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Abstract—Interacting with a robot in a shared space requires
not only a shared model (i.e., environment entities must be
described with the same symbols), but also a model of mutual
knowledge: both the robot and the human need to figure out
what the other knows, sees or can do in the environment to
appropriately behave. We present here our efforts to let the robot
grounds verbal interaction with a human in a physical, situated
environment. We propose a knowledge-oriented architecture,
where perceptions from different point of views (from the robot
itself, from the human, etc.) are turned into symbolic facts that
are stored in different cognitive models and reused in a newly
designed module for dialogue grounding.

I. GROUNDING HUMAN INTERACTION INTO THE ROBOT

KNOWLEDGE

In [1], Baron-Cohen, Leslie and Frith introduced the idea of

theory of mind to explain cognitive deficit in autistic children:

the lack of such theory would prevent them to build a mental

model of what their interactors perceive and think, leading to

communication issues and strong social impairment.

Figure 1 pictures a situation where such an ability to model

different perspectives is needed for a successful interaction:

the cardboard box on the table contains one video tape visible

to the robot, but not to the human, while another one is on the

table visible to both agents. In this context, when the human

says “ – Jido, give me the tape”, he is obviously referring to

the tape that he sees, on the table.

For the robot, this kind of reasoning can only be made if the

robot is able to build and maintain an independent cognitive

model for the human, and use it to resolve the concept involved

in the verbal interaction.

Our work focuses on these issues: what are the prerequisites

for such a human sentence — “Jido, give me the tape” — to

be understood by the robot, correctly interpreted in the spatial

context of the interaction, and ultimately transformed into an

action?

This implies first to understand the semantics of the sen-

tence: What does “Jido” refers to? What is “give”? What is

“me”? And “the tape”? Working in a situated context, we want

furthermore to resolve these semantics atoms, i.e., ground them

in the sensory-motor space of the robot. For instance, in this

context “tape” refers to an artifact of type VideoTape that is

Fig. 1. Interacting with the robot in an everyday setup: the human asks
for help in vague terms, the robot takes into account the human’s spatial
perspective to refine its understanding of the question.

known by the human (thus excluding the video tape hidden

inside the box).

Extracting the intent of a sentence, resolving its members

and turning them into content processable by the robot is a

difficult challenge in the general case. We base our approach

on three distinct, inter-related cognitive functions:

1) Physical environment modeling and spatial reasoning

(grouped under the term situation assessment, Fig.2) are in

charge of building and maintaining a coherent model of the

physical world [8]. The geometric model is used to compute

several spatial properties of the scene that actually convert the

original sensory data into symbolic beliefs. We focus on two

types of properties which we believe are essential in Human-

Robot interaction: i) agent’s capabilities, which correspond

to actions an agent can perform on objects or other agents

(e.g. see, reach, point at) and ii) object’s locations, which

correspond to positions of objects with respect to other objects

or agents. In both cases the different properties are computed

from the point of view of the different agents involved in the

scene. This allows the robot to model the world and reason

from different perspectives, in a similar way we humans build

different mental states for each person we interact with.

This model is realistic in the sense that it relies on accurate

3D models of both manipulable objects and humans. It also has



Fig. 2. The robot builds its symbolic model of the world through situation

assessment. Percepts come from motion capture (to track human posture) and
tag-based object recognition. The human field of view, pointing area (grey
dots on the table) as well as spatial relations between objects are computed
and stored in a ontology-based knowledge base.

a dedicated mechanism to manage disappearing or occluded

objects. Thus, if an object is not currently visible from an

agent point of view, but the robot is aware that the agent has

seen it before, then it is considered as a “known” object, but

occluded for that agent. On the contrary, if the agent does

not know about the existence of the object, then it is only

considered as unknown (and not occluded).

2) Knowledge representation and management: the robot

is endowed with an active knowledge base, based on an

ontology [5]. It provides a logically sound symbolic model

of the robot’s beliefs on the world, as well as models for each

cognitive agent the robot interacts with. Each of these models

is independent and logically consistent. This enables reasoning

on different perspectives of the world that would be considered

otherwise inconsistent (for instance, an object can be visible

for the robot but not for the human. This object can have at the

same time the property isVisible true and isVisible

false, in two different models). Used in combination with

the situation assessment framework, the robot is thus able to

maintain different models of the world, one per agent. This

proves an essential feature [7, 4] to enable perspective-aware

grounding of natural language, as mentioned below.

Our knowledge base relies on OWL ontologies (a decidable

subset of the predicate logics) and features continuous storage,

querying and event triggering over the pool of facts known

by the robot. It also provides an initial pool of general facts,

the ORO Commonsense Ontology1. This ontology contains

a set of concepts, relationships between concepts and rules

that defines the “cultural background” of the robot, i.e., the a

priori known concepts (currently, the commonsense ontology

defines about 100 concepts and over 80 properties that link

these concepts in our domain). In this work, this common-

1The knowledge base and this ontology are open-source projects. http://
oro.openrobots.org.

sense knowledge is focused on the requirement of human-

robot interactions in everyday environments, but also contains

generic concepts such as thing, object, location

and relationships between those.

3) Dialogue input processing, including natural language

parsing capabilities, disambiguation routines and interactive

concept anchoring. We focused our efforts on three classes

of utterance, commonly found in human-robot interaction:

statements (i.e., new facts the human wants to inform the

robot), orders (or more generically desires) and questions on

declarative knowledge (where their answers do not require

explicit planning). This would roughly cover the representative

(sometimes referred as assertives) and directives type of

illocutionary acts, in Searle classification.

A. Contributions

In [7], Roy summarizes what he sees as the main challenges

to be tackled for successful language interpretation for robots:

cross-modal representation systems, association of words with

perceptual and action categories, modeling of context, figur-

ing out the right granularity of models, integrating temporal

modeling and planning, the ability to match past (learned)

experiences with the current interaction and the ability to

take into account the human perspective. We have attempted

to tackle some of these challenges (leaving aside temporal

modeling and learning) in our approach.

Compared to previous contributions in the field of natural

language processing for robots [2, 3, 6], our efforts have

two foci: (1) integration between language processing and

perception of the environment and the humans, from several

perspectives; and (2) realistic human-robot interactions: open

speech; complex, dynamic, partially unknown human environ-

ments; fully embodied autonomous robots with manipulation

abilities.

Note that we do not claim any contribution to the field of

computational linguists itself (see [4] for a survey of formal

approaches to natural language processing in the robotics

field). Our contribution regards the grounding (we call it res-

olution) of concepts involved in the human discourse through

the robot’s own knowledge.

II. THE NATURAL LANGUAGE GROUNDING PROCESS

Verbal interaction with humans presents two categories

of challenges: syntactic ones, and semantic ones. The robot

must be able to process and analyze the structure of human

utterances, i.e., natural language sentences, and then make

sense of them. As stated in the introduction, we process three

categories of sentences: statements, desires and questions. In

our approach, the grounding of the human discourse consists

in extracting either the informational content of the sentence to

produce statements or its intentional content (i.e., performative

value) to collect orders and questions.

We have developed a dedicated module called DIALOGS
2

that processes human input in natural language, grounds the

2http://dialogs.openrobots.org
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concepts in the robot’s knowledge and eventually translates

the discourse in a set of declarative OWL/RDF statements.

Fig. 3. The DIALOGS module has three main steps: the parsing, the
interpretation and the verbalization. The interpretation module is responsible
for both the resolution and the semantic content analysis and translation.

As shown in Figure 3, the DIALOGS module is composed

of three main blocks. The user’s input is first pre-processed

and then parsed. The parser is a custom-made, rule-based

(i.e., grammar-free) tool that extracts the grammatical structure

from the user’s sentence.

The result of the parsing is then sent to the interpretation

module, the core of the tool. Interpretation consists in three

distinct operations: the sentence resolution (concepts ground-

ing), the content analysis (what is the intent of the utterance:

information, question or desire) and the statement building

(translation into RDF statements).

Interpretation tightly relies on the communication with the

knowledge base: all the concepts the robot manipulates are

stored in the ontology server and retrieved through logical

queries, except for the verbs that are currently stored in a

dedicated library (the action library in the diagram).

The last block allows for natural recomposition of sentences,

before verbalization (either textual or via a text-to-speech

interface).

III. CASE STUDY

The following case study illustrates the approach: Tom and

Jerry are moving to London, so they are packing things in

boxes. The scenario takes places in the living-room, where

Jido (our robot) is observing while they move things here and

there. To assess the reasoning abilities of the robot they ask

Jido for information (entered through keyboard). Ideally, the

robot should also perform actions when required (e.g. hand an

object when asking “give me...”). However, since it is out of

the scope of this work, we do not include any motion from

the robot’s side.

>> IMPERATIVE

Verbal Group: give (present simple)

direct objects:

Nominal Group: the videotape

indirect objects:

Nominal Group: me

Fig. 4. Raw output of the DIALOGS parser for the sentence “Give me the
videotape”, before grounding of groups.

Perception of objects is done through a tag-based system3

and humans are detected through motion capture. The robot

knowledge base is pre-loaded with the ORO Commonsense

Ontology. We next describe in detail two situations where we

can follow the internal robot’s reasoning and the interaction

with the users.

1) Implicit disambiguation through visual perspective tak-

ing: Tom enters the room while carrying a big box (Figure 1,

page 1). He approaches the table and asks Jido to handle him

the video tape: “Jido, can you give me the video tape”. After

parsing (Figure 4), the DIALOGS module queries the ontology

to identify the object the human is referring to: ?obj type

VideoTape.

There are two video tapes in the scene: one on the table,

and another one inside the cardboard box. Thus, the knowledge

base returns both: ⇒ ?obj = [videoTape1, videoTape2].

However, only one is visible for Tom (the one on the

table). Thus, although there is an ambiguity from the robot’s

perspective (since it can see both video tapes), based on the

perspective of its human partner it infers that Tom is referring

to the video tape on the table, and not the one inside the

box which is not visible from his view. Therefore, non-visible

objects are removed obtaining: ?obj =[videoTape1].

Since only one object is available, the robot infers that the

human refers to it and would eventually execute the command,

i.e., give it to the human. Alternatively, the robot could first

verify with the human if that was the object being referred to

or not before proceeding to execute the action.

Fig. 5. Jerry asks Jido for the content of the box by pointing at it.

2) Explicit disambiguation through verbal interaction and

gestures: Figure 5 depicts a situation where Jerry enters the

3Each tag is associated to an unique id, without any specific semantic
attached to it. Semantics – like the type of the object – are either stored in a
scenario specific ontology loaded at startup or teached online to the robot.



living room without knowing where Tom had placed the video

tapes. So he first asks Jido: “What’s in the box?”. Before the

robot can answer the question it has to figure out which box

Jerry is talking about. Similar to the previous situation, there

are two available boxes:

?obj type box

⇒ ?obj = [cardBoardBox, toolbox]

However both are visible and the cognitive ambiguity res-

olution cannot be applied. The only option is to ask Jerry

which box he is referring to: “Which box, the toolbox or the

cardboard box?” Jerry could now simply answer the question.

Instead, he decides to point at it while indicating: “This

box”. The robot’s perception identifies the cardBoardBox

as being pointed at and looked at by the human and updates

the ontology with this new information using a rule avail-

able in the commonsense ontology (pointsAt(?ag, ?obj)

∧ looksAt(?ag, ?obj) → focusesOn(?ag, ?obj)) The DI-

ALOGS module is then able to merge both sources of informa-

tion, verbal (“this”) and gestural to distinguish the box Jerry

refers to.

Finally, DIALOGS queries the ontology about the content of

the box and the question can be answered: “Jido-E”.

?obj isIn cardBoardBox

⇒ ?obj = videoTape2

Note that the object’s label is used instead of its ID. This

way we enhance interaction using familiar names given by the

users.

At this point Jerry wants to know where the other tape

is, and that is exactly what he asks Jido: “And where is the

other tape?”. In this occasion, the DIALOGS module is able

to interpret that Jerry is not referring to the video which they

were just talking about, but to the other one:

?obj type VideoTape

?obj differentFrom videoTape2

⇒ ?obj = [videoTape1]

Since there is only one possible “other” video (there are

only two videos in the scene), it can directly answer Jerry:

“The other tape is on the table and next to the toolbox.”

videoTape1 isOn table

videoTape1 isNextTo toolbox

IV. CONCLUSION

We propose the DIALOGS module that converts natural lan-

guage utterances into either symbolic facts (OWL statements)

or natural language answers, depending on the intent conveyed

by the original sentence.

Grounding of referent is done by relying on a situation

assessment reasoner and a symbolic knowledge base that are

able to compute and store several perspectives of the world

state, one for each agent. Our system takes also into account

non-verbal communication cues, like gaze or pointing gestures.

Using so-called thematic roles and the symbolic reasoning

capabilities of the knowledge base, semantic correctness of

utterances can be checked by the robot who can react accord-

ingly.

However, when looking back to the proposed agenda (Sec-

tion I-A), much remains to be done.

For instance, the natural language parsing abilities of the

system are largely ad-hoc, and were not designed to scale

beyond the domain of simple everyday dialogue for joint

interaction (extensions are however planned, like automatic

fetching of thematic roles from online libraries like VERBNET

or support for parsing new rules expressed in natural language

and adding them to the symbolic model, like “If someone

looks at something then he sees it.”).

We also need to enrich the cross-modalities by better taking

into account the physical behaviour of the speaker and its

evolution in time. New sensors like the Microsoft Kinect open

interesting opportunities in this domain.

Finally, we need to tackle as well the issue of rigorous

repeatable evaluation of the framework, validated by user-

studies. Due to the intricate combination between natural

language and dynamic, semantic-rich physical environments,

a good methodology for evaluation still has to be designed.

ACKNOWLEDGMENTS

Part of this work has been conducted within the EU CHRIS

project (http://www.chrisfp7.eu/) funded by the E.C.

Division FP7-IST under Contract 215805.

REFERENCES

[1] S. Baron-Cohen, A.M. Leslie, and U. Frith. Does the

autistic child have a “theory of mind” ? Cognition, 1985.

[2] T. Brick and M. Scheutz. Incremental natural language

processing for HRI. In Proceedings of the ACM/IEEE in-

ternational conference on Human-robot interaction, 2007.

[3] S. Huwel, B. Wrede, and G. Sagerer. Robust speech un-

derstanding for multi-modal human-robot communication.

In The 15th IEEE International Symposium on Robot and

Human Interactive Communication, 2006.

[4] G.J.M. Kruijff, P. Lison, T. Benjamin, H. Jacobsson,

H. Zender, I. Kruijff-Korbayová, and N. Hawes. Situated
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