
HAL Id: hal-00666919
https://hal.science/hal-00666919

Submitted on 6 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Detection and Classification of Defect on
road Pavement using Anisotropy Measure

Tien Sy Nguyen, Manuel Avila, Stéphane Begot

To cite this version:
Tien Sy Nguyen, Manuel Avila, Stéphane Begot. Automatic Detection and Classification of Defect on
road Pavement using Anisotropy Measure. European Signal Processing Conference, 2009, Glasgow,
United Kingdom. pp.617-621. �hal-00666919�

https://hal.science/hal-00666919
https://hal.archives-ouvertes.fr


AUTOMATIC DETECTION AND CLASSIFICATION OF DEFECT ON ROAD
PAVEMENT USING ANISOTROPY MEASURE

Tien Sy NGUYEN(1)(2), Manuel AVILA(1), BEGOT Stephane(1)

(1) Institute PRISME
University Orleans, IUT Chateauroux, France

(2) Vectra Company,Buzanais, France
web: www.vectra.fr

email: tien-sy.nguyen@etu.univ-orleans.fr

ABSTRACT

Existing systems for automated pavement defect detection
can only identify cracking type defects. In this paper, we in-
troduce a method which can detect not only cracks as small
as 1mm in width, but also two other defect types: joint and
bridged. Road images are captured by our acquisition sys-
tem. Firstly, a pre-processing step is applied on images to
remove lane-marking. Then an anisotropy measure is calcu-
lated to detect road defects. Finally, a backpropagation neu-
ral network is used to classify the images into four classes:
defect-free, crack, joint and bridged. Experimental results
were performed on real road images which were labelled by
human operators. Comparisons with other methods are also
given.

1. INTRODUCTION

To manage road network, road authorities need accurate and
up-to-date information about road defects. In France, thou-
sands of kilometers of roads need to be inspected each year.
In the past, road inspection process was done manually on
road by human inspectors; this method is slow and unsafe
for the inspectors and road users [1]. In the last few years,
several automated pavement inspecting systems which use
advanced machine vision technology have been developed.
Some such devices are CSIRO’s RoadCrack vehicle [2] and
Roadware’s ARAN system [3]. Unfortunately, all existing
systems are only able to detect crack defects. We developed
AMAC R©[4] (Figure 1(a)) - a multifunction device for road
analysis. One of its functions is to capture road surface im-
ages for defect inspection. Actually, the inspection process
is done offline by human operators via viewing captured im-
ages. This manual inspection is not only time-consuming,
costly but also subjective. For this reason, methods for auto-
matic defect detection surface images are required.

Defect detection on pavement surface is a difficult prob-
lem due to the noisy pavement surfaces [5]. There are differ-
ent types of texture that can be encountered on road pave-
ments. Furthermore, by traffic effects, pavement texture
varies on different zones of the image. Authors in [1] also
showed that many road pavements have “strong texture”. It
means that, crack is thinner than aggregate size and distance
inter-aggregates. As a result, it is difficult to distinguish a
crack with an unusual aggregate distribution. Because of
the above reasons, methods for detecting defects on texture
surface which use regularities of background texture as fre-
quency or orientation cannot be applied on road pavement
surface.

All existing methods for detecting defect on pavement
surface were based on characteristics of crack. They con-
sider that crack pixels are darker than their surrounding. Au-
thors in [6, 7, 8, 9, 10] used a fixed threshold, while Cheng et
al [11] employed a fuzzy threshold technique to detect dark
pixels (crack). Oliveira et al [12] and Huang [13] proposed
another approach, they divide image into grid cells and each
cell is classified as crack or crack-free cell using mean and
variance of grayscale values. Subirats et al [1] supposed that,
by applying a 2D CWT (Continuous Wavelet Transform),
the differences between crack pixels and background pix-
els could be raised up. In their approach, crack pixels were
identified by thresholding on coefficient maps of 2D CWT
through different scales. But in case of “strong texture”, the
CWT not only raises up crack pixels but also raise noise.

From our experience in pavement image analyzing and
by deduction from above researches, we found that crack has
three characteristics:

• Darker than its surrounding (because of crack form,
many light rays cannot be reflected from crack to cam-
era (Figure 1(b)),

• Continuous (crack can be thinner than aggregates but it
is always longer than them),

• Dominant orientation (on all length of crack or on each
segment).

Crack detection approaches, which use only the first fea-
ture, have limitations on difficult texture type of pavement.
Cell-dividing methods are only able to detect big crack.
When crack is small ( 1 or 2 pixels in width), cell-dividing
methods cannot distinguish crack-cell and normal - cell by
only considering mean and variance of the cell. Threshold
method has drawbacks on dark textures and on low contrast
cracks [6].

In this paper, we introduce a crack detection method us-
ing an anisotropy measure. This measure takes into account
all of threes above crack features. Our experimental results
show that the method gives a good crack detection on several
pavement types. Crack which is as small as one millimeter in
width can be detected. Furthermore, two other types of de-
fect (joint and bridged) which have similar features as crack
can be detected by our method.

In the next sessions, after a brief description of our acqui-
sition system, we describe our defect detection and classifi-
cation method. Experimental results are presented in com-
parison with other methods and with the results of operator
detection. Finally, conclusions are given.



(a) (b) (c)

Figure 1: Crack analysis: 3D profile (a), illumination model
on a crack (b), dominant orientation (c)

2. IMAGE ACQUISITION SYSTEM

The vehicle continuously captures road images (each 4 me-
ters by 4 meters) as it travels at an average speed of 80 kilo-
meters per hour. Captured image size is 4096x4096 and its
resolution is 1mm per pixel, 8 bits grayscale. Image acqui-
sition is performed with two line scan cameras mounted at
an angle of approximately 30 degrees to road surface, cap-
tured regions are illuminated by two laser illuminators (Fig-
ure 2(b)), therefore, light condition has almost no effect on
the quality of acquired images [6].

(a) (b)

Figure 2: Our road image accquisition system: Vehicle
AMAC R©(a), image acquisition system of AMAC R©(b)

3. CRACK DETECTION AND CLASSIFICATION
METHOD

In this part, we describe our automatic defect detection
method. We devide the method into three steps. First step
is to detect position of lane-marking. In second step, defect
is detected by calculation of anisotropy. The last step is to
classify defect using different defect features extracted from
the second step.

3.1 Lane-marking detection
Thanks to the constant illumination of two laser illuminators,
we don’t need to normalize captured image as it was done
in [11, 13]. Another problem remaining before crack detec-
tion is road lane-marking. Lane-marking contours could be
detected as a defect. Detecting lane markings also become
critical to determine location of defects. On images cap-
tured by AMAC R©system, lane marking is not occluded and
have a high value of greyscale level. To detect lane marking,
firstly, we applied a threshold to get a binary image of white
pixels (the pixels which have value greater than a threshold
thrlm). Then we used Probabilistic Hough Transform [15] to
detect lines on this binary image. Lane-markings were de-

tected from these lines in consideration to their orientations
and their dimensions. An example of lane-marking detection
is shown in Figure. 3

(a) (b)

Figure 3: Lane-marking detection on a road image: Lines
detection by Hough transforms (a), lane-marking detection
result (b)

If any lane-marking is present in the inspected image, its
region (e.g. the black rectangular in Figure 3(b)) will not be
considered in the defect detection. The lane-marking pixels
are not taken into account to calculate global information of
the image.

3.2 Defect detection based on Texture Anisotropy
3.2.1 Definition of Conditional Texture Anisotropy

Conditional Texture Anisotropy (CTA) was first introduced
by F. Roli in [15]. The main idea is to find out a measure
which takes small value in one orientation (e.g. along the
orientation of crack) and takes big value in other orientations.
The CTA of a pixel l was defined as:
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is sub-vector of X l representing n features computed
along orientation j.

- Pixels in an inspected image are divided into two classes:
defect-free pixels class w1 and defective pixels class w2.

- p(xl
j/l ∈ w1) is the conditional probability of pixel l be-

long to defect-free pixels class w1 along orientation j.
According to crack characteristics, if k is the dominant
orientation of a crack (Figure 1(c)) p(xl

k/l ∈w1) will take
low value for pixels belonging to this crack. As well
p(xl

j/l ∈ w1) will take high values for other orientations
j 6= k.

We can deduce from equation 1 that CTA takes values in
range [0,1]. CTA value is close to 0 for defect free pixel.
At crack pixel, CTA takes high value (close to 1) because
features extracted along crack orientation are very different
from other orientations.



3.2.2 Crack detection by CTA

According to crack characteristics on road surface images,
we chose mean and standard deviation as two features for
calculating CTA. The calculation method is presented as fol-
lows:

- 2∗d +1 is the length of a line, along which we calculate
each feature (Figure 4(a)).

- Four orientations 0◦, 45◦, 90◦ and 135◦ were considered.
- Two features were used: mean ml

j and standard deviation
σ l

j of 2∗d +1 pixels along considered orientation j.

Feature vector of pixel l along orientation j is :

xl
j = (ml

j,σ
l
j) (2)

To evaluate the pre-assumed probability of a pixel l to be
“a defect-free pixel in one orientation j” we calculated:

p(xl
j/l ∈ w1) =

D−∆ j

D
(3)

m and σ are calculated on the whole image (except lane-
marking pixels). Equation (3) can be compared with a nor-
malized distance which is close to 1 for defect-free pixel.
Mean and standard deviation along each defect-free orienta-
tion are “near” global values. In case of crack pixel, distance
∆k along the dominant orientation k of defect increases and
p(xl

k/l ∈ w1) decreases towards zero. CTA is then calculated
as in equation (1) by using p(xl

j/l ∈ w1) defined in equation
(3). It is worth noting that p(xl

j/l ∈ w1) is a pre-assumed
probability value used for calculating CTA. We don’t detect
defects by using this pre-assumed probability but by calcu-
lating CTA. The information which plays the most important
role for defect detection is the distribution of mean and stan-
dard deviation values along different orientations.

Figure 4 illustrates a calculation of CTA on two pix-
els: crack pixel l1 and defect-free pixel l2. With pixel l1,
values of (ml

j,σ
l
j) along 4 orientations are: (99.12,47.55),

(93.7,34.50), (37.9, 14.39) and (104.77,39.45). (ml
j,σ

l
j) of

image is (123.58, 48.13). CTA of l1 is 0.64. With pixel l2,
values of (ml

j,σ
l
j) along 4 orientations are: (111.97, 36.01),

(108.95, 25.84), (110.52, 33.46), (116.05, 29.60). CTA of l2
is 0,08.

Figure 5 shows us the evolution of CTA on l1 and l2
(Figure 4.b) by different lengths d. The inspected road is
a bituminous concrete, whose aggregate maximum size is
12 mm. In order to CTA can distinguish crack pixels from
noise pixels, d needs to be chosen to ensure that 2∗d +1 >>
aggregate size. There are several pavement types but their
maximum aggregate size are always much smaller than crack
length. So d is chosen in manner that 2∗d +1 is greater than
maximum aggregate size of all pavement types. As a result,
the method is stable to variations of pavement types. As we
can see in figure 5, all d length from 8 pixels to 38 pixels
can be used to make a big difference of CTA value on crack
pixels and on defect-free pixels.

When CTA image (image which represent computed
CTA values) is computed, CTA of crack pixels are much
greater than defect-free pixels (Figure 6 (b)). Thus, crack
pixels (Figure 6 (c)) are easily detected by a threshold from
CTA image.

(a) zoom (b) original image

(c) distribution of mean and standard deviation calculated on l1 and l2

Figure 4: Example of CTA on two pixels: crack pixel l1 and
crack-free pixel l2 with d = 14.

Figure 5: CTA evolution on pixel l1 and l2 by varying d.

(a) (b) (c)

Figure 6: Crack detection example: Original images (a),
CTA image result (CTA values were converted scale from
[0,1] to [0,255] grey level ) (b,). Crack detection result (c)

3.2.3 Joint and bridged detection

Two other defects: joint and birdged are also very common
on road. Joints (Figure 7(a,b)) have all three characteristics
of cracks. Therefore, joint can be detected by using CTA
with a higher value of d. (d must be greater than joint width
to ensure that mean and standard deviation calculated on



dominant orientation are different from other orientations).
Bridged defects (Figure 7(c,d)) is similar to background but
their contours have two characteristics: continuity and dom-
inant orientation. Our method can detect bridged contours
and then bridged defect (Figure 10).

(a) joint defect (b) zoom on joint

(c) bridged defect (d) zoom on bridged

Figure 7: Joint and bridged defect example.

3.3 Features extraction
We regrouped defect pixels detected from the above steps
into connected regions. Then we apply a “close” succeed by
an “open” morphological operations [6] to connect the close
pixels and to remove small regions which are considered as
noise. Remaining regions should be:

- Crack(Longitudinal, transversal or alligator),
- Joint,
- Bridged contour,
- Defect-free region but by effect of traffic, this region is

aligned.
We noticed that:
+ Cracks have a lowest value of mean and standard devia-

tion.
+ Joint is darker than a bridged contour. Joint is much

higher than crack and bridged contour.
+ Bridged contours separate two different regions.

Five features were extracted from each connected region to
classify them:
* Mean (with pixel values are taken from original image)
* Standard deviation.
* Width of boundary rectangle.
* Difference of mean and standard deviation of two cells at

two sides of the connected region.
Each above feature is normalized by its maximum to take
value from 0 to 1 (mean and standard deviation is normalize
with 255; width is normalized with the diagonal of image).

3.4 Defect classification
To classify defect, we used a multi-layer perceptrons neural
network (MLPNN), the most commonly used type of neural
networks. MLPNN consists of the input layer, output layer
and one or more hidden layers. Each layer of MLP includes
one or more neurons that are directionally linked with neu-
rons from previous and next layer [16]. We chose a MLP
with two hidden layers for our application. Five neurons in
input layer correspond to 5 above features and 4 neurons in
output layer correspond to 3 defect classes and one defect-
free class. The MPLPNN was trained with back-propagation
algorithm. We selected training images from different defect
(and defect-free) images on different pavement types. The
training set was chosen from images captured during year
2007. For test we use images captured during year 2008. The
training set contains 150 defect free images, 100 longitudi-
nal crack images, 87 transversal crack images, 35 alligators
crack images, 100 joints and 100 bridgeds.

4. EXPERIMENTAL RESULTS

Because small crack cannot be seen in reduce images, we
will present results of crack detection on a sub region of full-
size images.

(a) (b) (c) (d)

Figure 8: Comparison of our method with threshold method
[6] and Subirat’s 2D wavelet transform method [1] on a
“strong texture” image , d = 14: inspected image (a), Subi-
rat’s method (b), threshold method (c), our method CTA (d)

Comparative results of our method with threshold
method [6] and Subirat’s 2D CWT method [1] are shown
in Figure 8. The 2D wavelet transform raises the crack but
it raises up also noise because the continuity was not con-
sidered (Figure 8(b)). On the other hand, our method only
raises the continuous crack pixels. The threshold method
(Figure 8(c)) has limitations because it cannot differentiate
a dark pixel of defect-free texture from a crack pixel.

In Figure 9. We show detection result on defect image
of joint type. Our method can detect this type of defect with
“high”value of d ( in this example, d = 28).

(a) (b) (c) (d)

Figure 9: Result on an image with joint defect, d = 28: in-
spected image (a), zoom (b), CTA image (c), defect detection
(d)

Results of detection on a bridged image are shown in Fig-
ure 10, as bridged are similar to background texture, they are



detected via detection of bridged contours.

(a) (b) (c) (d)

Figure 10: Result on an image with bridged defect, d = 14:
inspected image (a), zoom (b), CTA image (c), defect detec-
tion (d)

Detection and classification results on a real road im-
age set are presented in table 1. This set was selected
from images captured during year 2008. We tried to col-
lect images with different pavement types and different de-
fect type(variation of width, length and orientation of each
defect type). Results on this set show that our method pro-
vides a very good detection on cracks and joints. Cracks as
small as 2 mm (1 mm = 1 pixel) can be detected, even the
”well” continuous cracks as small as 1 mm can be detected.
The seven undetected cracks are composed of a set of very
small and discontinuous segments. Results on bridgeds are
not as good as results on cracks and joints. As some bridgeds
are too similar to background, its contours cannot be detected
or our method cannot distinguish these bridgeds with other
aligned regions on road surface. Aligned regions are also the
reason for 6% wrong detection on defect-free images.

Image type Number Errors Percentage
of of

images good detection (%)
Defect-free 200 8 96

Crack 271 7 97.4
Joint 235 0 100

Bridged 203 18 91.13

Table 1: Detection and classification result on a real road
image set

5. CONCLUSION

In this paper, we introduced a method for defect detection
on road surface images. Our method can detect three defect
types: cracks, joints and bridged. The method use a mea-
sure of Conditional Texture Anisotropy (CTA) to detect de-
fects on images and then use a multi-layer perceptron neural
network to classify detected defect into three defect types:
cracks, joint and bridged. The classification of defect can
also correct the wrong detection of a defect-free image by
classifying it to defect-free class. Unlike other methods that
only considered one characteristic of crack, our method use
CTA which takes into account all three features of crack. The
comparison results of our method with other methods show
the efficiency of our method and justify our choice.

Further more, to improve the performance of the neural
network in classification of defect to data outside of training
set (new type of road pavement). We plant to implement a
retrainable neural network [17] which can adapt the trained
neural network to the current data.
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