neling in malonaldehyde has been found to be a challenging
question requiring a truly multidimensional description of
the underlying quantum dynamics. Early theoretical work re-
sorted to reaction surface descriptions12,13 or semiclassical
calculations.14–18 In these studies, varying agreement be-
tween the computed tunneling splittings and the experimen-
tal values was found. However, due to the restrictions in the
quality of the ab initio data available at that point in time,
agreement with experiment could hardly have been expected
to be more than fortuitous. Furthermore demonstrating the
complexity of the dynamical problem, imaginary time path
integral calculations showed that the quantum mechanical
tunneling is not restricted to the motion of the hydrogen
atom alone but is coupled to the motion of the heavy back-
bone atoms.19 Following the earlier work and utilizing high
level ab initio calculations which then became available,
Tautermann et al.20,21 and Mil’nikov et al.22,23 combined the
semiclassical instanton approach with an on-the-fly compu-
tation of the electronic energies at a reasonably high level of
ab initio theory and computed ground state tunneling split-
tings in good or even perfect agreement with experiment.
However, at that point it remained an open question whether
this agreement was just a result of a fortuitous cancellation of
errors resulting from the semiclassical approximations and
the inaccuracies of the ab initio data.

Significant progress was achieved when Yagi et al.24

constructed the first full 21-dimensional ab initio PES for
malonaldehyde using modified Shepard interpolation
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techniques25,26 and ab initio data at the MP2/6-31G�d,p�
level. While the limitations in the accuracy of the ab initio
data, e.g., the barrier height on this level, 3.6 kcal/mol, is
about 0.4 kcal/mol too low, still prevented perfect agreement
with experiment, the PES is sufficiently accurate to allow a
detailed investigation of the effects of different dynamical
approximations. Instanton calculations for this PES by
Mil’nikov et al.23 yielded a ground state tunneling splitting
of 30.7 cm−1. Based on this PES, then the first full-
dimensional quantum calculations of the ground state tunnel-
ing splitting in malonaldehyde could be published.27,28 A first
short communication27 reported results independently ob-
tained using two different, numerically exact methods: a dif-
fusion Monte Carlo �DMC� approach using projection opera-
tor imaginary time spectral evolution29 �POITSE� and an
imaginary time wave packet propagation approach utilizing
the multiconfigurational time-dependent Hartree30,31

�MCTDH� method. Ground state splittings of
25.7�0.3 cm−1 and 25 cm−1 ��10%�, respectively, were
found. While the details of POITSE calculations have been
described in a subsequent paper,28 which also reported re-
sults on the isotopically substituted malonaldehyde, a de-
tailed description of the techniques used in the MCTDH cal-
culations of the tunneling splitting has not yet been given.
Presenting and discussing these details is one of the aims of
the present article.

Before continuing our introduction toward the specific
aims of the present work, very recent further progress toward
an accurate description of the malonaldehyde system should
be mentioned. Utilizing recent progress in electronic struc-
ture theory and the construction of PESs, Wang et al.1 pre-
sented a significantly more accurate PES. Their PES con-
struction employed the permutationally invariant polynomial
approach developed by Braams and Bowman.32 Using a
fixed node DMC approach, Wang et al. calculated a tunnel-
ing splitting of 21–22 cm−1 for their new PES. Given the
present limits even of elaborous state of art electronic struc-
ture calculations, the agreement between this theoretical re-
sult and experiment is excellent. However, since this new
PES was not yet available to us while most of the extensive
quantum dynamics calculations presented here have been
performed, the work presented in the following still relies on
the older PES of Yagi et al. In this context, also calculations
by Tew et al.33 using a ab initio based reaction surface PES
and a vibrational configuration interaction �VCI� approach
should be mentioned.

The aim of the present work is twofold. First ideas fa-
cilitating a particularly efficient description of double well
systems within the MCTDH approach are presented and dis-
cussed. In this context, the methods used in previous work27

are described in full detail. Moreover, further improvements
in the theoretical concept are presented. Recent develop-
ments in MCTDH techniques,34 which can be utilized to fur-
ther improve the efficiency of the calculations, are incorpo-
rated into the approach. While MCTDH calculations
presented in the previous communication27 have been re-
stricted to the computation of the ground state tunneling
splitting, these developments now increase the efficiency of

the MCTDH calculation sufficiently to also facilitate calcu-
lations of the tunneling splittings of low lying vibrationally
excited states.

The investigation of the tunneling splittings of vibra-
tionally excited states is the second major aim of the present
work. Rigorous full-dimensional quantum dynamics calcula-
tions on these quantities are published for the first time.
Since the POITSE DMC calculations, which provided data
of superior accuracy for the ground state tunneling splitting,
cannot be used to compute excited state tunneling splittings,
the development of the efficient MCTDH techniques has
been particularly important in this context. Based on these
results, the dependence of the tunneling splitting on the par-
ticular vibrational mode excited is discussed. While the in-
accuracies of the particular PES employed might still limit
the quantitative accuracy of the computed data, the ground
state tunneling splitting on this PES deviates by about
4 cm−1 or 20% from the accurate �experimental� value, the
conclusions drawn can be expected to be valid on an at least
semiquantitative level.

The article is organized as follows: In Sec. II the
MCTDH method is reviewed. The two different approaches
for the calculation of eigenstates used in the previous
communication27 and in the present work are described. Sec-
tion III discusses the difficulties arising when treating sym-
metric double well systems within the MCTDH approach
and presents two different approaches for their solution. Sec-
tion IV details the system description and the specifics of the
MCTDH calculations. The results are presented in Sec. V
and discussed in Sec. VI. The article closes with a conclu-
sions and perspectives section.

II. CALCULATION OF VIBRATIONAL STATES USING
MCTDH

A. MCTDH

The MCTDH method �Refs. 30 and 31� has proven to be
an efficient approach for the quantum dynamical description
of high-dimensional systems.35–38 The method is based on
the following ansatz:

��x1, . . . ,xf,t� = �
j1=1

n1

¯ �
j f=1

nf

Aj1,. . .,j f
�t��

�=1

f

� j�
����x�,t� . �1�

The correlated multidimensional wave function is repre-
sented employing time-dependent expansion coefficients
Aj1,. . .,j f

and a basis of time-dependent single-particle func-
tions �SPFs� �i

���. The time-dependent �one-dimensional�
SPFs are represented on an underlying time-independent ba-
sis or grid using, e.g., a discrete variable representation39–41

�DVR� or fast Fourier transform42 �FFT� techniques. Equa-
tions of motion are derived employing the Dirac–Frenkel
variational principle. The correlation DVR �CDVR�
scheme43 can be employed to calculate potential energy ma-
trix elements appearing in the equations of motion for arbi-
trary potentials.

The calculation of vibrational states within the MCTDH
approach is based on propagation in imaginary time. In the
previously communicated work on the malonaldehyde
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system27 and in the present work, two different schemes have
been employed. An approach based on an iterative Lanczos-
type diagonalization44 has been used in the older calculations
while a more recently developed scheme based on simulta-
neous relaxation of a set of wave functions34 is used for the
present calculations. Since the present article intends to de-
scribe the underlying theory of MCTDH calculations for
double well systems used in the previous communication as
well as in the new present calculations, both approaches will
be briefly described in Secs. II B and II C to provide a proper
basis for the further discussion.

B. Iterative Lanczos-type diagonalization

In the iterative diagonalization approach,44 an orthonor-
mal basis ���0	 , . . . , ��M	
 is constructed by the recursion

��m	 = C�e−�Ĥ��m−1	 − �
i=0

m−1

P̂��i	�i� . �2�

Here C is a normalization constant and P̂ is a projector on
the space spanned by the SPFs of the wave function

e−�Ĥ��m−1	. Within the above recursion, the action of e−�Ĥ is
evaluated using the MCTDH propagation in imaginary time
for a time interval given by the parameter �. The �i are
obtained by solving a system of linear equations,

P̂� j�e−�Ĥ�m−1	 = �
i=0

m−1

P̂� j�P̂�i	�i, j = 0, . . . ,m − 1.

�3�

Starting with an initial wave function ��0	, Eq. �2� is used to
generate a set of wave functions ���0	 , . . . , ��M	
. Then, the

e−�Ĥ operator is diagonalized in this basis to obtain eigenval-
ues and eigenfunctions of the Hamiltonian. The procedure
can be repeated with increased values of M until conver-
gence for the required number of eigenstates is reached. A
more detailed description of the approach discussing also the
relation to other theoretical approaches is given in Ref. 44.

This scheme has been successfully applied to the calcu-
lation of small to moderate numbers of vibrational states and
has been used in previous work on malonaldehyde.27,44,45

Difficulties arise when large numbers of states need to be
calculated since the corresponding large number of iterations
typically requires increasingly large SPF bases. Since the
computational effort scales approximately proportional to the
number of configurations in the SPF basis, the number of
accessible states is very limited. Due to these limitations, in
our previous study27 only the ground state tunneling splitting
could be calculated accurately.

C. Block relaxation of state-averaged MCTDH wave
functions

While the iterative Lanczos-type diagonalization ap-
proach strongly restricts the number of accessible vibrational
states, the recently introduced state-averaged MCTDH
approach34 enables the calculation of larger numbers of vi-

brational states. Within this approach, a set of multiple wave-
packets is described within a common SPF basis. The wave-
function ansatz reads

�m�x1, . . . ,xf,t� = �
j1=1

n1

¯ �
j f=1

nf

Aj1,. . .,j f,m
�t��

�=1

f

� j�
����x�,t�,

m = 1, . . . ,npacket. �4�

Here npacket wave functions labeled �m are represented. As in
Eq. �1�, the Aj1,. . .,j f,m

denote time-dependent expansion coef-
ficients and the � j�

��� denote time-dependent SPFs. Comparing
to Eq. �1�, the expansion coefficients Aj1,. . .,j f,m

show an ad-
ditional index m that specifies the corresponding wave func-
tion �m. The SPFs do not carry such an additional index
since the state-averaged MCTDH approach employs a single
common basis of SPFs � j�

���.
Representing multiple wave functions within a common

set of SPFs has several advantages. In comparison to mul-
tiple separate calculations involving only a single wave-
packet, the numerical effort of a MCTDH calculation can be
reduced. The savings in numerical effort can be quite signifi-
cant in calculations employing the CDVR scheme to evalu-
ate potential energy matrix elements. Another advantage is
particularly important for the calculation of eigenstates: As
different wave functions are represented in the same SPF
basis in the state-averaged MCTDH approach, linear combi-
nations of the wave functions can be computed efficiently
and a scheme to calculate vibrational eigenstates based on
block relaxation can be devised.34 This approach is based on

repeated steps which consist of an application of the e−�Ĥ

operator on the state-averaged MCTDH wave function fol-
lowed by a subsequent orthonormalization of the resulting
sets of wave functions.

The detailed scheme works as follows: Starting from an
initially chosen set of wavepackets represented within the
state-averaged MCTDH ansatz, an iteration sequence is

started. In an iteration step, first the e−�Ĥ operator is applied,
i.e., an imaginary time propagation is performed. Then the
resulting set of wave functions is Gram–Schmidt orthonor-
malized. The matrix representation of the Hamiltonian opera-
tor in this basis is constructed and diagonalized. Concluding
the iteration step, the resulting eigenvectors are then used to
transform the set of states to their �approximate� eigenstate
representation. These iteration steps are repeated until con-
vergence is reached.

With this new scheme, larger numbers of vibrational
states can be calculated. Thus, this new scheme is found
superior to the previously employed Lanczos-type iterative
diagonalization approach and is employed in the new calcu-
lations presented here. A more detailed description of the
approach discussing its efficiency and its relation to other
approaches is given in Ref. 34.

III. SYMMETRIC PROTON TRANSFER

A. General ideas

Although the MCTDH approach is designed for the
treatment of high-dimensional systems, malonaldehyde with
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its 21 internal degrees of freedom still posts a significant
challenge. However, the symmetry of the symmetric proton
transfer system can be utilized to increase the efficiency of
the MCTDH treatment. To illustrate the underlying idea, Fig.
1 shows a two-dimensional plot of a double well system
considering the reaction coordinate and a coupled antisym-
metric coordinate. The figure indicates a minimal basis in the
coupled antisymmetric coordinate �SPFs could be obtained
by orthogonalization of the depicted functions� required to
represent the ground state wave function for this system.
Since the ground state is localized equivalently in both wells,
at least two different SPFs are required in either of the two
coordinates to describe the wave function qualitatively cor-
rect. At this point one should remember that the numerical
effort of a MCTDH calculation scales approximately propor-
tional to the number of configurations: The numerical effort
is approximately proportional to nf if n SPFs are used in each
of the f degrees of freedom. Thus, for a symmetric double
well system with f −1 coordinates coupled to the reaction
coordinate in the way described above, the resulting number
of configurations in the minimal basis would be 2 f. Taking
f =21 as the simplest possible estimate �malonaldehyde has
21 internal degrees of freedom�, an estimate for the lower
boundary of the number of configurations required for a
qualitatively meaningful description amounts to 221

=2 097 152. Thus, a quantitatively correct description of the
malonaldehyde system clearly could not be achieved using
such a straightforward approach.

At this point it is important to note that the above de-
scribed problem can partially be avoided by utilizing the
symmetry present in symmetric double well systems. The
eigenfunctions of the system Hamiltonian are pairs of sym-
metric and antisymmetric states. Each eigenfunction � can
be decomposed in two terms dominantly localized on the
“left” and “right” sides of a dividing surface which sym-
metrically splits the double well system,

� = �l + �r . �5�

�l and �r denote the left and right parts of the wave function
which are mirror images of each other,

�r = � R̂�l . �6�

Here R̂ denotes the operator corresponding to a reflection
with respect to the dividing surface. The splitting of � into �l

and �r is based on an intuitive physical picture. Different
detailed definitions could be used. A definition resulting in
separation into orthogonal components can be achieved by
introducing a function h which acts as projection operator: h
equals unity on the right side of the dividing surface and
vanishes on the left one. Then the �l and �r would be defined
as

�r = h� ,

�7�
�l = �1 − h�� .

An approximate or complete separation of the wave function
� into two localized components greatly simplifies the scal-
ing problem discussed above. Consider a function �r which
is localized in the right well of Fig. 1. The minimal SPF basis
required to qualitatively describe this function would require
only one SPF per coordinate. Thus, the fundamental scaling
problem discussed above for the representation of the delo-
calized wave function � can be avoided if only the represen-
tation of localized wave functions �l or �r within the
MCTDH approach is required. The modifications required to
utilize the symmetry considered above in the two methods
described in Sec. II are discussed in Secs. III B–III D.

B. Symmetry-adapted iterative diagonalization

In the iterative Lanczos-type diagonalization approach
that has been used in the previous communication,27 the re-
cursion relation is modified to exploit the symmetry. Starting
from an arbitrary wave-function ��0	 dominantly localized in

the right well and its mirror image ��1	= R̂��0	, the modified
Lanczos-type recursion relations used to build the diagonal-
ization subspace read

��2m	 = C�e−�Ĥh��2m−2	 − �
i=0

2m−1

P̂��i	�i� , �8a�

��2m+1	 = R̂��2m	 , �8b�

where the reflection operator R̂ and the Heaviside function h
have been defined in Sec. III A. Within this modified proce-
dure, one �modified� Lanczos-type iteration produces ap-
proximations to two eigenfunctions and associated eigenval-
ues. Because the functions �2m and �2m+1 are nonorthogonal,
a general eigenvalue solver is used for the diagonalization
step.

Adding the projection operator h before the imaginary
time propagation enforces the propagated wavepacket

e−�Ĥh� to be mainly localized in one well only. Thus, �2m is
dominantly localized in the right well. Consequently, the set
of wave functions ��0 ,�2 ,�4 , . . .
 generates a basis to repre-
sent a wave function �r mainly localized on the right side of
a dividing surface. �2m+1 is the mirror image of �2m and thus
dominantly localized in the left well. Therefore the set of
wave functions ��1 ,�3 ,�5 , . . .
 generates a basis to represent
a wave function �l mainly localized on the left side of a
dividing surface. It should be noted that the wave functions
of the mirror images �2m+1 do not need to be calculated or
stored explicitly, but can always be computed “on the fly” by

FIG. 1. Contour plot of the PES of malonaldehyde for a two-dimensional
cut along the reaction coordinate �Q21� and an important antisymmetric co-
ordinate �Q5�. An intuitive �nonorthogonal� basis required to qualitatively
describe the dynamics in the antisymmetric coordinate is indicated.
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acting with the reflection operator R̂ on the �2m. Conse-
quently only wave functions of the �r-type have to be explic-
itly represented and an efficient MCTDH description can be
achieved.

C. Flux operator and symmetry-adapted Hamiltonians

Section III B explained how the symmetry of the double
well system has been exploited in the calculation presented
in the previous communication.27 In the calculations pre-
sented here an improved scheme has been employed. First,
block relaxation of state-averaged MCTDH wave functions
�as described in Sec. II C� has been used instead of the
Lanczos-type iterative diagonalization. This change facili-
tated the calculation of tunneling splittings of vibrationally
excited states which could not be achieved previously. Sec-
ond, the simple scheme to utilize the symmetry described
above �Sec. III B� would not work as well in this new meth-
odological context. A more robust scheme to exploit the
symmetry has therefore been developed and is presented in
the following.

To develop an efficient approach which utilizes symme-
try considerations in the state-averaged MCTDH scheme of
Sec. II C, it is helpful to first revisit the representation of the
Hamiltonian operator employed. In Sec. III A, the eigen-
states of the Hamiltonian in symmetric double well systems
have been expressed as a sum of two symmetry related parts,
see Eqs. �7� and �6�. In a similar way the Hamiltonian can be
decomposed,

Ĥ = hĤh + hĤ�1 − h� + �1 − h�H�1 − h� + �1 − h�Hh

= hĤh + ihF̂ + �1 − h�Ĥ�1 − h� − i�1 − h�F̂ , �9�

where F̂= i�Ĥ ,h� is the flux operator. Multiplying Eq. �9�
from the left with h and using the identity hF̂=hF̂�1−h� one
obtains

hĤ� = hĤh� + ihF̂�1 − h�� . �10�

Considering wave functions � which are either symmet-
ric or antisymmetric and are denoted as �=�+ or �=�−,

respectively, Eq. �6� implies R̂h�+= �1−h��+ and R̂h�−

=−�1−h��−. For these wave functions the above equation
can be rewritten as

hĤ�+ = hĤh�+ + ihF̂R̂h�+,

�11�
hĤ�− = hĤh�− − ihF̂R̂h�−.

These equations motivate the definition of the new Hamil-

tonian operators Ĥ+ and Ĥ−,

Ĥ+ ª hĤh + ihF̂R̂h , �12a�

Ĥ− ª hĤh − ihF̂R̂h . �12b�

The eigenstates of these new Hamiltonians are the projec-
tions h�+ and h�− of the eigenstates �+ and �− of the full

Hamiltonian Ĥ, respectively,

Ĥ+h�+ = Ĥ+�+ = hĤ�+ = E+h�+,

�13�
Ĥ−h�− = Ĥ−�− = hĤ�− = E−h�−.

Here E+ and E− denote the corresponding eigenenergies of
the states �+ and �−, respectively. Since the wave functions
h�+ and h�− are localized on the right side of the dividing
surface, they can be efficiently represented within the

MCTDH approach and calculating the eigenstates of Ĥ+ and

Ĥ− avoids the scaling problems discussed in Sec. III A.

D. A state-averaged MCTDH approach for double well
problems

Based on the Ĥ+ and Ĥ− operators introduced in Sec.
III C, one could straightforwardly compute the symmetric
and antisymmetric eigenstates separately. However, if the
calculation of tunneling splittings is the major aim, the si-
multaneous calculation of symmetric and antisymmetric
states using a common basis of SPFs is preferable since it
offers a balanced description of symmetric and antisymmet-
ric states. Consequently one can expect that such a treatment
shows a favorable cancellation of errors when computing the
tunneling splittings.

To facilitate the simultaneous calculation of symmetric
and antisymmetric eigenstates, a new Hamiltonian operator
is introduced. This Hamiltonian depends on an additional
degree of freedom Qf+1 which can only take two discrete
values. This additional discrete degree of freedom formally
takes the same role as an electronic state index in a quantum
dynamics calculation on two vibronically coupled PESs.
Here, however, it will be used to denote whether a wave
function is either symmetric or antisymmetric. Using a
matrix-vector representation to specify the dependence on
this additional degree of freedom, symmetric and antisym-
metric wave functions are written as

�+ = ���Q1,Q2, . . . ,Qf,1,t�
0

� �14a�

and

�− = � 0

��Q1,Q2, . . . ,Qf,2,t�
� . �14b�

Consequently the complete Hamiltonian reads in this nota-
tion as

Ĥ = �Ĥ+ 0

0 Ĥ−

� . �15�

It should be noted that this Hamiltonian is diagonal since the
symmetric and antisymmetric wave-function subspaces are
uncoupled.

The Hamiltonian is then employed in the state-averaged
MCTDH calculations as described in Sec. II C. To guarantee
a balanced description of symmetric and antisymmetric
eigenstates, identical numbers of wave functions in the sym-
metric and antisymmetric subspaces are used.
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IV. SYSTEM DESCRIPTION AND NUMERICAL
DETAILS

Transition state normal mode coordinates Q are used to
describe the malonaldehyde molecule. The normal mode co-
ordinates and their respective frequencies are given in Table
I. These coordinates are properly adapted to the symmetry of
the double well system. Each coordinate can be characterized
as being symmetric or antisymmetric with respect to the re-
flection, facilitating an easy implementation of the reflection
operator.

To further reduce the correlation between the reaction
coordinate and the other coordinates, a slightly transformed

set of coordinates Q̃ is employed in dynamics calculations,

Q̃21 = Q21,

�16�
Q̃j = Qj − Fj�Q21�, j = 1, . . . ,20,

where the functions Fj�Q21� are defined as

Fj�Q21� =
�Q21

2 + �

Q21
�eq� Qj

�eq�, for symmetric Qj ,

�17�

Fj�Q21� =
Q21

Q21
�eq�Qj

�eq�, for antisymmetric Qj .

Here Qj
�eq� denotes the equilibrium value in mode Qj, for

which one of the two possible minima has to be chosen. � is
a regularization parameter, guaranteeing a smooth shape of
the Fj functions. With this choice of Fj the coordinates

Q̃1 , . . . , Q̃20 approximately vanish along the reaction path of
the proton transfer.

Neglecting the vibrational angular momenta �see com-
ment and references of our previous work27,28 and the spe-
cific results for malonaldehyde presented in Ref. 1 for the
adequateness of this approximation�, the kinetic energy op-
erator in transition state normal mode coordinates reads

T̂ = −
1

2�
i=1

21
�2

�Qi
2 . �18�

Transforming the coordinate system according to Eq. �16�
then yields the kinetic energy operator

T̂ = −
1

2��
i=1

21
�2

�Q̃i
2

+ �
i,j=1

20

Fi��Q̃21�Fj��Q̃21�
�2

�Q̃i�Q̃j

− �
j=1

20 �Fj��Q̃21�
�

�Q̃21

+
�

�Q̃21

Fj��Q̃21�� �

�Q̃j

� , �19�

with Fj��Q21�=dFj /dQ21. �Please note that the corresponding
formula in our communication27 included a typo�. This ki-
netic energy operator is used in the present quantum dynam-
ics calculations. Note that no change in the volume element
results from transformation �16�.

The PES of Yagi et al.24 is employed. To reduce the
numerical effort of the calculations, a modified implementa-
tion of the Shepard interpolation employed by the PES has
been used. The changes have been confirmed to not alter any
computed potential energy values relevantly and are de-
scribed in detail in the Appendix.

TABLE I. Grid sizes Ni of DVR and FFT representations, numbers of SPFs ni employed in the reference and
production MCTDH bases, normal mode frequencies, and a short description of the dominant type of motion for
all coordinates �OOP and IP denote out-of-plane and in-plane motions; symmetry labels with respect to the C2v

symmetry of the transition state are given�.

Q̃i Ni

ni
Frequency

�cm−1� Type of motionReference Production

1 12 1 1 3344 �-HC stretch �A1�
2 12 1 2 3196 �-HC stretch �A1�
3 12 1 2 3196 �-HC stretch �B2�
4 16 2 2 1907 Transfer H bend IP �A1�
5 16 2 2 1724 Ring deformation+transfer H IP �B2�
6 12 1 1 1698 CO stretch IP �A1�
7 12 1 1 1544 Ring deformation+�-HC IP bend �B2�
8 12 1 1 1408 �-HC IP bend �A1�
9 12 1 1 1374 �-HC IP bend �B2�
10 18 3 4 1314 Transfer H OOP bend �B1�
11 12 1 1 1139 �-HC IP bend �B2�
12 12 1 1 1097 CC stretch �A1�
13 16 2 2 1058 �-HC symmetric OOP bend �A2�
14 16 2 2 968 �-HC symmetric OOP bend �B1�
15 18 1 2 953 Ring deformation �A1�
16 16 2 2 778 �-HC OOP bend �B1�
17 24 4 5 629 Ring deformation �A1�
18 16 3 3 576 Ring deformation �B2�
19 24 4 4 384 Antisymmetric �-HC /CO OOP bend �A2�
20 48 4 4 356 �-HC symmetric OOP bend �B1�
21 64 5 6 1284i H transfer IP �B2�
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Vibrational states have been calculated using the proce-
dure described in Sec. III D. Imaginary time steps of �
=100 a.u. have been employed. The SPFs are represented

numerically using a FFT scheme in coordinate Q̃21 and Her-
mite DVR schemes for the remaining modes. The grid sizes
are shown in Table I. For the integration of the MCTDH
equations of motion, a constant mean field �CMF� integration
scheme46 is used. Specifically, the CMF2 scheme of Ref. 47
is applied here. The CDVR approach43 is used to evaluate the
potential energy matrix elements.

V. RESULTS

First, basic features of the calculations should be out-
lined. The schemes presented in Secs. II C and III D are
based on iteration steps which consist of an imaginary time
propagation for a time interval �t= i� followed by a subse-
quent Gram–Schmidt orthonormalization of the resulting set
of wavepackets. The initial set of wavepackets at the start of
the iteration sequence chosen in the present calculations con-
sisted either on a guess based on a single harmonic oscillator
model or, if available, the result of previous calculations us-
ing a small SPF basis. A typical convergence plot for a set of
16 simultaneous wavepackets based on an initial harmonic
oscillator guess is shown in Fig. 2. There the convergence of
energy versus the total propagation time is plotted, thus, the
number of iterations is given by this total propagation time
divided by �.

As can be seen in the figure, convergence occurs from
bottom to top, i.e., the low lying eigenstates converge first
and the higher ones last. This type of convergence is typical.
The figure also shows that only at the beginning of the
propagation the energy levels occur in pairs separated by
relatively small energy differences. At later times, assigning
pairs of states split by tunneling just based on energies be-
comes problematic. However, to calculate tunneling split-
tings, corresponding symmetric and antisymmetric states
have to be identified. For this purpose, the wave functions of

the calculated states had to be analyzed to identify the type
of vibrational excitation. In the calculations presented below,
for each type of excitation a pair consisting of symmetric and
antisymmetric states could be uniquely identified, and the
corresponding tunneling splitting could be calculated.

In order to obtain accurate results for tunneling splittings
of vibrational states, the underlying SPF basis had to be con-
verged. Due to the numerical effort, the SPF basis size had to
be carefully adjusted and could not be arbitrarily enlarged.
The convergence tests proceeded in two steps. First, a refer-
ence basis had to be determined, which allows a qualitatively
correct description of the states under consideration.

In determining a suitable reference basis, two points are
important. First, the number and type of excited states to be
calculated has to be determined. To a first approximation,
each excitation in a particular mode requires an additional
SPF in that mode. In this study, the lowest six �split� excited
vibrational states of malonaldehyde are investigated in detail.
Through test calculations it is found that the lowest six pairs

of states correspond to single excitations in modes Q̃17, Q̃18,

Q̃19, and Q̃20, a simultaneous excitation in modes Q̃17 and

Q̃19, and to a double excitation in Q̃17. An additional pair of

states, corresponding to a double excitation in mode Q̃19, has
been included in the calculations performed. However, the
tunneling splitting of this seventh pair was found to be quite
small �in the range of 5 cm−1� and could not be converged
with suitable accuracy. We therefore decided to not report
detailed results for this pair of states. The second point to
consider is that the proton tunneling motion is a truly multi-
dimensional process. Besides the proton transfer coordinate
Q21 a number of other modes also contribute strongly to the
tunneling motion and thus have to be described particularly
accurate. The normal modes contributing most strongly to
the ground state splitting have also been determined in test
calculations and have already been described in the previous

communication.27 These include the in-plane modes Q̃4, Q̃5,

Q̃17, and Q̃21, and the out-of-plane modes Q̃10, Q̃13, Q̃14, Q̃16,

Q̃19, and Q̃20. Based on these considerations and tests,
the reference basis has been chosen as
2152041941831741621421321035242. Here the notation �ii

ni is

used to denote all modes Q̃i which are described using ni

	1 SPFs. Modes Q̃j described by a Hartree approximation,
i.e., nj =1, are not explicitly listed.

Vibrational energy levels calculated within this basis are
given in Table II. A schematic representation of the levels is
shown in Fig. 3. The excited states obtained include single

and double excitations in modes Q̃17 and a single excitation

in Q̃19, corresponding to a symmetric ring deformation and
an antisymmetric out-of-plane CH bending motion, respec-

tively. Single excitations are found in modes Q̃20 and Q̃18,
corresponding to a symmetric out-of-plane bend and an in-
plane ring deformation, respectively. A combined excitation

of modes Q̃17 and Q̃19 is also found. See Fig. 4 for represen-
tations of the corresponding normal mode displacements.
Two immediate conclusions can be drawn from these results.
First, as can be seen in Fig. 3, the tunneling splittings depend

15000

15500

16000

0 2000 4000 6000 8000 10000 12000

E
[c

m
-1

]

imaginary time [a.u.]

FIG. 2. Vibrational energy levels as a function of the total imaginary propa-
gation time. 16 wavepackets and an iteration step length of �=100 a.u.
have been used in the calculation.
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significantly on the type of vibrational excitation. The large
differences in the splittings are remarkable. Second, with ris-
ing energy the labeling of the levels becomes less obvious.
This is due to the rapidly increasing density of states and the
strong dependence of the splitting on the type of vibrational
excitation.

In the second step, additional convergence tests extend-
ing the reference basis have been performed. In these tests,
the SPF basis is kept unchanged in all degrees of freedom
except in a single mode or a single group of modes. Several
modes have to be considered as groups since the different
modes in the group are highly correlated. The basis size in
each particular mode or group of modes is then increased
until convergence is reached.

Tables III and IV show the convergence of the tunneling
splittings with the SPF basis size. In addition to the tunneling
splittings and the zero point energy �ZPE�, the lowest natural
population of the SPFs in the mode under consideration is
given. The natural populations31 of the SPFs in a particular
mode give an indication about the quality of the wave-
function representation in that mode. For the groups of
modes, the largest value of the lowest natural populations of
the different modes in the group is given.

Considering the series in the five lowest frequency
modes given in Table III, most of the tunneling splittings
have been converged with an accuracy of approximately

1%–2%. An exception is found in mode Q̃20, where the split-
tings in the excited states 171, 171191, and 172 do not con-
verge as smoothly as in the remaining modes. Increasing the
SPF basis size in this mode beyond six SPFs gives no reli-
able results due to strong numerical noise in the iteration
procedure. Thus, a relatively large contribution of 5%–7% to

the overall error remains in the states with excitation in Q̃17.
The results for the higher frequency modes are shown in

Table IV. The out-of-plane modes Q̃10, Q̃13, Q̃14, Q̃16 and the

in-plane modes Q̃4 and Q̃5 can be seen to correlate most

strongly with the reaction coordinate Q̃21. In these modes the
Hartree approximation yields significant errors already for
the ground state tunneling splitting. Additional SPFs for
these modes have already been included in the reference ba-
sis. The inspection of the excited state tunneling splitting

shows that additional SPFs are also required in modes Q̃2,

Q̃3, Q̃10, and Q̃15. These have been included in the produc-

tion basis. The convergence series in modes Q̃2 and Q̃3 is
based on a slightly enlarged reference basis. Within this se-
ries an additional SPF has been added to the reference basis

in Q̃15. Using the unmodified reference basis, a Fermi reso-

TABLE II. ZPE and vibrational excitation energies �in units of cm−1� of
malonaldehyde. Results for the reference and production SPF bases �see
Table I� are shown.

Vibrational level

Reference basis Production basis

Energy Splitting Energy Splitting

0+ 15 210 15 185
0− 23 23.0 23 23.3
17+

1 240 196
17−

1 302 61.3 258 62.1
19+

1 311 302
19−

1 326 14.7 314 12.4
20+

1 421 415
20−

1 430 9.2 421 6.0
17+

2 503 414
17−

2 607 104.0 514 99.2
18+

1 550 553
18−

1 568 17.9 570 16.9
�191171�+ 555 506
�191171�− 599 43.8 545 38.9

FIG. 3. Vibrational energy levels of malonaldehyde calculated with the
reference SPF basis.

FIG. 4. Selected transition state normal modes in malonaldehyde: the hy-

drogen transfer mode Q̃21, the in-plane modes Q̃18 and Q̃17, and the out-of-

plane modes Q̃20 and Q̃19.
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nance appears if more than one SPF in Q̃2 and Q̃3 is used.
This Fermi resonance disappears again if the basis is in-

creased in Q̃15. Thus, it is an artifact of an insufficiently sized

SPF basis. To avoid unphysical behavior in the Q̃2 and Q̃3

convergence series, a larger SPF basis in Q̃15 had to be used
here. The resulting number of SPFs used in the production
calculation is summarized in Table I.

Based on the convergence studies for the different modes
or groups of modes, the degree of convergence achieved in
the final production calculation can be estimated. To this end,
the accuracies of the tunneling splittings obtained in each of
the convergence series are summarized in Table V. The table
shows for each convergence series the differences between
the tunneling splittings calculated with the largest SPF basis
size and the size chosen for production. The differences in
the individual series are typically only a few percent and the
maximum errors seen for the tunneling splittings of the
ground and vibrationally excited states, �0, �171, �191, �201,
�181, �191171, and �172, are 3%, 6%, 7%, 15%, 4%, 7%, and
7%, respectively.

However, since malonaldehyde has 21 internal coordi-
nates and 14 individual convergence series have been stud-
ied, a careful investigation of the total convergence error has
to consider the question of error accumulation. Therefore the
sum of the errors of all individual convergence series, �i
i,
and the root of the sum of squares, ��i
i

2, are also given in
Table V. These two numbers indicate how errors in the indi-
vidual convergence series might accumulate. �i
i gives an
estimate for the improvement which would be achieved by a
MCTDH calculation with one additional SPF in each coor-
dinate. While �i
i indicates whether errors obtained from the

individual convergence series show a common direction,
��i
i

2 measures the error which would be expected if the
individual convergence errors would be randomly oriented.

Since the �i
i and ��i
i
2 for the tunneling splittings are

of roughly comparable size, a strong common trend of all
convergence errors in one direction does not seem to be
present. The relative accuracies obtained for the larger tun-
neling splitting is higher than for the smaller ones: While a
10% accuracy estimate for the computed values of the larger
tunneling splittings seems reasonable, the error estimate in-
creases up to 20% for the value of the smallest tunneling
splitting �201.

For the computed ZPE, almost all convergence errors of
the individual convergence series point in the same direction:
Increasing the SPF basis almost always decreases the ZPE.
This is an obvious consequence of the variational nature of
the MCTDH approach. Increasing the SPF basis improves
the description of the ground state wave function and there-
fore results in a smaller ZPE value computed. While the
inherent error compensation build into the theoretical scheme
for computing the tunneling splitting facilitates more rapid
convergence of the computed tunneling splittings with the
SPF basis size, the computation of an accurate value of the
ZPE requires a large SPF basis set until convergence to the
same absolute accuracy is achieved. The similar tendency
can also be seen when comparing the accuracy of the com-
puted absolute vibrational excitation energies and tunneling
splittings. In Table II, differences between results obtained
with the reference SPF basis and the production SPF basis
are significantly larger for the absolute energies than for the
tunneling splittings.

TABLE III. Tunneling splittings and zero point energies �in units of cm−1� of malonaldehyde. The reference basis �see Table I� has been used, with varying

numbers of SPFs in modes Q̃i �the lines where ni equals the value taken in the production basis are shown in bold face�. The rightmost column shows the
lowest natural SPF population in the corresponding mode.

Mode i ni �0 �171 �191 �201 �181 �191171 �172 ZPE SPF population

Q̃21
4 23.9 73.3 15.2 10.6 17.9 53.0 130.0 15 214 5�10−3

5 23.0 61.3 14.6 9.2 17.8 43.4 103.2 15 210 8�10−4

6 23.1 63.4 14.4 9.4 17.6 45.0 103.4 15 214 2�10−4

7 23.3 63.2 14.7 9.5 17.3 45.1 103.3 15 212 6�10−5

Q̃20
2 22.3 65.1 15.4 10.0 16.6 51.1 110.1 15 213 1�10−1

3 21.8 64.4 15.2 5.5 17.4 46.8 116.3 15 203 5�10−3

4 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 9�10−4

5 22.8 65.1 14.9 9.3 17.7 46.5 111.3 15 209 5�10−4

Q̃19
3 24.1 60.5 14.2 9.5 18.5 43.5 104.5 15 211 9�10−2

4 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 2�10−3

5 23.3 60.9 14.6 9.4 18.0 42.3 102.3 15 214 2�10−4

Q̃18
2 23.3 60.7 14.8 9.3 18.3 43.5 103.5 15 211 1�10−1

3 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 2�10−3

4 22.9 60.9 14.6 9.1 17.4 43.2 103.6 15 212 9�10−5

Q̃17
3 23.6 63.8 14.7 9.4 18.0 48.1 131 15 212 4�10−2

4 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 3�10−3

5 23.8 63.8 14.8 9.5 18.0 45.5 102.1 15 214 4�10−4

6 23.7 63.6 14.9 9.5 18.2 45.2 102.1 15 214 4�10−6
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VI. DISCUSSION

The results presented in Sec. V show that the size of the
tunneling splitting strongly depends on the type of vibra-
tional excitation. A simple semiclassical picture can be used
to straightforwardly explain these findings. If an excited vi-
brational motion can result in a simultaneous shortening of
both O–H distances, then the effective barrier for tunneling is
�temporarily� decreased and the tunneling is dynamically en-
hanced. An increase in the tunneling splitting upon excitation
of this vibrational mode is the consequence. Oppositely, if an
excited vibrational motion always increases both O–H dis-
tances, the effective barrier for tunneling is only increased
and a decrease in the tunneling splitting upon excitation fol-
lows.

As a basis for the following detailed discussion, the rel-
evant transition state normal coordinates are displayed in
Fig. 4. Now the detailed investigation can start with the low-
est vibrationally excited pair of states. These states contain

one quantum of excitation in normal mode Q̃17. As seen in
Fig. 4, this mode corresponds to a symmetric ring opening/
closing. This vibrational motion modulates the O–O distance

and simultaneously decreases/increases both O–H distances.
It is therefore expected to significantly increase the tunneling
splitting. This expectation is in perfect agreement with the
computed results. A pronounced increase in the computed
tunneling splitting, �171 =62.1 cm−1, compared to the ground
state tunneling splitting, �0=23.3 cm−1, is found. Moreover,
a further increase in the tunneling splitting is found if a sec-
ond quantum of excitation is set into this mode: �172

=99.2 cm−1. Similarly, the tunneling splitting of the vibra-

tional states with a combined excitation in modes Q̃17 and

Q̃19 ��171191 =38.9 cm−1� is significantly larger than the split-

ting of the vibrational states with excitation in mode Q̃19

only ��191 =12.4 cm−1�.
Beside the excitation in mode Q̃17, also vibrational exci-

tations in modes Q̃18, Q̃19, and Q̃20 are found for the vibra-
tionally excited states studied. None of these three vibra-
tional modes can result in a significant or simultaneous
shortening of both O–H distances. The two out-of-plane

modes Q̃19 and Q̃20 always increase both O–H distances, this

effect being more pronounced in Q̃20 than in Q̃19. Conse-

TABLE IV. Tunneling splittings and zero point energies �in units of cm−1� of malonaldehyde. The reference basis �see Table I� has been used, with varying
numbers of SPFs in the different groups of modes �the lines where ni equals the value taken in the production basis are shown in bold face�. The rightmost
column shows the lowest natural SPF population.

Mode i ni �0 �171 �191 �201 �181 �191171 �172 ZPE SPF population

Q̃13 , Q̃14 , Q̃16
1 26.5 66.2 17.9 12.6 22.1 53.2 116.7 15 208 1
2 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 8�10−3

3 23.6 61.9 14.4 9.5 17.8 44.1 107.0 15 209 4�10−4

Q̃15
1 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 1
2 22.6 58.5 13.6 8.2 16.0 41.2 99.2 15 202 3�10−2

3 22.5 57.8 13.6 8.1 16.1 40.7 98.3 15 200 6�10−4

Q̃11 , Q̃12
1 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 1
2 22.9 61.3 14.4 8.9 17.3 43.3 104.9 15 206 3�10−3

Q̃10
2 20.7 60.5 13.8 9.0 15.8 42.7 104.7 15 213 1�10−2

3 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 3�10−3

4 22.0 62.2 14.8 9.4 17.0 45.8 108.2 15 206 4�10−4

5 21.8 61.4 14.3 9.4 16.6 44.9 108.4 15 204 2�10−4

Q̃8 , Q̃9
1 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 1
2 23.8 60.6 13.8 10.1 17.9 40.9 101.1 15 195 9�10−3

Q̃6 , Q̃7
1 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 1
2 23.0 61.1 14.5 8.7 17.4 42.6 106.0 15 198 3�10−3

Q̃4 , Q̃5
1 29.5 76.8 19.1 11.7 24.8 55.6 124.2 15 275 1
2 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 2�10−2

3 23.6 63.7 14.5 9.0 18.0 45.4 107.8 15 210 7�10−4

Q̃2 , Q̃3
a 1 22.6 58.5 13.6 8.2 16.0 41.2 99.2 15 202 1

2 22.7 60.0 11.4 6.0 14.9 37.0 101.7 15 188 4�10−3

3 23.0 60.1 11.4 5.9 14.9 37.6 102.0 15 189 7�10−5

Q̃1
1 23.0 61.3 14.7 9.2 17.9 43.8 104.0 15 210 1
2 23.1 61.9 14.4 8.9 17.7 43.2 103.3 15 203 2�10−3

aAn additional SPF in mode Q̃15 has been added to the reference basis here �see text�.
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quently, a decrease in the computed tunneling splitting can
be observed for the vibrational states 191 and 201. The split-
ting �201 =6.0 cm−1 is even smaller than �191 =12.4. The in-

plane mode Q̃18 results in an asynchronous change in the two
O–H distances with a seemingly slight net increase in the
averaged O–H distance. The computed slight decrease in the
tunneling splitting, �181 =16.9 cm−1, compared to the ground
state tunneling splitting, �0=23.3 cm−1, fits well into this
picture.

Some results of the present calculations can be compared
to other theoretical and experimental results. As theoretical
results for the same PES, ground state tunneling splittings of
25.7�0.3 cm−1 obtained by POITSE DMC calculations and
of 25 cm−1�10% computed using the MCTDH method
with the symmetry-adapted iterative diagonalization ap-
proach have been reported in our previous work.27,28 The
present result, 23.3 cm−1 with an error estimate of about
10%, agrees with the previous results within the assumed
error margins. It could additionally be noted that the assumed
improvement of the results upon further increase in the SPF
basis as given in Table V, 1.7 cm−1, would set the present
result even closer to the more accurate POITSE DMC result.
The POITSE DMC calculations also yield an accurate value
of the ZPE:28 15 122�4 cm−1. The result obtained from our
calculation with the largest �production� SPF basis is
15 185 cm−1 and thus about 60 cm−1 too high. This finding
is not surprising. The results shown in Table V indicated that
the present production SPF basis size is not sufficient to
converge the computed value of the ZPE beyond an error
margin of several dozen wavenumbers: A decrease in the
ZPE by 36 cm−1 was estimated as the effect of using one

additional SPF in each coordinate. In conclusion, in the
present state the MCTDH calculations cannot rival the accu-
racy obtained by the POITSE DMC calculations for the
ground state tunneling splitting and the ZPE.

The computed excited state tunneling splittings, which
cannot be obtained using the POITSE DMC technique, are
therefore a particularly relevant result of the present work.
Other theoretical work of reasonable predictive accuracy for
these splittings was only published by Tew et al.33 Their
most accurate calculation employed a VCI with up to qua-
druple excitations and a reaction surface PES including up to
three body contributions. Their reaction surface PES and the
PES of Yagi et al.24 used in the present work rely on ab initio
data of the same level of accuracy. Thus, errors resulting
from inaccuracies of the electronic structure calculation
should be very similar in both works and differences should
result only from differences in the PES construction schemes
and the dynamical calculations. Discussing their approach,
Tew et al. considered the computed ground state tunneling
splitting, 15 cm−1, and one of the excited state tunneling
splittings, 58 cm−1, reliable �the restrictions in the PES
model did not allow to obtain reliable results for other ex-
cited state tunneling splittings�. Using the notation of the
present work, this excited state tunneling splitting corre-
sponds to the 171 excitation. The agreement with the present
result, �171 =62.1 cm−1, is very good �considering the re-
spective error margins of the two results�.

Considering only the low lying vibrationally excited
states investigated here, experimental results are only avail-
able for the �181 splitting. Analyzing their spectroscopic data,
Seliskar and Hofmann8 found a decrease in this splitting of

TABLE V. Accuracies of tunneling splitting values �in units of cm−1�. For each convergence series from Tables
III and IV, the differences 
 in tunneling splittings and the ZPE calculated with the two largest SPF basis are
shown.

Mode 
��0� 
��171� 
��191� 
��201� 
��181� 
��191171� 
��172� ZPE

Q̃21 �0.2 �0.2 �0.3 0.1 �0.3 0.1 �0.1 2

Q̃20 �0.2 3.8 0.2 0.1 �0.2 2.7 7.3 �1

Q̃19 0.3 �0.4 �0.1 0.2 0.1 �1.5 �1.7 4

Q̃18 �0.1 �0.4 �0.1 �0.1 �0.5 �0.6 �0.4 2

Q̃17 �0.1 �0.2 0.1 0.0 0.2 �0.3 0.0 0

Q̃13 , Q̃14 , Q̃16 0.6 0.6 �0.3 0.3 �0.1 0.3 3.0 �1

Q̃15 �0.1 �0.7 0.0 �0.1 0.1 �0.5 �0.9 �2

Q̃11 , Q̃12 �0.1 0.0 �0.3 �0.3 �0.6 �0.5 0.9 �4

Q̃10 �0.2 �0.8 �0.5 0.0 �0.4 �0.9 0.2 �2

Q̃8 , Q̃9 0.8 �0.7 �0.9 0.9 0.0 �2.9 �2.9 �15

Q̃6 , Q̃7 0.0 �0.2 �0.2 �0.5 �0.5 �1.2 2.0 �12

Q̃4 , Q̃5 0.6 2.4 �0.2 �0.2 0.1 1.6 3.8 0

Q̃2 , Q̃3
a 0.3 0.1 0.0 �0.1 0.0 0.6 0.3 1

Q̃1 0.1 0.6 �0.3 �0.3 �0.2 �0.7 �0.7 �7
Sumb �i
i 1.7 3.9 �2.9 0.0 �2.3 �3.8 10.8 �36
��i
i

2 1.3 4.8 1.3 1.2 1.1 5.0 9.7 21.6
Present result 23.3 62.1 12.4 6.0 16.9 38.9 99.2 15 185
DMCc 25.7 15 122

aAn additional SPF in mode Q̃15 has been added to the reference basis here.
bWhere the sum index i runs over all modes and groups of modes.
cFrom Ref. 28.
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6 cm−1 relative to the ground state splitting: �181 −�0

=−6 cm−1. This value is in very good agreement with the
present theoretical result, �181 −�0=−6.4 cm−1. When com-
paring the present theoretical results with experiment, one
should remember that the PES employed in the present work
shows a somewhat too low barrier and consequently overes-
timates the ground state tunneling splitting by about 4 cm−1.
However, the change in the tunneling splitting upon vibra-
tional excitation mainly depends on the geometric character
of the vibrational motion excited. It can therefore be ex-
pected to depend less sensitively on the barrier height than
the absolute value of a specific tunneling splitting. Conse-
quently, the good agreement between the present theoretical
value and experiment does not appear to be fortuitous.

VII. CONCLUSIONS AND PERSPECTIVES

Theoretical developments facilitating the efficient use of
the MCTDH approach for the calculation of tunneling split-
tings in proton transfer systems have been presented and dis-
cussed. The schemes employed utilize the symmetry of the
double well system. As a consequence, the wave function
which has to be represented by the MCTDH scheme is lo-
calized mainly or even entirely in a single well only. This
decreases the number of SPFs required to converge the
MCTDH results and consequently reduces the numerical ef-
fort compared to a simple straightforward approach. Two dif-
ferent schemes are described: the symmetry-adapted iterative
diagonalization approach utilized to compute the results pre-
viously communicated27 and a new, more efficient approach.
In the new approach, two effective Hamiltonians are intro-
duced. The eigenstates of these two Hamiltonians are located
in only one of the two wells and are the projected compo-
nents of the symmetric and antisymmetric eigenstates, re-
spectively, of the full system Hamiltonian. The state-
averaged MCTDH approach can then be used to efficiently
compute the tunneling splittings in a balanced way. Conse-
quently, the approach can yield converged results for the
tunneling splitting with smaller single-particle basis sets than
would be required for the convergence of the corresponding
absolute vibrational energies.

Using these techniques, rigorous full-dimensional quan-
tum dynamics calculations of the tunneling splitting not only
of the ground state but also of the low lying excited vibra-
tional states of malonaldehyde could be presented. While for
the ground state tunneling splitting results of superior accu-
racy can be obtained by POITSE DMC calculations,28 only
the MCTDH approach can presently provide rigorous results
for the tunneling splittings of vibrationally excited states.
The present calculations still used the PES of Yagi et al.24

which is based on ab initio data on MP2 level and underes-
timates the barrier height for proton transfer by about 0.4
kcal/mol or 10%. However, good agreement of the calculated
change in the tunneling splitting upon vibrational excitation
with experiment was found for the single case where experi-
mental data are available. We hope that the present work will
inspire experimental efforts to measure tunneling splittings
for a larger set of vibrationally excited states.

Based on the results of the present work, the perspec-

tives for future work seem to be obvious. Similar calcula-
tions should be repeated on the recently developed PES of
Wang et al.1 which is significantly more accurate than the
PES of Yagi et al. employed in the present work. However,
very recent test calculations indicated that for the PES of
Wang et al., the computation of the potential energy values is
computationally significantly more demanding than for the
PES of Yagi et al. Since the computational effort of our
present MCTDH calculations �which use the CDVR scheme
to evaluate the potential energy matrix elements� depends
crucially on the speed of the subroutine providing the poten-
tial energy values at given geometries, a significantly in-
creased numerical effort of such a study compared to the
present one can be expected.

The present results show that the rigorous treatment of
the 21-dimensional malonaldehyde system pushes the single-
layer MCTDH approach used here to its limits. A further
increase in the SPF basis, which would have been desirable
to facilitate the accurate calculation of absolute energies of
the vibrational levels and to further increase the accuracy of
the calculated tunneling splittings, was impossible due to the
limits posted by our computational resources. Further in-
creasing the efficiency of our theoretical and numerical ap-
proach thus is a key issue. Application and further develop-
ment of the multilayer MCTDH approach48–50 offers an
interesting perspective toward this aim. Thus, multilayer
MCTDH calculations studying malonaldehyde will be a
topic of our future research.
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APPENDIX: EFFICIENT EVALUATION OF PESs
BASED ON SHEPARD INTERPOLATION

Employing modified Shepard interpolation, the potential
V�q� at a point q is given by the weighted sum of local
estimates T�q ,qi� from the different reference points qi,

25,51

V�q� = �
i

wi�q�T�q,qi� . �A1�

The wi�q� are weighting functions. The value of wi�q� de-
pends on the distance between the point q considered and the
reference point qi and is defined by some suitable measure of
distance.

The numerical effort to evaluate the potential energy
function �A1� obviously depends on the number of terms in
the sum. Since typically only a small number of reference
points qi is sufficiently close to any point q considered, the
weights wi�q� are very small for most i’s. To speed up the
numerical evaluation of the potential, these terms can be ne-
glected in sum �A1� without changing the PES relevantly.
Devising appropriate schemes to determine such terms is
thus of crucial importance for the numerical efficiency of the
PES evaluation.

An obvious approach, which has been implemented by
Collins and co-workers, used a threshold value to neglect
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terms where wi�q� is sufficiently small. An additional crite-
rion based on physical considerations that allows neglecting
an even larger number of terms can be introduced. When
computing the potential energy V�q� at a point q, the local
estimate T�q ,qn� from the reference point qn closest to q
�i.e., the reference point with the highest weight wn�q�� de-
fines the most reliable single point based estimate for V�q�.
Local estimates T�q ,qi� from other reference points qi which
differ strongly from T�q ,qn� �or another good estimate for
V�q�� can be considered physically unreasonable. These ref-
erence points qi are too distant from q to allow a reasonable
estimate of the potential. It is therefore preferable to neglect
the erroneous contributions from these points in sum �A1�.
The revised expression for the potential estimate,

Vestimate�q� =
� jwj�q�T�q,q j�

� jwj�q�
, �A2�

includes only reasonable reference points q j in the summa-
tion.

Different strategies can be used to implement this idea.
In previous Shepard interpolated PESs constructed by our
research group,52,53 for a given q the weights wi�q� are sorted
by size and summation �A2� proceeded summing points in
order of decreasing weights wj�q�. The summation was
stopped once the next reference point qm in the series would
yield a physically unreasonable T�q ,q j�. In the present work
�as well as our previous work in Refs. 27 and 28� a simpli-
fied �and therefore numerically even cheaper� procedure was
employed. It utilized the energy at the reference point as an
estimate for T�q ,qi� and discarded reference points showing
energy differences of more than 0.3 eV relative to the near-
most reference point.

It was found that this procedure considerably increased
the efficiency of the PES evaluation for malonaldehyde. Sig-
nificant differences between the potential computed with or
without this truncation were only observed in regions show-
ing high potential energy values and a small density of ref-
erence points. In these regions the original PES values did
not seem to be particularly accurate anyhow and the values
obtained by the truncated sum even seemed to be physically
more reasonable.
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