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One-channel conductor coupled to a quantum of resistance:

exact finite-frequency conductance and noise
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We consider a one-channel coherent conductor with a good transmission embedded into an Ohmic
environment, impedance of which is equal to the quantum of resistance Rq = h/e2 below the RC
frequency. This choice is motivated by the mapping of this problem to a Tomonaga-Luttinger
liquid with one impurity, the interaction parameter of witch corresponds to the specific value K =
1/2, allowing for a refermionization procedure. The “new” fermions have an energy-dependent
transmission amplitude which incorporates the strong correlation effects and yields the exact dc
current and zero-frequency noise through expressions similar to those of the scattering approach.
We recall and discuss these results for our present purpose. Then we compute, for the first time, the
finite-frequency differential conductance and the finite-frequency non-symmetrized noise. Contrary
to intuitive expectation, both can not be expressed within the scattering approach for the new
fermions, even though they are still determined by the transmission amplitude. Even more, the
finite-frequency conductance obeys an exact relation in terms of the dc current which is similar
to that derived perturbatively with respect to weak tunneling within the Tien-Gordon theory, and
extended recently to arbitrary strongly interacting systems coupled eventually to an environment
or/and with a fractional charge. We also show that the emission excess noise vanishes exactly above
eV , even though the underlying Tomonaga-Luttinger liquid model corresponds to a many-body
correlated system. Our results apply for all ranges of temperatures, voltages, and frequencies below
the RC frequency, and they allow us to explore fully the quantum regime.

PACS numbers:

I. INTRODUCTION

Laws of electrical circuits are drastically modified when
mesoscopic systems are incorporated. A coherent con-
ductor embedded into a circuit sees the imposed volt-
age by the generator reduced by a fluctuating voltage
associated with the impedance of the surrounding elec-
tromagnetic environment. This gives rise to a current
reduction with a pronounced non-linearity, called zero-
bias anomaly (ZBA): transfer of electrons becomes inelas-
tic as they exchange photons with the electromagnetic
environment. This phenomena, called the dynamical
Coulomb blockade (DCB), has attracted a tremendous
interest both theoretically and experimentally.1 Never-
theless, most of the works have been initially developed
by focusing on the limit of a weakly transmitting con-
ductor, i.e., the tunneling regime.2 More recently, inter-
est in the regime of few well-transmitting channels has
emerged. On one hand, reducing the number of chan-
nels makes more apparent the effect of the circuit, as
many channels could play as well the role of an out-
of-equilibrium environment. On the other hand, highly
transmitting conductors raise two interesting questions.
First, whether the charge fluctuations wash out the DCB,
and second, whether the reduction in the current is re-
lated to shot noise in the absence of the environment.

Indeed, this intuitive and attractive relation had been
proposed through a perturbative computation with re-
spect to a very weak impedance, and has been checked
experimentally.3–5 Nevertheless, its validity domain is re-
stricted to high enough energies, as logarithmic diver-
gences arise: one needs to go beyond the weak feedback
action. This was particularly the case for an Ohmic envi-
ronment, i.e., having an impedance Z(ω) = R at frequen-
cies ω < ωRC = 1/RC (where R is the resistance and C
the capacitance): this situation has not only relevance
to realistic experiments but also a fundamental interest,
being related to the investigation of electronic interac-
tions. The logarithmic divergences have been resumed
using a renormalization group (RG) scheme by Kinder-
mann and Nazarov,6 dealing again with R ≪ Rq, where
Rq = h/e2 is the quantum of resistance. It has been
nevertheless possible, in a simultaneous and independent
work, to deal for the first time with an arbitrary value
of R: one of the authors, with Saleur,7 has shown that
the problem of a short-coherent conductor in series with
a resistance R is equivalent to the impurity problem in a
Tomonaga-Luttinger liquid8,9 (TLL) with an interaction
parameter:

K = (1 +R/Rq)
−1 . (1)

When specified to the limit of small R, this mapping had
led to recover the same results as those by Kindermann
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and Nazarov. These findings answer the two questions
addressed above. First, the DCB still persists at good
transmission, showing up below an energy scale eVB (de-
pending in a non-universal way on R and on transmis-
sion): it corresponds to the crossover voltage between
the so-called weak backscattering (WBS) regime at high
energy and strong backscattering (SBS) regime at low
energy.10 Secondly, the reduction in the current is related
to the noise in the presence of the environment, and not
to the noise of the isolated conductor as stated before
(see Eq. (4)).

Recent pioneering experiments by Pierre’s group11 –
where the strong feedback of an arbitrary impedance on
a one-channel edge state has been investigated for the
first time – has shown satisfactory agreement with the
theoretical predictions of Refs. 6 and 7. Interestingly,
even though one has to take strictly the limit of one chan-
nel in Ref. 7, the equivalence to a TLL thus established
seems to extend to many channels when they are treated
in a mean-field framework, provided one renormalizes the
parameter K by including the resistance of the channels,
and scales the voltage appropriately, as one can infer from
a more recent study.12

By mapping a one-channel conductor in series with
an Ohmic environment to a TLL, the parameter K of
which can be controlled by tuning R (see Eq. (1)), one
gets as well a promising alternative to test the theoretical
predictions for the impurity problem in a TLL. Indeed,
satisfactory experimental evidence has been lacking, even
though partial success has been claimed to be obtained.
In particular, as noticed in Ref. 7, the case of an envi-
ronmental resistance equal to the quantum of resistance,
R = Rq, corresponds to a TLL with an interaction pa-
rameter K = 1/2. In that case, the impurity problem
in a TLL can be solved exactly in a more transparent
way compared to other values of K (see Ref. 13 for in-
stance). Such an apparent simplicity is due to the intro-
duction of new chiral fermions which arise from a math-
ematical construction without any physical entity, and
incorporate non-trivial strong correlation effects. The
non-perturbative investigation has a fundamental inter-
est: it explores crucial issues not reached through per-
turbative approaches. Nevertheless, the situation with
K = 1/2 has never been achieved experimentally. In-
deed, the ideal candidate to investigate the TLL’s be-
havior is usually provided by edge states with a constric-
tion in the fractional quantum Hall effect (FQHE). How-
ever, as K plays the role of the fractional filling factor
ν, and as the description of the edges in terms of one-
channel chiral TLL model is valid only for simple values:
ν = K = 1/(2n+ 1) with n an integer, it has not been
possible to achieve a chiral TLL with K = 1/2. Other
potential candidates are provided by quantum wires and
carbon nanotubes. However three main difficulties arise
in those systems: (i) achieving only one backscattering
center; (ii) tuning the interaction parameter K; and (iii)
taking into account the connection to reservoirs and finite
size effects, where only a perturbative treatment of the

impurity has been possible.14–18 Thus, a coherent one-
channel conductor connected to a quantum of resistance
R = Rq, as achieved recently,11 offers an unique opportu-
nity to explore the properties of a TLL with an impurity
at K = 1/2.

The specific value, K = 1/2, is exciting as it allows us
to obtain handy analytic expressions for dc current and
the zero-frequency noise. Beyond the stationary regime,
time-dependent transport probes even more the dynam-
ics and tests in a precise way the underlying model.

This is the case of finite-frequency (FF) noise. In view
of the mapping in Ref. 7, one can use previous results ob-
tained in the FQHE. On the one hand, as far as the FF
symmetrized noise is concerned, Chamon et al.19 have
computed it perturbatively with respect to the impu-
rity strength, and non-perturbatively at the specific value
K = 1/2. On the other hand, within the framework of
the exact solution of Ref. 13, Lesage and Saleur20 have
obtained only its behavior for low frequencies or close to
the “Josephson” singularity e∗V , where V denotes the
voltage and e∗ = Ke.21 Notice that both approaches dis-
agree, apart from the particular value K = 1/2.

Nevertheless, it has been possible to measure experi-
mentally the FF non-symmetrized noise22, which is more
interesting to explore. It can be inferred from Ref. 23
dealing with edge states at simple filling factors, both in
the WBS and SBS regimes: the same results apply to a
coherent conductor with a good bare transmission τ0 con-
nected to an arbitrary resistance at high or low enough
energies, as well as for a low transmission.24 Our aim is
to go beyond this perturbative computation, offering a
full description extending over all energy ranges below
ωc = min{ωF , ωRC}, where ωF is the frequency cutoff
associated to the fermionic degrees of freedom in the con-
ductor. This is precisely possible at R = Rq. Thus, our
study gives the first non-perturbative results for the FF
non-symmetrized noise, without assuming neither weak
resistance, nor high or low enough energies associated
to the WBS nor SBS regimes. In addition, this offers a
benchmark for other values of the resistance.

One of the key steps within the refermionization pro-
cedure is that the chiral independent fermions have now
an energy-dependent transmission amplitude t(ω) (see
Eq. (5)) which encodes the non-trivial many-body cor-
relations. Indeed, the associated transmission coefficient
T (ω) = |t(ω)|2 has nothing to do with the effective trans-
mission obtained for K ≈ 1 by the RG approach,6,25 and
can not be obtained adiabatically from that in the ab-
sence of interactions, τ0. It has been widely accepted
that transport properties of the system can be obtained
within the scattering approach using t(ω). This was
shown to be valid both for the dc current, as well as
for the full counting statistics (FCS).26 Surprisingly, our
study shows that the scattering approach fails when one
deals with time-dependent transport: the FF noise can
still be expressed in terms of t(ω), nevertheless it obeys
a different relation. The same feature occurs for another
quantity: the out-of-equilibrium FF dissipative conduc-
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DCB dynamical Coulomb blockade

FCS full counting statistics

FF finite-frequency

FQHE fractional quantum Hall effect

RG renormalization group

TLL Tomonaga Luttinger liquid

SBS strong backscattering

WBS weak backscattering

ZBA zero-bias anomaly

ZF zero-frequency

TABLE I: Synthesis of the abbreviations.

tance Re[G(V, ω)] which depends on the applied dc volt-
age and the frequency of the superimposed modulation,
in addition to its implicit dependence on temperature.

This last quantity has started to be studied only re-
cently in few correlated systems, where its interest has
been shown: quantum wires with an impurity27 and
Kondo problem.28 This has become possible owing to
a crucial result: Re[G(V, ω)] is given by an out-of-
equilibrium Kubo type formula, i.e., by the asymmetry
between the emission and absorption FF noise.29–31 In
this present and first non-perturbative investigation, we
show that Re[G(V, ω)] does not fit with its expression
obtained within the scattering approach. Even more, it
obeys exactly a surprising relation, Eq. (14), which deter-
mines it fully from the dc current, in a way similar to that
obtained in tunnel junctions within the Tien-Gordon the-
ory, but with a renormalized charge here.32,33 Recently,
such a relation has been generalized to full extent, in-
cluding arbitrary interactions: it has been shown to be
universal to lowest order with respect to a local or spa-
tially extended tunneling at arbitrary dimension, as well
as with respect to local or spatially extended backscat-
tering if one-dimensional systems are considered.34,35

Notice that our results will depend on parameters such
as the frequency cutoff ωc, an effective transmission we
call τ , and the voltage scale VB, which is related in a
non-universal way to ωc and τ . Nevertheless, we will
show that the scaling laws, known to be obeyed by the
dc current, can be extended to the FF conductance and
FF noise. More precisely, all these quantities depend
only on V/VB , kBT/eVB and ~ω/eVB, where T denotes
the temperature.

The paper is organized as follows: In Sec. II, we re-
view the mapping to an impurity problem in the TLL
model, which is used to take the Ohmic environment
into account, and some of its general consequences on
dc transport for arbitrary values of the environmental
resistance.7 Next, in Sec. III, we present our calculations
performed in the case R = Rq, and give the formal ex-
pressions of the current, noise and conductance in term of
transmission amplitude. In Sec. IV, we discuss in details
the dc regime (dc current, differential conductance, and

zero-frequency (ZF) noise) for which we recover known
results.36–39 In Sec. V, we explicit new results concern-
ing the time-dependent transport: FF conductance and
FF non-symmetrized noise, obtained in all energy ranges,
and explore them in the quantum regime. We finally con-
clude in Sec. VI. Notice that Tab. I refers to the adopted
abbreviations and Tab. II gives a synthesis of the param-
eters and constants that are used.

II. MODEL AND OUTLOOK

We consider a one-channel coherent conductor with
bare transmission τ0, in series with a dissipative envi-
ronment, the effective capacitance C of which includes
implicitly that of the conductor, thus whose impedance
reads as Z(ω) = R/(1+iωRC). However, we will restrict
to energies below ωRC = 1/RC in the following, thus one
can approximate:

Z(ω) ≈ R , for ω < ωRC . (2)

We denote the voltage imposed by the generator by V ,
and the current through the circuit by I (see upper panel
in Fig. 1). The voltage drop across the conductor is gen-
erally different from V . In the trivial limit of τ0 = 1, it is
given simply by KV , where K is defined by Eq. (1), due
to the resistance in series of the perfect conductor and
the resistance R of the Ohmic environment. Whenever
τ0 < 1, this is no more the case, apart from the pertur-
bative regime with respect to 1− τ0, when τ0 is close to
one.

V

τ

Ζ(ω)

I
0

0.7 0.8 0.9 1
0

0.1

0.2

Τ

Ω
�Ω

c

0

1

FIG. 1: Upper panel: Schematic representation of a one-
channel conductor with bare transmission τ0 embedded in an
electric circuit. Lower panel: Profile of the frequency depen-
dent transmission coefficient T of the equivalent system as a
function of frequency ω/ωc and effective transmission τ (see
Eq. (6)).

From now to the end of this section, we review the
result of Ref. 7. The one-channel conductor in series
with a resistance has been shown7 to be equivalent to an
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R, C, Z resistance, capacitance,

and impedance of the environment

K = (1 +R/Rq)
−1 interaction parameter of the TLL

Rq = h/e2 quantum of resistance

Gq = e2/h quantum of conductance

vF Fermi velocity

a distance cutoff of the TLL

ωF = vF /a frequency cutoff of the TLL

ωRC = 1/RC frequency of the RC circuit

ωc = min{ωF , ωRC} frequency cutoff of our model

τ0 bare transmission

τ effective transmission

vB =
√

(1− τ )/τ backscattering amplitude

eVB = 2~ωcv
2

B energy crossover between WBS and SBS

TABLE II: Synthesis of parameters and constants.

impurity problem in a TLL, the parameter K of which
is given by Eq. (1). Accordingly, one can use the TLL
model in the presence of backscattering with amplitude
vB, the Hamiltonian of which reads as:

H = H0 +
~ωF vB
4π

√
π
eiφ(t)−ieKV t/~ + h.c. , (3)

where H0 is the TLL Hamiltonian (for simplicity, we do
not include spin degrees of freedom). The bosonic field φ
coincides with the charge that is transferred through the
conductor: eφ(t) = Q(t). This bosonized Hamiltonian is
an effective one valid at energies below a typical energy
~ωF . In combination with the condition ω < ωRC for the
mapping to hold, we denote the effective frequency cutoff
by ωc = min{ωF , ωRC}.40 In Eq. (3), the parameter K in
exp(−ieKV t/~) results from the dc conductance of the
ballistic conductor (as can be inferred for instance from
Ref. 16). Moreover, the effective backscattering ampli-
tude vB is not related universally to the bare transmis-
sion τ0 in the absence of the environment. Indeed one
can not, in general, express the parameters of a strongly
correlated system in terms of those without interactions,
lacking correspondence between them.41 Nevertheless, we
introduce an effective transmission τ = 1/(1 + v2B) keep-
ing in mind that τ does not have to coincide with τ0.
Of course, when τ0 = 1 one has no backscattering, and
τ = 1 too. Also, we restrict vB to be weak enough –
thus τ close to one – in order to write the backscatter-
ing Hamiltonian in its bosonized form on the r.h.s. of
Eq. (3). It is reasonable, though not well established,
that this would correspond to τ0 close to one as well. It
is however possible that the Hamiltonian in Eq. (3) could
be extended beyond that restriction.42

The important effective parameter is indeed the scaling
voltage VB,

10 which appears in the Bethe-Ansatz solu-
tion as non-universal.13 It can be roughly related to the

backscattering amplitude through eVB ≃ ~ωcv
1/(1−K)
B .

Indeed VB characterizes the crossover between the WBS

and SBS regimes. At energies high enough compared to
eVB, one can use the perturbative RG analysis with re-
spect to a weak impurity by Kane and Fisher.43 In the op-
posite limit (i.e., at energies ≪ eVB) the wire is cut into
two pieces, with weak tunneling between them. Thus,
even though one starts from a weak impurity, lowering
the energy drives the system from the WBS behavior,
where the conductance is slightly reduced, into the SBS
regime where the conductance is suppressed. This means
that the DCB still takes place even when the effective
transmission τ is close to one,7 but below an effective
charging energy eVB . In particular, at energies much
smaller than eVB, thus in the SBS regime, it has been
shown that one recovers the P (E) theory which is rather
obtained starting from a very weak transmission.1 Even
more, it is possible to obtain non-perturbative results not
only with respect to R, but also to 1− τ , and to describe
the whole regime of energies below ωc. Such an achieve-
ment was made possible by exploiting the Bethe-Ansatz
exact solutions of Fendley et al.13 for the impurity prob-
lem in a TLL. Within the Bethe-Ansatz solution, the FCS
can be computed exactly as well. In particular, using
these results for the current and noise, it was possible to
derive a crucial and exact relation between the derivative
of the differential conductance G(V, ω = 0) = dI(V )/dV
and the differential ZF noise S(V, ω = 0) at zero temper-
ature:

Rq|eV | dG(V, ω = 0) = 2R dS(V, ω = 0) . (4)

Let us remark that in the limit of small R ≪ Rq, Eq. (4)
fits perfectly with the RG equation obtained by Kinder-
mann and Nazarov.6 Within the Bethe-Ansatz solution,
the FCS can be computed exactly as well. Using its
derivation at zero temperature,44 the mapping permits
to extend Eq. (4) to higher cumulants. It has also moti-
vated partly the recent investigations of the FCS at finite
temperature.26,45–48

More recently, in an interesting work, Golubev et al.12

have studied a mesoscopic interacting multi-channel con-
ductor connected to an Ohmic environment, using a
method based on Keldysh action. They have confirmed
the results presented above (of Ref. 7) in the perturba-
tive regime they restrict to (with respect to 1− τ), which
corresponds to high energies in the WBS domain.49 Even
more, when treating many channels in a mean-field ap-
proach, the agreement holds too, provided the TLL’s pa-
rameter in Eq. (1) incorporates the resistance of the con-
ductor. This shows that the mapping can be extended
to many channels, as well as its consequences discussed
above (at least at high enough energy), and motivates
further the computation done in this work.
In the following, we will consider the situation where

the resistance is equal to the quantum of resistance:
R = Rq. In that case, the TLL parameter is K = 1/2
(see Eq. (1)), and Eq. (3) is exactly solvable through a
refermionization procedure,19,36,50–53 thus one can per-
form a non-perturbative analysis of transport properties.
The refermionization introduces new independent chiral
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fermions with a frequency dependent transmission am-
plitude:

t(ω) =
ω

ω + ieVB/2~
, (5)

thus a transmission coefficient:

T (ω) = |t(ω)|2 =
4~2ω2

4~2ω2 + e2V 2
B

=
τ2ω2

τ2ω2 + (1− τ)2ω2
c

,(6)

where eVB = 2~ωcv
2
B is the energy crossover between the

WBS and SBS regimes. The profile of T (ω) is shown
in the lower panel of Fig. 1. Obviously, T (ω) is iden-
tical to 1 (perfect effective transmission) when τ = 1
whatever the frequency is. As we will show later on,
T (ω = eV/~) yields the non-linear differential conduc-
tance G(V, ω = 0) at zero temperature. In accordance
with the features concerning the crossover from WBS to
SBS, one sees that as soon as τ deviates from one, T (ω)
decreases quickly to zero at low frequency compared to
eVB/~. From Eq. (6), notice that T (ω = vBωc) coincides
with the effective transmission τ .

III. RESULTS

In this section, we present the formal results for the dc
current, the non-symmetrized noise, and the differential
conductance.
We first calculate the dc current, defined as the average

of the time derivative of the charge which is transferred
through the conductor: I(V ) = 〈Î(t)〉 = 〈Q̇(t)〉, where Î
is the current operator. Since we consider a dc applied

voltage, I(V ) is time-independent. The details of the
calculation are presented in Appendix A. We obtain:54

I(V ) =
e

4π

∫ ∞

−∞

dωT (ω)

× [f (~ω − eV/2)− f (~ω + eV/2)] , (7)

which corresponds to the Landauer formulation of the
current, where the Fermi-Dirac distribution function is
given by f(~ω) = [1 + exp(~ω/kBT )]

−1. The density of
states multiplied by the velocity is a constant, equal to
1/2π, because the energy spectrum of the new fermions
is linear too. Eq. (7) describes the behavior of the dc
current over all voltage and temperature ranges, start-
ing from the WBS regime down to the SBS regime. We
have to recall that the model describes a strongly cor-
related system where interactions cannot be treated by
any mean-field approach, and that the transmission am-
plitude incorporates their non-trivial effects. Notice that
in Eq. (7) we have made the choice of extending the limits
of integration to plus and minus infinity. Strictly speak-
ing, these limits should be −ωc and ωc, however we have
checked that the correction terms are negligible. In the
following, a similar choice will be made in all integrals
over frequencies.
Next, we calculate the FF non-symmetrized noise de-

fined as the Fourier transform of the current fluctuations:

S(V, ω) =

∫ ∞

−∞

dteiωt〈δÎ(0)δÎ(t)〉 , (8)

where δÎ(t) = Î(t) − 〈Î〉. We obtain the following result
(see Appendix B for details):

S(V, ω) =
e2

4π

∑

±

∫ ∞

−∞

dω′

(

[

T (ω′)T (ω + ω′) + |t(ω′)− t(ω + ω′)|2/4
]

[1− f(~ω′ ± eV/2)]f(~ω′ + ~ω ± eV/2)

+
[

T (ω′)− T (ω′)T (ω + ω′)− |t(ω′)− t(ω + ω′)|2/4
]

[1− f(~ω′ ± eV/2)]f(~ω′ + ~ω ∓ eV/2)

)

. (9)

A crucial and surprising observation is that this ex-
pression differs from that obtained within the scattering
approach for a one-channel conductor with an energy-
dependent transmission55–58 (see Appendix C for more
details on that comparison), even when applied to chiral
fermions.59

It is interesting to cast Eq. (9) under the alternative

form:

S(V, ω) =
e

2

∑

±

N(~ω ± eV )[I(±V ) + I(2~ω/e± V )]

+
e2

4π

∑

±

[N(~ω ± eV )−N(~ω)]

×
∫ ∞

−∞

dω′

[

T (ω′)T (ω + ω′) +
|t(ω′)− t(ω + ω′)|2

4

]

×[f(~ω + ~ω′ ± eV/2)− f(~ω′ ∓ eV/2)] , (10)

whereN(~ω) = [exp(~ω/kBT )−1]−1 is the Bose-Einstein
distribution function. Notice that in the trivial limit τ =
τ0 = 1 (i.e., perfect transmission), the voltage drop across
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the mesoscopic conductor is V/2 and the FF noise reduces
to S(V, ω) = ~ωN(~ω)Gq whatever the temperature is,
where Gq = e2/h is the quantum of conductance. An
interesting point is that, in the r.h.s. of Eq. (10), both
distribution functions f for fermions and N for bosons
(of the electromagnetic environment, thus electron-hole
excitations) are involved, which explains the fact that the
effective voltage is not the same in their arguments: one
has ~ω ± eV/2 for the function f , and ~ω ± eV for the
function N .
From Eq. (9), we deduce immediately the ZF noise:

S(V, 0) =
e2

4π

∑

±

∫ ∞

−∞

dω′

×
(

T 2(ω′)[1− f(~ω′ ± eV/2)]f(~ω′ ± eV/2)

+T (ω′) (1− T (ω′)) [1− f(~ω′ ± eV/2)]f(~ω′ ∓ eV/2)
)

.

(11)

Contrary to what occurs for the FF noise, one recovers, in
the ZF limit, an expression in terms of the transmission
coefficient T similar to that within the scattering theory.
Let us now calculate the FF conductance which is re-

lated to the non-symmetrized noise through the exact
relation:27,29

Re[G(V, ω)] =
S(V,−ω)− S(V, ω)

2~ω
. (12)

Reporting Eq. (9) in Eq. (12), all the terms which con-
tain a product of transmission coefficients vanish, and we
find simply:

Re[G(V, ω)] =
e2

4hω

∑

±

∫ ∞

−∞

dω′T (ω′)

×
[

f(~ω′ ± eV/2)− f(~ω + ~ω′ ± eV/2)
]

, (13)

which obeys unexpectedly the exact relation:60

Re[G(V, ω)] =
e

4~ω
[I (V + 2~ω/e)− I (V − 2~ω/e)] .

(14)

This is a central result of our paper: even though our
computation is non-perturbative, one recovers a similar
relation to that obtained within the perturbative Tien-
Gordon theory, with a renormalized charge e/2.32,33 In-
deed, such a relation has been recently shown in Ref. 35
to be generally valid for all strongly correlated systems at
arbitrary dimensions, with possible coupling to an arbi-
trary electromagnetic environment, provided one requires
the tunneling regime. In one-dimensional systems, the
same work has shown the universality of the relation for
one or many weak impurities in the WBS regime aside
from its validity in the SBS regime or for tunneling bar-
riers. Here, surprisingly, for a TLL with an impurity and
K = 1/2, or a conductor coupled to a quantum resis-
tance, Eq. (14) is valid for all voltage, temperature and

frequency ranges (below ~ωc) with a renormalized charge
e/2.
It is interesting as well to specify to frequencies much

larger than the applied voltage V , where the FF conduc-
tance becomes voltage-independent, thus reaches a linear
regime. In that case, Eq. (14) can be approximated sim-
ply, as in Ref. 35, by:

Re[G(V ≪ ~ω/e, ω)] ≈ eI(2~ω/e)

~ω
. (15)

In the two following sections, starting from the ex-
pressions derived here, we first recall some known results
of the stationary regime (Sec. IV) and next, we discuss
in details the news results of the time-dependent regime
(Sec. V).

IV. DIFFERENTIAL CONDUCTANCE AND ZF

NOISE

In this section, we explicit in more details the dc trans-
port in all the temperature and voltage ranges, starting
from the low temperature regime (kBT ≪ eV ) and end-
ing with the high temperature regime (kBT ≫ eV ).
Low temperature behavior. In the limit of strictly zero

temperature, the integral over frequency in Eq. (7) can be
performed analytically and the dc current reads as:36–38

I(V ) =
GqVB
2

[

V

VB
− arctan

(

V

VB

)]

. (16)

The dc current is thus given by a product of VB multi-
plied by a function of V/VB . This result has been used
successfully to describe recent experimental data.61 For
perfect effective transmission, τ = 1 (i.e., VB = 0), we
recover Ohm’s law: I(V ) = V/(2Rq), whereas at τ < 1,
the dc current is reduced: DCB persists even though one
starts from a good effective transmission. Even more, one
can check, as shown in Ref. 7, that in the SBS regime, at
V ≪ VB, one recovers a power law behavior controlled by
the exponent 1 + 2R/Rq = 3 as in the P (E) theory, and
obtained rather for a weakly transmitting conductor.1

For that, one expands Eq. (16) with respect to V/VB :

I(V ≪ VB) =
GqV

3

6V 2
B

. (17)

In the opposite limit of the WBS regime, i.e. at V ≫ VB ,
the reduction to the perfect current, called the backscat-
tering current:

IB(V ) =
GqV

2
− I(V ) , (18)

can be expanded with respect to VB/V :

IB(V ≫ VB) ≃ GqVB
2

(

π

2
− VB

V

)

. (19)
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FIG. 2: Left panel: Differential conductance, in unit of e2/h,
as a function of eV/~ω, for different values of τ , at kBT/~ωc =
0.001. Since we have eVB/~ωc = 2(1−τ )/τ , the corresponding
values of VB are: eVB/~ωc = 0.02 (red solid line), eVB/~ωc =
0.1 (green dashed line), eVB/~ωc = 0.22 (blue short dashed
line), and eVB/~ωc = 0.5 (black dotted line). Right panel:
All the curves of the left graph scale to a single one when
one considers the variation with V/VB. We take kBT/eVB =
0.001.

Notice that the first term on the r.h.s. corresponds to
that obtained within the perturbative computation,38

IB(V ) ∼ V 2K−1, which becomes voltage independent at
K = 1/2.
The differential conductance can be obtained either by

letting ω → 0 in Eq. (13), or by differentiating the dc
current of Eq. (16). At zero temperature, it reads as:

G(V, ω = 0) =
dI(V )

dV
=
Gq

2

[

1− V 2
B

V 2 + V 2
B

]

, (20)

and obeys the relation:

G(V, ω = 0) =
Gq

2
T
(

eV

2~

)

, (21)

where the behavior of the transmission coefficient T is
shown on the lower panel of Fig. 1. Notice that, at τ = 1,
the differential conductance becomes constant (linear): it
is equal to Gq/2 as the ballistic conductor is in series with
a resistance R = Rq. At τ < 1, G(V, ω = 0) can formally
reach Gq/2 for V → ∞, nevertheless it stays below since
eV is limited by the cutoff ~ωc.
The left panel of Fig. 2 gives the differential conduc-

tance at low temperature, which shows a ZBA that is
more pronounced when τ is reduced. A surprising result
is its large sensitivity with respect to small variations of
τ in the vicinity of 1 (see the red and green curves in
Fig. 2 for example): it is due both to the rapid varia-
tions of T (ω′) at frequencies low compared to ωc (when
τ is close to 1, see the lower panel of Fig. 1) which are
precisely those that give the dominant contribution to
the integral over ω′ in Eq. (13).62 We can see that the
crossover VB varies rapidly in the vicinity of τ close to
one, thus the SBS regime is reached much more rapidly
when τ decreases. It is important to recall that all the
curves scale to the same one when one scales the voltage
by VB , as shown in the right panel of Fig. 2.
At zero-temperature, the ZF noise of Eq. (11) becomes:

S(V, ω = 0) =
GqeVB

4

∣

∣

∣

∣

arctan

(

V

VB

)

− V VB
V 2 + V 2

B

∣

∣

∣

∣

.(22)
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FIG. 3: dc current and ZF noise as a function of the effec-
tive transmission τ , for eV/~ωc = 0.2, at a low temperature:
kBT/~ωc = 0.001. The arrows indicate the associated values
of eVB/~ωc. With a frequency cutoff of about 1 THz, the
value 0.01 eωc on the axis corresponds to a current of about
10 nA.

As for the dc current, the ZF noise is given by a product
of VB multiplied by a function of V/VB . One can check
that the ZF noise obeys Eq. (4), with R = Rq, which
confirms that the ZBA is exactly linked to the ZF shot-
noise in the presence of the electromagnetic environment.

Figure 3 shows the dc current and the ZF noise as
functions of τ , at low temperatures compared to voltage,
kBT ≪ eV : the current shows an increasing behavior,
whereas the ZF noise is non monotonous. This is due
to the fact that the current is expressed as the integral
of the transmission coefficient, see Eq. (7), and that the
integral expression of the ZF noise of Eq. (11) contains
a term proportional to T (ω′)(1 − T (ω′)). For VB > V
(i.e., τ < 0.9 using the parameters of Fig. 3), the current
and ZF noise curves converge to the same value. Thus,
the Fano factor – given by the ratio S(V, ω = 0)/|I(V )|
– tends to e, the value obtained in the Poissonian regime
with independent transfer events of charge e trough the
mesoscopic conductor. For VB ≪ V , the transfer events
are no more independent but the noise is still close to
zero because of the (1 − T (ω′)) factor. In addition, the
Fano factor – defined this time by the ratio S(V, ω =
0)/|IB(V )|, where IB is the backscattering current given
by Eq. (18) – is equal to e∗ = e/2. In the FQHE at
ν = K = 1/(2n + 1), the Fano factor would be given
by fractional charge e∗ = Ke. In the DCB context, this
renormalization is related to the dc conductance Gq/2
without backscattering.

Intermediate temperature behavior. The left panel of
Fig. 4 shows the differential conductance at zero volt-
age as a function of temperature for various values of
τ . When the temperature increases, the ZBA is sup-
pressed, a behavior similar to what is obtained within the
P (E) theory.1,63 Again, all these curves coincide when
one considers their variation with respect to kBT/eVB
(see right panel of Fig. 4). Fig. 5 shows that the cur-
rent and the ZF noise increase both monotonously with
τ , and that the noise is larger that the current due to
thermal fluctuations. In the intermediate temperature
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FIG. 4: Left panel: Differential conductance, in units of e2/h,
as a function of temperature T , in units of ~ωc/kB , for dif-
ferent values of τ , at V = 0. Right panel: All the curves of
the left graphic scale to a single one when one considers the
variation with respect to kBT/eVB.

regime kBT ≈ eV , the ZF noise has a totally different
dependence on τ in comparison to its behavior at low
temperature due again to an increasing contribution of
the thermal noise. However, the total noise is not a direct
superposition of shot noise and thermal noise, but results
from a more complicated interplay between them.16,23,27
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0.8 0.9 1
0

0.02

0.04

0.06

Τ

S HV = 0.2 ; Ω = 0L

e2
Ωc

I HV = 0.2L

eΩc

FIG. 5: dc current and ZF noise as a function of the effective
transmission τ , for eV/~ωc = 0.2, and kBT/~ωc = 0.2. The
arrows indicate the associated values of eVB/~ωc.

High temperature behavior. In the equilibrium regime
(i.e., for kBT ≫ eV ), the dc current of Eq. (7) becomes
strictly linear in V , and the linear conductance takes the
value:36–39

G = G(V = 0, ω = 0)

=
Gq

2

[

1− eVB
4πkBT

Ψ′

(

1

2
+

eVB
4πkBT

)]

, (23)

where Ψ(x) = Γ′(x)/Γ(x), and Γ is the Gamma function.
In particular, in the SBS, at kBT ≪ eVB, one recovers
the power law:

G =
2π2Gqk

2
BT

2

3e2V 2
B

. (24)

This result is in accordance with the generic behav-
ior of the TLL in the SBS regime,38,43 where one has
G ∼ T 2/K−2, as K = 1/2 here. It is also similar to that
obtained within the P (E) theory in the tunneling regime,
even though the conductor is well-transmitting here.7 No-
tice that this dependence on temperatures kBT ≫ eVB in

Eq. (24) is similar to that of the non-linear conductance
on voltages V ≪ VB , as one can see from differentiat-
ing Eq. (17). This confirms, as generally expected, that
temperature and voltage play symmetric roles. More pre-
cisely, the differential conductance at both finite temper-
atures and voltages obeys a scaling law: G ∼ TαF (V/T ),
where F (x ≪ 1) ≃ xα and F (x ≫ 1) → constant value.
This leads in particular to the same power law behavior
with respect to max{kBT, eV }. While this is valid in the
SBS regime as we have just shown, with α = 2, it turns
out that this scaling behavior is violated in the opposite
limit of WBS as we discuss in detail now. More precisely,
one has to consider the backscattering conductance, de-
fined as the differential of the backscattering current in
Eq. (18): GB = Gq/2−G. Using Eq. (23) at kBT ≫ eVB
yields:

GB =
πGqeVB
16kBT

, (25)

in accordance with the behavior VBT
2K−2 at arbitrary

K. We see, however, that this dependence on temper-
ature is different from that on voltage obtained by ex-
panding Eq. (20) in the WBS regime (V ≫ VB) (see also
Eq. (19)):

GB =
GqV

2
B

2V 2
. (26)

As we have already commented concerning Eq. (19),
for generic values of K, the lowest order expansion of
the backscattering current is given by IB ∼ VBV

2K−1,
leading to a differential conductance proportional to
(2K − 1)VBV

2K−2, which cancels at K = 1/2. This
can be seen as well by differentiating the constant term
on the r.h.s. of Eq. (19): thus one needs the next term,
yielding to the first non-zero contribution in Eq. (26).

V. FF CONDUCTANCE AND FF NOISE

In this section, we discuss the dynamical properties
of our system by performing plot analysis of the formal
expressions of the FF conductance Re[G(V, ω)] and the
FF non-symmetrized noise S(V, ω) obtained in Sec. III.
Both quantities depend not only of the voltage V and fre-
quency ω, but also on temperature. More precisely, they
can be cast into a scaling form, being a function of V/VB ,
~ω/eVB, and kBT/eVB. All the dependencies can be ob-
tained exactly, provided these energies are below ~ωc, but
we have to make restrictions on the number of curves pre-
sented. Here we will focus first on low temperatures com-
pared to voltage and frequency, kBT ≪ {~ω, eV }, thus
both out-of-equilibrium and quantum regime, allowing
for ~ω to be of the order or greater than eV . Then we
will consider intermediate and high temperatures com-
pared to the voltage.
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Low temperature behavior. At T = 0, using Eqs. (14)
and (16), the FF conductance reads as:

Re[G(V, ω)] =
Gq

2

[

1− eVB
4~ω

∑

±

arctan

(

2~ω ± eV

eVB

)

]

.

(27)

For τ = 1, it reduces to the perfect conductance – equal
to Gq/2 – whereas for τ < 1, it acquires a frequency de-
pendence as shown on Fig. 6. Since Re[G(V, ω)] is an
even function of ω, it is plotted at positive frequencies
only. This result is interesting in the sense that the FF
conductance has a non monotonous behavior. It exhibits
a minimum (see the left panel of Fig. 6) at a frequency
depending on both V and VB which is fixed by the can-
cellation of the derivative ∂ωRe[G(V, ω)]. When τ de-
creases, this non monotonous behavior disappears, and
the FF conductance increases regularly with frequency.
All these curves scale to the same one when one con-
siders their variation with respect to ~ω/eVB, at fixed
V/VB and kBT/eVB (see right panel of Fig. 6). Notice
that because of the finite value of the voltage, the FF con-
ductance acquires a non-zero value – even though small
– at zero frequency. This has been checked by zooming
around ω = 0 (not shown).
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FIG. 6: Left panel: FF conductance, in units of e2/h, as a
function of ω/ωc, for different values of τ , at eV/~ωc = 0.2
and kBT/~ωc = 0.001. Right panel: All the curves of the left
graphic scale to a single one when one considers their variation
with ~ω/eVB. We take V/VB = 0.2 and kBT/eVB = 0.001.

We turn now our attention to the FF noise. At T = 0,
the integral in Eq. (9) can be performed analytically and
the FF non-symmetrized noise reads:

S(V, ω) = GqeVBF
(

V

VB
,
~ω

eVB

)

, (28)

where the dimensionless function F is given by:

F(Ṽ , ω̃) = −ω̃Θ(−ω̃) + 1

8

∑

±

[

±Θ(−ω̃ ± Ṽ )arctan(Ṽ )

+
[

3Θ(−ω̃)−Θ(−ω̃ ∓ Ṽ )
]

arctan
(

2ω̃ ± Ṽ
)

]

+
1

8ω̃

∑

±

[

−Θ(−ω̃) + Θ(−ω̃ ± Ṽ )
]

×
[

ln
(

1 + Ṽ 2
)

− ln
(

1 + (2ω̃ ∓ Ṽ )2
)

]

. (29)

Here Θ is the Heaviside function, Ṽ = V/VB and ω̃ =
~ω/eVB. Notice that the FF noise is an even function
of V . Because of this parity, we will specify only to
positive values of the voltage. We recall that the FF
non-symmetrized noise at positive (negative) frequencies
corresponds to emission (absorption) noise.64

An important fact we observe is that the emitted noise
vanishes exactly above eV . In the perturbative regime,
one usually expects that the emitted noise vanishes above
eKV .23 Indeed, it has been shown universally for a weak
tunneling junction (between strongly correlated systems
in arbitrary dimensions and with possible coupling to an
environment) that the FF noise associated to tunneling
vanishes above qV , where q is the transferred charge.29

Nevertheless, when higher order processes with respect to
tunneling are taken into account, one expects the impli-
cation of a many-body complicated process, and energy
conservation at the level of one particle can not be used
any more. In strongly correlated systems or in a con-
ductor coupled to an environment, we are not aware of
any non-perturbative statement about the existence of a
value of the frequency ω over which the emitted noise
vanishes. However, we obtain an exact result here: the
emitted noise vanishes strictly at frequencies ~ω > eV ,
whatever the values of V and VB are. This is due to the
Bose-Einstein distribution functions of Eq. (10) which
reduce, in the zero temperature limit, to the Heaviside
functions of Eq. (29). Their presence is related to the
photon exchange between the conductor and the envi-
ronment corresponding to electron-hole type excitations.
One can think of two possible scenarios: (i) The new
fermions are independent. For non-interacting electrons,
scattering theory predicts that the emitted noise vanishes
above eV . Even though the FF noise in our case does not
obey the same relation with respect to the transmission
amplitude t(ω), one can imagine that a similar fact holds.
(ii) The second scheme is that the system cannot emit at
higher frequencies compared to what the generator can
afford, and not compared to the voltage across the con-
ductor V/2 if it was perfect. If this is plausible, it opens
the question as to whether such a result is universal for
the TLL with an arbitrary value of the parameter K,
thus for other values of the resistance R. Equivalently,
for ~ω < −eV , we have S(V,−ω) = 0, and Eq. (12)
reduces to:29

S(V, ω < −eV/~) = −2~ωRe[G(V, ω)] , (30)

which means that at negative frequencies below −eV/~
and zero temperature, the absorption FF noise is gov-
erned by the FF conductance.
It is also interesting to express the FF non-

symmetrized excess noise which is often measured ex-
perimentally, both because zero-point fluctuations are
not easy to measure (apart from a pioneering work in
Ref. 65), and in order to subtract undesirable sources of
noise. It is given by:

∆S(V, ω) = S(V, ω)− S(V = 0, ω) . (31)
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At zero temperature, it reads:

∆S(V, ω) = GqeVB[F(Ṽ , ω̃)−F(0, ω̃)] , (32)

where the function F is given by Eq. (29).
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FIG. 7: Left panel: Non-symmetrized excess noise at negative
frequency, in units of e2ωc, as a function of ω/ωc, for different
values of τ , at eV/~ωc = 0.2 and kBT/~ωc = 0.001. Right
panel: Non-symmetrized excess noise at negative frequency,
in units of e2VB/~, as a function of ~ω/eVB , at V/VB = 0.2
and kBT/eVB = 0.001.
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FIG. 8: Left panel: Non-symmetrized excess noise at positive
frequency, in units of e2ωc, as a function of ω/ωc, for different
values of τ , at eV/~ωc = 0.2 and kBT/~ωc = 0.001. Right
panel: Non-symmetrized excess noise at positive frequency,
in units of e2VB/~, as a function of ~ω/eVB , at V/VB = 0.2
and kBT/eVB = 0.001.

In the left panels of Figs. 7 and 8 is plotted the excess
noise at a very low temperature66 at positive frequency
and negative frequency respectively. The red curve cor-
responds to a value of VB ≪ V , i.e. to the WBS regime.
In that case one sees, according to Eq. (29), that the de-
pendence close to ~ω = ±e∗V = ±eV/2 is due mainly to
the arctan function: this explains the step whose width
is controlled by VB . The step is smoothed out at higher
VB (i.e., lower τ) in the green and blue dashed curves of
Fig. 7. However, the asymmetry between absorbed and
emitted excess noise is always present whatever the value
of the effective transmission is. This asymmetry has been
shown to be related, in a universal way, to non-linearity,
using Eq. (12).29 Here, the non-linearity is induced by the
electromagnetic environment. All these curves at differ-
ent τ scale to a unique one as it is shown in the right
panels of Figs. 7 and 8 where ∆S is plotted as a function
of ~ω/eVB when the ratios V/VB and kBT/eVB are fixed.
We have to draw attention to the fact that this requires
us to change simultaneously all energy scales while VB
changes.
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FIG. 9: Left panel: FF conductance, in units of e2/h, as a
function of kBT/~ωc, for different values of τ , at V = 0 and
ω/ωc = 0.1. Right panel: All the curves of the left graphic
scale to a single one when one considers their variations with
respect to kBT/eVB. We take V = 0 and ~ω/eVB = 0.1.
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FIG. 10: Left panel: Non-symmetrized excess noise, in units
of e2ωc, as a function of ω/ωc, for different values of τ . We
use the values eV/~ωc = 0.2, and kBT/~ωc = 0.2. Right
panel: Non-symmetrized excess noise, in units of e2VB/~, as
a function of ~ω/eVB, at V/VB = 0.2 and kBT/eVB = 0.2.

Intermediate temperature behavior. Next, we look at
the effect of the temperature on the FF conductance and
the FF noise. The left panel of Fig. 9 shows that the
FF conductance increases monotonously with tempera-
ture. Again, all the curves scale to a single one when one
considers the variation with respect to kBT/eVB at fixed
~ω/eVB (see the right panel of Fig. 9). The FF excess
noise at intermediate temperatures is plotted on the left
panel of Fig. 10. However, the asymmetry of the FF ex-
cess noise is still visible in that regime, and we observe its
enhancement when the effective transmission decreases.
Again, all the curves scale to a single one when one con-
siders the variation with ~ω/eVB at fixed values of V/VB
and kBT/eVB (see the right panel of Fig. 10).

High temperature behavior. At high temperatures com-
pared to voltage, kBT ≫ eV , we have checked, using
Eqs. (10) and (14), that the FF non-symmetrized noise
is related to the FF conductance and becomes voltage
independent in that limit according to the fluctuation-
dissipation theorem:

S(V ≪ kBT/e, ω) = 2~ωN(~ω)Re[G(V ≪ kBT/e, ω)] .

(33)
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VI. CONCLUSION

In this paper, we have studied both stationary
and time-dependent transport properties of a well-
transmitting one-channel conductor embedded in an
Ohmic environment with a quantum of resistance Rq =
h/e2. We have taken advantage of the mapping of this
problem to a TLL with a particular value of the inter-
action parameter K = 1/2. This has allowed us to ob-
tain results which are non-perturbative with respect to
the resistance of the environment R (here being equal
to Rq, see Eq. (1)), and which describes all regimes of
voltages, frequencies and temperatures below the cutoff
ωc. The results are controlled by a unique scaling and
non-universal parameter VB which depends on both the
properties of the conductor and the environment. While
the dc properties can as well be derived exactly for other
values of R (analytically at zero temperature, otherwise
one would need numerical methods), using the Bethe-
Ansatz solution for the impurity problem in the TLL,
the particular choice of R = Rq has allowed us to obtain
the first non-perturbative results for both the FF noise
and the FF conductance. For the latter, we have used its
universal relation to the asymmetry of the emission and
absorption noise, via an out-of-equilibrium fluctuation-
dissipation theorem type formula (see Eq. (12)) derived
in Ref. 31.

We have first recalled the results for the dc transport
obtained in a TLL with parameter K = 1/2 in order
to apply them to our present problem and to discuss
them in more details. The key procedure is based on
refermionization, i.e., casting the non-trivial strong cor-
relation effects into new chiral fermions with an energy-
dependent transmission coefficient T (ω). This cannot be
obtained by any “adiabatic” evolution from the effective
transmission τ (which explains our choice for a different
notation). The dc current through the mesoscopic con-
ductor takes a form similar to that within the scattering
theory, applied to the new fermions: it is expressed as the
integral over energy of T (ω) times the difference of the
Fermi-Dirac distribution functions of the left and right
reservoirs. Even for a good effective transmission τ , one
recovers the DCB at energies below the voltage VB . The
reduction to the dc current has a power law with differ-
ent exponents when voltages are high or low compared
to VB , corresponding to the WBS and SBS regimes. In
particular, in the latter limit, one recovers the behav-
ior predicted within the P (E) theory for V ≪ VB for a
weakly transmitting conductor, even though we consider
a well transmitting one here. In these two opposite lim-
its, the ZF noise becomes Poissonian, with a Fano factor
respectively given by e/2 or e. The former renormaliza-
tion is related to the conductance of the conductor in
the perfect limit, being in series with the environmental
quantum resistance.

The ZF noise obeys as well the same expression in
terms of T (ω) as within the scattering approach. Never-
theless, this does not hold for the FF noise even though

it can be expressed in terms of the transmission ampli-
tude t(ω) : this is a surprising and crucial result of our
paper. Another interesting fact is that the emitted FF
noise vanishes strictly above eV at zero temperature, a
fact common to non-interacting electrons, which is not
obvious to expect within the underlying strongly corre-
lated system. We have shown that the FF conductance
does not obey the scattering approach formulation for the
new fermions. Rather, it obeys a simple relation that in-
volves dc currents. This kind of relation was previously
shown for tunneling barriers within the Tien-Gordon the-
ory, or in the FQHE at simple fillings.23 Recently it has
been extended to arbitrary filling factors, and even more
has been shown to be universal either for tunneling bar-
riers in arbitrary dimensions, as well as weak barriers in
one dimension.35 It is quite remarkable that such a rela-
tion extends to arbitrary regimes within the TLL model
at K = 1/2. It turns out that the FF conductance has
a non-monotonous behavior with respect to frequency,
having a minimum at a frequency that depends both on
the applied voltage and the scaling voltage VB, and the
value of which is reduced when the effective transmission
τ decreases.
We have shown that both the FF conductance and the

FF noise have a universal behavior at different τ when
voltages, temperatures and frequencies are all divided by
the same scaling voltage VB . This extends the result ob-
tained for the differential conductance, valid for arbitrary
values of the parameter K – thus of the resistance R in
our problem – where we expect to get the same scaling
behavior for time-dependent transport as well.
The coherent conductor connected to an Ohmic en-

vironment offers a unique framework to realize a TLL
with a tunable parameter K, and a unique possibility
to realize K = 1/2. The present experiments on that di-
rection are very promising.11 Beyond this issue, our work
provides benchmark results for time-dependent transport
in various fundamental problems: the DCB phenomena,
other strongly correlated systems where the special value
K = 1/2 has been studied fully,48 and more generally
those where one solves the interacting problem in terms
of new independent particles, such as within the Bethe-
Ansatz methods for the impurity problem in TLL.13 We
have highlighted novel counter-intuitive facts, in particu-
lar, we have shown that one can not systematically apply
the scattering approach to those new independent parti-
cles.
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the refermionization procedure.

Appendix A: Calculation of the current

The mapping of Ref. 7 applies to the effective action
once degrees of freedom apart from those at x = 0 are
integrated out. It is more convenient, for the present
computation, to consider the extended TLL Hamiltonian
over space coordinate x, with an impurity located at x =
0 (see Fig. 11):

H =
~vF
4π

∫

dx[(∂xφ(x, t))
2 + (∂xφ̃(x, t))

2]

+

√

~ωF eVB
32π3

eiφ(0,t)−ieV t/2~ + h.c. , (A1)

where the bosonic fields φ and φ̃ are related to the initial
bosonic fields describing right (R) and left (L) movers
through:

φ(x, t) =
1√
2
(φR(x, t) + φL(x, t)) , (A2)

φ̃(x, t) =
1√
2
(φR(x, t) − φL(x, t)) , (A3)

where ψL,R = ηL,Re
iφL,R(x,t)/

√
2πa are the initial

fermionic operators. a is the distance cutoff of the TLL
theory. The Klein factors ηL,R allow to have the proper
commutation relation for the fermionic operators. Notice
that in Eq. (3), the bosonic field refers to φ(t) ≡ φ(0, t).
The average current through the conductor is given

by:42

I = evF 〈ρ̂R − ρ̂L〉 , (A4)

where vF is the Fermi velocity. The operators ρ̂R and ρ̂L
refer to the densities of right and left moving electrons in
TLL reservoirs (see Fig. 11). They are related to the new
fermionic operators introduced in the refermionization
procedure through the relations:

ρ̂R(x, t) =
ψ̃†(x, t)ψ̃(x, t) + ψ†(x, t)ψ(x, t)

2
, (A5)

ρ̂L(x, t) =
ψ̃†(−x, t)ψ̃(−x, t)− ψ†(−x, t)ψ(−x, t)

2
,

(A6)

where ψ(x, t) = ηeiφ(x,t)/
√
2πa and ψ̃(x, t) =

η̃eiφ̃(x,t)/
√
2πa are the new fermionic fields associated to

the bosonic fields φ and φ̃: ψ(x, t) is affected by backscat-
tering and by the applied voltage (see Eq. (A1)), whereas

ψ̃(x, t) is neither affected by backscattering, nor by the
applied voltage. In Eq. (A4), the average value is defined
as the average over the scattering state19 minus the aver-
age at equilibrium (i.e., V = 0), since we have to take the
normal order52 in the products of operators that appear
in Eqs. (A5) and (A6). Thus, we immediately conclude

that 〈ψ̃†(x, t)ψ̃(x, t)〉 = 0. The Klein factors η and η̃ al-
low us to have the proper commutation relation for the
new fermionic operators.

x

R R

L L
BV

0

FIG. 11: Schematic representation of the left and right prop-
agating channels in the reservoirs. eVB = 2~ωF v

2

B is the
energy scale that characterizes backscattering of electrons at
the conductor position x = 0.

From Eqs. (A5) and (A6), we understand that ρ̂R and
ρ̂L depend on the position x, however, the average of the
difference 〈ρ̂R − ρ̂L〉, which appears in the current, does
not depend on the position, since the average of the total
current is a conserved quantity (it is the reason why we
do not keep the x dependency in the current).
Using this Hamiltonian, one can write the equations

of motion for the fields. The solution for the fermionic
field ψ̃, associated with the free bosonic field, is that of
free propagating electrons, whereas the solution for ψ is
given by19 (from now, we take x > 0):

ψ(−x, t) =
1√

2πaωF

∫ ∞

−∞

aωe
−i(ω+ eV

2~
) x
vF

−iωt
dω ,

(A7)

ψ(x, t) =
1√

2πaωF

∫ ∞

−∞

bωe
i(ω+ eV

2~
) x
vF

−iωt
dω ,

(A8)

where the operator bω = t(ω)aω + r(ω)a†−ω is a combina-

tion of the annihilation and creation operators, a†ω and

aω, which obey the commutation relation {aω, a†ω′} =
δω,ω′ . The transmission and reflection amplitudes read
as:

t(ω) =
2~ω

2~ω + ieVB
, (A9)

r(ω) =
ieVB

2~ω + ieVB
. (A10)

With the help of the solutions given by Eqs. (A7) and
(A8), one can calculate the average over the product of
the two fermionic fields:

〈ψ†(−x, t)ψ(−x, t)〉 = 1

2πvF

∫ ∞

−∞

dω

× [f (~ω − eV/2)− f (~ω)] , (A11)

and,

〈ψ†(x, t)ψ(x, t)〉 = 1

2πvF

∫ ∞

−∞

dω

× (2T (ω)− 1) [f (~ω − eV/2)− f (~ω)] , (A12)
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where T = t∗t. We have used the following average val-
ues: 〈aωaω′〉 = 0, and 〈a†ωaω′〉 = f(ω − eV/2)δω,ω′ , with
f is the Fermi-Dirac distribution function. Reporting
Eqs. (A11) and (A12) into Eqs. (A4) and (A5), we fi-
nally obtain Eq. (7).

Appendix B: Noise calculation

To calculate the FF non-symmetrized noise, we need
to evaluate the following correlators (x > 0):

S1 =

∫ ∞

−∞

dteiωt〈ψ†(−x, 0)ψ(−x, 0)ψ†(−x, t)ψ(−x, t)〉 ,

S2 =

∫ ∞

−∞

dteiωt〈ψ†(x, 0)ψ(x, 0)ψ†(−x, t)ψ(−x, t)〉 ,

S3 =

∫ ∞

−∞

dteiωt〈ψ†(−x, 0)ψ(−x, 0)ψ†(x, t)ψ(x, t)〉 ,

S4 =

∫ ∞

−∞

dteiωt〈ψ†(x, 0)ψ(x, 0)ψ†(x, t)ψ(x, t)〉 .

(B1)

The determination of S1 is rather simple since it
involves contributions which are not affected by the
backscattering:

〈ψ†(−x, 0)ψ(−x, 0)ψ†(−x, t)ψ(−x, t)〉 = 1

4π2a2ω4
F

×
∫

dω1

∫

dω2

∫

dω3

∫

dω4〈a†ω1
aω2

a†ω3
aω4

〉

×ei(−ω1+ω2−ω3+ω4)
x

vF
+i(ω3−ω4)t . (B2)

We use Wick’s theorem to calculate the correlator
〈a†ω1

aω2
a†ω3

aω4
〉. After successive integrations over fre-

quencies and times, we obtain :

S1 =
1

2πv2F

∫ ∞

−∞

dω′f (~ω + ~ω′ − eV/2)

× [1− f (~ω′ − eV/2)] . (B3)

The calculation of S2 and S3 mix aω and bω operators
since:

〈ψ†(x, 0)ψ(x, 0)ψ†(−x, t)ψ(−x, t)〉 = 1

4π2a2ω4
F

×
∫

dω1

∫

dω2

∫

dω3

∫

dω4〈b†ω1
bω2

a†ω3
aω4

〉

×ei(−ω1+ω2−ω3+ω4)
x

vF
+i(ω3−ω4)t , (B4)

and

〈ψ†(−x, 0)ψ(−x, 0)ψ†(x, t)ψ(x, t)〉 = 1

4π2a2ω4
F

×
∫

dω1

∫

dω2

∫

dω3

∫

dω4〈a†ω1
aω2

b†ω3
bω4

〉

×ei(−ω1+ω2−ω3+ω4)
x

vF
+i(ω3−ω4)t . (B5)

We obtain S2 = S3 with:

S2 =
1

2πv2F

∫ ∞

−∞

dω′f (~ω + ~ω′ − eV/2)

× [1− f (~ω′ − eV/2)]

×
[

t(ω′)t∗(ω′)t(ω + ω′)t∗(ω + ω′)

−r(ω′)r∗(ω′)r(ω + ω′)r∗(ω + ω′)
]

. (B6)

Next, we calculate S4 which involves bω and b†ω opera-
tors since:

〈ψ†(x, 0)ψ(x, 0)ψ†(x, t)ψ(x, t)〉 = 1

4π2a2ω4
F

×
∫

dω1

∫

dω2

∫

dω3

∫

dω4〈b†ω1
bω2

b†ω3
bω4

〉

×ei(−ω1+ω2−ω3+ω4)
x

vF
+i(ω3−ω4)t . (B7)

Applying Wick’s theorem, we obtain:

S4 =
1

2πv2F

∫ ∞

−∞

dω′

{

f (~ω + ~ω′ − eV/2)

× [1− f (~ω′ − eV/2)]

×
[

|t(ω′)|2|t(ω + ω′)|2 + |r(ω′)|2|r(ω + ω′)|2

−2t(ω′)t∗(ω + ω′)r∗(ω′)r(ω + ω′)
]

+
∑

±

f (~ω + ~ω′ ± eV/2) (1− f (~ω′ ∓ eV/2))

×
[

|t(ω′)|2|r(ω + ω′)|2

+t(ω′)t∗(ω + ω′)r∗(ω′)r(ω + ω′)
]

}

. (B8)

Finally, the FF non-symmetrized noise of Eq. (9) is
obtained from S(V, ω) = e2v2F [S1 + S2 + S3 + S4]/4,
where we replace, everywhere it appears, r(ω) by 1−t(ω).

Appendix C: Comparison to the results obtained

within the scattering theory

In this Appendix, we compare the expressions of cur-
rent, FF conductance and noise that we have established
to those obtained in the framework of the scattering the-
ory.
It has been already noted that the expressions of the

dc current given by Eq. (7) and the ZF noise are for-
mally identical to those derived from the scattering ap-
proach (i.e., they are expressed as integrals of the trans-
mission coefficient times Fermi Dirac distribution func-
tions), even though the non-trivial many-body effects are
encoded into this transmission. We show here that the
FF conductance and the FF noise, even though expressed
in terms of the transmission and reflection amplitudes,
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do not obey the relation derived within the scattering
approach.
To make a comparison with the FF noise given in the

literature,55–58 we need to symmetrize the noise given by
Eq. (9):

S(V, ω) + S(V,−ω) = e2

4π

∫ ∞

−∞

dω′

(

[

T (ω′)T (ω + ω′) + |t(ω′)− t(ω + ω′)|2/4
][

F++(ω, ω
′) + F−−(ω, ω

′)
]

+
[

T (ω′)− T (ω′)T (ω + ω′)− |t(ω′)− t(ω + ω′)|2/4
][

F+−(ω, ω
′) + F−+(ω, ω

′)
]

)

, (C1)

where Fss′(ω, ω
′) =

∑

± f(~ω
′ ± ~ω ± seV/2)[1 − f(~ω′ ± s′eV/2)]. Using our notations, the symmetrized noise of

a coherent one-channel coherent conductor with an energy-dependent transmission T can be obtained within the
scattering approach:57

Sscattering(V, ω) + Sscattering(V,−ω) =
e2

4π

∫ ∞

−∞

dω′

(

[

T (ω′)T (ω + ω′) + |t(ω′)− t(ω + ω′)|2
]

F++(ω, ω
′)

+T (ω′)T (ω + ω′)F−−(ω, ω
′) + T (ω′)(1− T (ω + ω′))F+−(ω, ω

′) + T (ω + ω′)(1 − T (ω′))F−+(ω, ω
′)

)

. (C2)

The main difference between Eqs. (C1) and (C2) re-
sides into the factors in front of F++ and F−− which are
identical in Eq. (C1) but not in Eq. (C2). The same

remark applies to the factors in front of F+− and F−+.
If one had a transmission coefficient T independent on
energy, both expressions would have been identical.
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