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TWO REMARKS ON ELEMENTARY THEORIES OF

GROUPS OBTAINED BY FREE CONSTRUCTIONS

ERIC JALIGOT

Abstract. We give two slight generalizations of results of Poizat about
elementary theories of groups obtained by free constructions. The first-
one concerns the non-superstability of such groups in many cases, and
the second-one concerns the connectedness of most free products of
groups.

Recently, first-order theories of free products of groups have been investi-
gated in [JS10] and [Sel10], with to some extent some transfers of arguments
from free groups to free products of groups. It is expected that some of this
work transfers further to more general classes of groups obtained by free con-
structions. In this modest and short note we will make slight generalizations
of early arguments of Poizat on first-order theories of free products which,
so far, did not seem to have been noticed before. Since these generalizations
concern the basic model-theory of groups obtained by free constructions, it
seems relevant to have them recorded.

In a first series of results we prove that many groups obtained by free
constructions do not have a superstable theory. We refer to [OH08] for an
approach of the model theory of such groups via actions on trees, but with
seemingly weaker results (only the failure of ω-stability). Here, our proofs
are mere adpatations of arguments in [Poi83, §7] in the case of free products.
We note that we also take the opportunity to make a very basic analysis of
generic types in such groups, in the event that such groups are stable.

We recall that one of the main accomplishements of [Sel10] is a proof
of the fact that the free product of two stable groups is still stable. But,
conversely, we point out the following question as a possibly difficult one.

Question 1. Can one have a free product of groups G ∗ H with a stable
theory, but with the factor G unstable?

We merely mention that our basic analysis of generic types in the stable
case of groups obtained by free constructions will not assume the stability
of the vertex groups.

In a second type of results, we prove that most free products of groups are
connected, i.e., with no proper definable subgroups of finite index. Again
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this will be a mere adaptation of an argument contained in [Poi83, §7],
about the free group on countably many generators, together with a deep
elementary equivalence obtained in [Sel10] about free products.

Theorem 2. Let G and H be two nontrivial groups. Then a group elemen-
tarily equivalent to G ∗H is not connected if and only if G ≃ H ≃ Z2.

All groups considered here are considered in the pure group langage, but
we will point out when our results remain valid in the case of expansions
of groups, especially around non-superstability. We thank Bruno Poizat for
his patient explainations of his argument for non-superstability in [Poi83,
§7], and Chloé Perin for her vigilance on an erroneous previous version of
this note.

1. Non-superstability

We say that a free product of groups G∗AH with amalgamated subgroup
A is non-trivial when A < G and A < H. As in stable group theory, we say
that a subset X of a group is left-generic in the group when finitely many
left-translates of X cover the ambient group.

Lemma 3. Let P = G ∗A H be a non-trivial free product of groups with
amalgamated subgroup A, and suppose g2 /∈ A for some g ∈ G ∪H. For any
integer d > 1 let Yd = (G ∪H)P ∪ {xd : x ∈ P}, and for any integer n ≥ 1
let Bn denote the ball of elements of P of length at most n.

(1) For any n ≥ 1, there exists αn in P such that, for every element x
in Bn, xαn is not in Yd.

(2) For any n ≥ 1, BnYd is a proper subset of P . In particular Yd is not
left-generic in P .

Proof. (1). By assumption, we find an element g in one of the factors but
not in the amalgam, and an element h in the other factor and still not in
the amalgam, with h2 not in A.

For every n ≥ 1 consider, more or less as in [Poi83, §7], the element αn =
(gh)n+4(ghgh−1)3n+3. Recall from [LS77, p. 187] that in a free product with
amalgamation every element has a unique normal form, once is chosen a set
of representatives of the amalgamated subgroup in each of the factors. Since
h and h−1 cannot be in a same (left or right) coset of A in our situation,
we may choose h and h−1 in the fixed sets of representatives of cosets of A.
One sees that for every element x ∈ Bn, the element xαn has a normal form
of the form γ(gh)4(ghgh−1)3n+3 where γ is an element of length at most 3n.
Then one sees from the non-symmetries of this normal form that xαn is not
conjugated in one of the factors G or H, and that xαn is not a square, and
actually not a d-th power (see [LS77, p. 187]).

(2). The first claim shows that, for every element x of length at most n,
xαn is in G\Yd. In particular, αn is in x−1(G\Yd), and αn is not in x−1Yd.
Since x and x−1 have the same length, this shows that αn is not in BnYd,
and thus BnYd is a proper subset of P .
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As the length of finitely many elements of P is uniformely bounded, it
follows in particular that P cannot be covered by finitely many left-translates
of Yd, and thus Yd not left-generic in P . �

Recall from [Jal06] that a subset X of a group G is left-generous when
XG is left-generic in G. We obtain in particular the following corollary of
Lemma 3 (with a proof more general and more direct than the one given in
[Pil08, Lemma 2.12]).

Corollary 4. Let P = G ∗A H be a non-trivial free product of groups with
amalgamated subgroup A, and suppose g2 /∈ A for some g ∈ G ∪H. Then
(G ∪H) is not left-generous in P .

It is not clear whether our assumption in Corollary 4 is minimal. The
failure of the left-generosity of (G ∪ H) in P occurs in groups of the form
A⋊ Z2 ∗A A⋊ Z2 where the two involutions of the Z2 both centralize A
(or both invert A): in each case the group has a presentation of the form
A ⋊D where D is a dihedral group generated by the two involutions (and
A commutes with the maximal normal cyclic subgroup of D).

Of course, Lemma 3 and Corollary 4 could be proved similarly with the
obvious notions of right-genericity, instead of left-generosity. When P is
stable in Lemma 3 we get the following.

Corollary 5. Assume P has a stable theory in Lemma 3. If g is generic
over P , then, for every integer d > 1, g is not a d-th power.

Proof. P \Yd is contained in the definable subset Zd of elements of P which
are not a d-th power. Hence G \Zd ⊆ Yd and Lemma 3 implies that G \ Zd

is not left-generic. Assuming the stability of P , we get then that, for every
d > 1, the formula defining Zd is in all generic types. �

Theorem 6. Let P = G ∗A H be a non-trivial free product of groups with
amalgamated subgroup A, and suppose g2 /∈ A for some g ∈ G ∪H. Suppose
also there exist integers d > 1 and s ≥ 1 such that gd has at most s d-th roots
for every g in P \ ((G ∪H)P ∪ {xd : x ∈ P}). Then P is not superstable.

Proof. With the same notation as in Lemma 3, we have under our assumtion
and as in Corollary 4 that P \ Yd is contained in the definable subset Z ′

d
of

elements g of P which are not a d-th power and such that gd has at most s
d-th roots. Since P \Z ′

d
⊆ Yd, Lemma 3 shows that P \Z ′

d
is not left-generic.

Hence the formula defining Z ′

d
is in all generic type: if g is generic over P ,

then it is not a d-th power and gd has at most s d-roots.
Consider now such an element g generic over P . We get in particular

that g is algebraic over gd. Assuming superstability, we then get, by weak
regularity as in [Poi83, §7 and p.346], that gd is also generic over P . Since
generic elements over P cannot be d-th powers, this is a contradiction. �

In the event that a free product P as in Theorem 6 is stable, the basic
analysis of generic types of Corollary 5 is expanded by what has been seen
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in the proof of Theorem 6: generic elements over P are not d-th powers, and
their d-th powers have at most s d-th roots.

Here are examples of free products P satisfying the second assumption in
Theorem 6 (always assuming the first assumption):

• A is malnormal in G (or H): centralizers of hyperbolic elements are
then cyclic and of hyperbolic type, and we may even take any d > 1
and s = 1.

• More generally, groups such that CG(a) ≤ A (or CH(a) ≤ A) for
every non-trivial element a ∈ A: same reason as above, and again
with any d and s = 1.

• A is finite: see the analysis of centralizers in free products with
amalgamation in [KS77, Theorem 1(i)].

It is unclear to us how the algebraic assumptions in Theorem 6 are far from
a full algebraic characterization of free products with amalgamation which
are not superstable. If we take A = Z in the two examples considered after
Corollary 4, then we get two non-trivial free products with amalgamation
which are superstable (because they are definable in Z). In these two groups,
it is the first assumption in Theorem 6 which tend to fail rather than the
second one.

We now pass to HNN -extensions. We say that an HNN -extension G∗ =
〈G, t | At = B〉 is of automorphism type when A = B = G.

Lemma 7. Let G∗ = 〈G, t | At = B〉 be an HNN -extension, and suppose G∗

not of automorphism type. For any integer d > 1 let Yd = GG∗

∪ {xd : x ∈
G∗}, and for every integer n ≥ 1 let Bn denote the ball of elements of G∗ of
length at most n.

(1) For every integer n ≥ 1, there exists αn in G∗ such that, for every
element x in Bn, xαn is not in Yd.

(2) For every integer n ≥ 1, BnYd is a proper subset of G∗. In particular
Yd is not left-generic in G∗.

Proof. Since G∗ is not of automorphism type we can, interchanging A and B
if necessary, assume that B < G∗. Let now g be any element of G\B. Since
we are using the convention gh = h−1gh for conjugates, we get that tgt−1 is
not in the preimage A of B by the underlying automorphism from A to B.
Hence there are no cancellations in the word (gt)n+4(gtgt−1)3n+3. Now one
can argue as in Lemma 3, with g playing the same role as g there, and with
t = h in the proof of Lemma 3. Notice that t 6= t−1 here, and see [LS77,
Chap IV 2.1-2.5] for normal forms in the case of HNN -extensions. �

With Lemma 7 we get analogs of Corollaries 4 and 5 in the same way.

Corollary 8. Let G∗ = 〈G, t | At = B〉 be an HNN -extension, and suppose
it is not of automorphism type. Then G is not left-generous in G∗.

Corollary 9. Assume G∗ has a stable theory in Lemma 7. If g is generic
over G∗, then, for every integer d > 1, g is not a d-th power.
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Theorem 10. Let G∗ = 〈G, t | At = B〉 be an HNN -extension, and
suppose it is not of automorphism type. Suppose also there exist integers
d > 1 and s ≥ 1 such that gd has at most s d-th roots for every g in
G∗ \ (GG∗

∪ {xd : x ∈ G∗}). Then G∗ is not superstable.

Proof. With Corollary 9 we may argue exactly as in the proof of Theorem 6.
Notice that under the assumptions of Theorem 10, a generic elements over
G∗ is a d-th power and is such that its d-th power has at most s d-roots. �

Here, examples ofHNN -extensions satisfying the assumption in Theorem
10 include any HNN -extension 〈G, t | At = B〉 not of automorphism type
and such that CG(t) is finite: see [KS77, Theorem 1(ii)].

We note that Lemma 3 and its two corollaries, as well as their analogs
for HNN -extensions, do not depend on the fact of considering pure group
structures: they remain true if the groups considered are expanded by some
extra structure definable in some extra language. Similarly, the proofs of
non-superstability in Theorems 6 and 10 are not sensitive to structure ex-
panding the group structure. Hence we actually get the following.

Theorem 11. Let G be any expansion of a non-trivial free product with
amalgamation as in Theorem 6, or of an HNN -extension as in Theorem 10.
Then G is not superstable. Furthermore, if g is generic over the considered
group, then it is not a d-th power, and its d-th power has at most s d-th
roots.

Conversely, of course, there might be expansions of the dihedral group
which are not superstable. The question of the superstability of HNN -
extensions of automorphism type may depend on the pair consisting of a
group with an automorphism considered. For instance, the HNN -extension
〈Z, t | [t,Z]〉 ≃ Z× Z is definable in Z and has a superstable theory.

2. Connectedness

In this section we consider the connectedness of free products of groups
without amalgamation. The following argument stems directly from [Poi83,
Lemme 6] (see also [Poi93] for related arguments).

Proposition 12. Let A be a group, Fω = 〈ei | i < ω〉 the free group on
countably many generators ei, and G = A ∗ Fω the free product without
amalgamation of A and Fω.

(1) If X is a left-generic definable subset of G, then X contains a cofinite
subset of the set {ei | i < ω}.

(2) G is connected, i.e., with no proper definable subgroup of finite index.
(3) If G is stable, the sequence (ei)i<ω is a Morley sequence of the unique

generic type p0 of G over ∅.

Proof. (1). Suppose G = g1X ∪ · · · ∪ gkX for finitely many elements gs in
G. Let {e1, · · · , er} consists of the set of all the generators of Fω involved
in the parameters needed to define X, together with all the generators of
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Fω such that gs ∈ A ∗ 〈e1, ..., er | 〉 for each s. It suffices to show that
ei is in X for each i > r. Since ei is in gsX for some s, g−1

s ei is in X.
But since g−1

s ei is free over A ∗ 〈e1, ..., er | 〉, there is an automorphism of
A ∗ 〈e1, ..., er | 〉 ∗ 〈ei〉 fixing A ∗ 〈e1, ..., er | 〉 pointwise and sending g−1

s ei
to ei. This automorphism extends to an automorphism of A ∗ Fω and must
stabilize X setwise. In particular we get that ei is in X.

(2). By the preceding, two left-generic definable subsets necessarily have a
non-empty intersection, and in particular G cannot have a proper definable
subgroup of finite index.

(3). As in [Pil08, Corollary 2.7]. �

With one of the results of [Sel10] we get the following

Proof of Theorem 2: Since elementary equivalence preserves connected-
ness, we may consider directly G ∗H.

If G and H are cyclic of order 2, then G ∗H is dihedral and in particular
not connected. If G∗H is not dihedral, then it is elementarily equivalent to
G∗H ∗Fω by [Sel10, Theorem 7.2], which is connected by Proposition 12(2);
since elementary equivalence preserves connectedness, G ∗ H is connected.

�

We note that in the proof of Theorem 2 we only used the elementary
equivalence G ∗H ≡ G ∗H ∗ Fω when G ∗ H is not of dihedral type. It
is actually expected that a reworking of [Sel10] “over parameters” would
imply the elementary embedding G ∗H � G ∗H ∗ F1 in this case (and thus
elementary embeddings G ∗H � G ∗H ∗ Fκ � G ∗H ∗ Fκ′ for all cardinals
κ ≤ κ′). In [OH11, Proposition 8.8] an elementary embedding of this type
is used in a proof of the connectedness of non-cyclic torsion-free hyperbolic
groups, but one could argue without such an elementary embedding as is
done here.

Since free products tend to have proper subgroups of finite index, it seems
difficult to characterize which expansions of a free product not of dihedral
type are still connected. In the pure group langage, we can obtain some
realizations of the unique generic type over a non-dihedral free product with
the following.

Corollary 13. Let A be a group, Fω = 〈ei | i < ω〉, and suppose that
G = A ∗ Fω is stable. Then any primitive element of Fω is a realization of
the generic type of G over ∅.

Proof. By Proposition 12. �

In particular, for G ∗ H a non-trivial free product not of dihedral type,
primitive elements of Fω realize the generic type in the elementary equivalent
group G ∗H ∗ Fω. The full characterization of the set of realizations of the
generic type, as in [Pil09] in the free group case, seems to depend on the
nature of the factors; it is even unclear whether the generic type is realized
in the standard model G∗H. Most probably, one can prove that the generic
type is not isolated, as in [Skl11] in the free group case.
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Theorem 2 proves that all non-trivial free products of groups are con-
nected, with the single exception of the dihedral case. We believe that such
groups are actually definably simple, which would follow from the following
more general conjecture.

Conjecture 14. Let G ∗ H be a free product of two groups. Then any
definable subgroup of G ∗H is of one of the following type:

• the ful group,
• conjugated in one of the factors G or H,
• cyclique infinite and of hyperbolic type, or
• dihedral (just in case one of the factors contains an element of order
2).

Most probably, one way to prove Conjecture 14 could be obtained by a
direct generalization to free products of groups of the Bestvina-Feighn notion
of a negligeable set in free groups, and by using the quantifier elimination
for definable subsets of G ∗H from [Sel10]. We refer to [KM11] for a proof
in the free group case.
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