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Abstract

Quantum chromodynamics (QCD) is the theory of subnuclear physics, aiming at mod-
eling the strong nuclear force, which is responsible for the interactions of nuclear particles.
Lattice QCD (LQCD) is the corresponding discrete formulation, widely used for simula-
tions. The computational demand for the LQCD is tremendous. It has played a role in the
history of supercomputers, and has also helped defining their future. Designing efficient
LQCD codes that scale well on large (probably hybrid) supercomputers requires to express
many levels of parallelism, and then to explore different algorithmic solutions. While al-
gorithmic exploration is the key for efficient parallel codes, the process is hampered by the
necessary coding effort.

We present in this paper a domain-specific language, QIRAL, for a high level expression
of parallel algorithms in LQCD. Parallelism is expressed through the mathematical struc-
ture of the sparse matrices defining the problem. We show that from these expressions and
from algorithmic and preconditioning formulations, a parallel code can be automatically
generated. This separates algorithms and mathematical formulations for LQCD (that be-
long to the field of physics) from the effective orchestration of parallelism, mainly related
to compilation and optimization for parallel architectures.

1 Introduction

Quantum Chromodynamics (QCD) is the theory of strong subnuclear interactions[13]. Lattice
QCD (LQCD) is the numerical approach to solve QCD equations. LQCD simulations are
extremely demanding in terms of computing power, and require large parallel and distributed
machines. At the heart of the simulation, there is an inversion problem:

Ax = b, (1)

where A is a large sparse (also sparse and implicit) matrix, called Dirac matrix, b is a known
vector and x is the unknown. To model reality accurately, A should be of size around 232 × 232

elements at least. Current simulations on supercomputers handle sizes up to 224 × 224 ele-
ments. High performance LQCD codes on multicores, multinode and hybrid (using GPUs)
architectures are quite complex to design: performance results from the interplay between the
algorithms chosen to solve the inversion and the parallelism orchestration on the target archi-
tecture. Exploring the space of algorithms able to solve the inversion, such as mixed precision
or communication-avoiding algorithms, aggressive preconditioning, deflation techniques or any
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combination of these is essential in order to reach higher levels of performance. Many hand-
tuned, parallel libraries dedicated to LQCD, such as Chroma [5] or QUDA [2] propose building
blocks for these algorithms, so as to ease their development. Parallelism does not stem from
the algorithm themselves but from the structure of the sparse matrices involved in the com-
putation. However, there are a number of shortcomings to the library approach: First, any
significant evolution of the hardware requires to tune the library to the new architecture. This
can lead to change the grain of parallelism (as an adaptation to cache sizes for instance) or
change the data layout. Then, sparse matrices for LQCD, in particular the matrix A, have
a very regular structure and library functions take advantage of it. Combining different algo-
rithms, such as preconditioners, leads to structural changes in matrices that are not supported
by these libraries. These two limitations hinder considerably the time necessary to develop a
parallel/distributed code.

We propose in this paper a high-level Domain-Specific Language, QIRAL, to model LQCD
problems and enable automatic parallel code generation. This novel approach makes possible
the exploration and test of new algorithms for LQCD. Sparse matrices in LQCD can be struc-
tured using algebra operators on dense matrices and the key idea is to use this structure to
express parallelism. This extends ideas proposed in SPIRAL [8], the library generator for DSP
algorithms to more complex codes and matrices. The problem formulation is first presented in
Section 2, then the language is described in Section 3 and its implementation in Section 4.

2 Lattice QCD Description

The principle of LQCD is to discretize space-time and describe the theory on the resulting
lattice. The lattice has to contain a very large number of sites since it has to be fine grained and
describe large enough volumes. LQCD exists since 1974. Huge progress in hardware, software
and algorithms have been achieved, but it is not enough to really sit on the parameters of nature.
The light quarks, “u” and “d” are still described by quarks heavier than in nature while the
heavy “b” quark is described as lighter. This implies systematic errors in our results. To break
this limitation, several orders of magnitudes will be needed in the computing power and related
resources. It will demand new hardware with several level of parallelism, and make coding more
and more complicated. Our goal is to provide tools helping to face this new situation.

The heaviest part in the LQCD calculation is to generate a large Monte-Carlo sample of very
large files (field configurations) according to an algorithm named “Hybrid Monte-Carlo”. It is a
Markovian process, every step of which takes several hours on the most powerful computers. The
algorithm is complex but it spends most of its time in inverting very large linear systems which
depend on the field configuration. Typically one will deal with matrices with billions of lines and
columns. The second heaviest part in the calculation is to compute ”quark propagators” which
again boils down to solving large linear systems of the same type[7]. Therefore we will concentre
on this task. The matrices involved in these computation represent 4D stencil computations,
where each vertex is updated by the value of its 8 neighbours. Their structure is therefore very
regular, statically known, and it is used in the following section.

3 A High-Level Domain-Specific Language

QIRAL is a high level language for the description of algorithms and for the definition of
matrices, vectors and equations specific to LQCD. The objective of the algorithmic part is
to define algorithms independently of the expression of sparse matrices used in LQCD. The
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Dirac = IL⊗C⊗S

+ 2 ∗ i ∗ κ ∗ µ ∗ IL⊗C ⊗ γ5

+ κ ∗
∑

d∈D

((J
−d
L

⊗ IC ) ∗
⊕

s∈L

U(d)[s]) ⊗ (IS + γ[d])

+ κ ∗
∑

d∈D

((J
d
L ⊗ IC ) ∗

⊕

s∈L

U(−d)[s]) ⊗ (IS − γ[d])

Figure 1: Definition of Dirac matrix on a Lattice L in QIRAL.

objective of the system of definitions and equations is to define properties and structure sparse
matrices in order to be able to find parallelism. While the algorithmic part uses straightforward
operational semantics, the equational part defines a rewriting system.

For the sake of simplicity, QIRAL is a subset of LATEX, meaning that the QIRAL input can
be either compiled into a pdf file, for rendering purposes, or compiled into executable codes.
Algorithms and definitions correspond to different predefined LATEX environments.

Variables, Types: Variables and constants used in QIRAL are vectors (denoted by the type
V) of any length, matrices of any size (M), complex (C) or real numbers (R). Besides, counted
loops are indexed by variables of type index, iterating over a domain (denoted indexset).
Index variables are potentially multidimensional, and integers are a particular case of index
value. Functions of any number of argument of these types can be also defined. The size of a
vector is defined through the size of its index set. The size of an index set can be left undefined.
If V1 is the vector and IS is an index set, V1[IS] denotes the subvector indexed only by IS.

Matrices and vectors cannot be manipulated or defined element-wise. Instead, matrices and
vectors are built using either constant, predefined values such as identity IIS (for the identity
on an index set IS), or operators such as +,−, ∗ and the transposition, conjugate, direct sum
and tensor product. The tensor product ⊗ and direct sum ⊕ are defined by:

A ⊗ B = [aijB]ij , A ⊕ B =

(

A 0
0 B

)

.

These two operators define parallel operations and help defining the sparse matrices of LQCD.

Definition and Equations: All LQCD knowledge is given as a system of definition (for
matrices and vectors) and a system of equations on these values. In particular, the structure
of sparse matrices, explicitly defining where non-zero elements are located, is given in these
definitions. This structure is then propagated in the algorithms. Figure 1 defines the sparse
Dirac matrix. Declarations of index sets L, C, S,D are not shown here, as well as the declaration
of the constant matrices used here.

The direct sums indexed by the vertices of the lattice (L) define block-diagonal matrices.
These diagonals are then shifted by d or −d columns by a permutation matrix Jd

L
(predefined).

Algorithms, Preconditioners: Many algorithms proposed for solving Equation 1 are
Krylov methods. Figure 2 presents two algorithms in QIRAL. The first is a variant of the
conjugate gradient and is representative of iterative methods. The second one, Schur com-
plement method, is a preconditioner: Computing x, solution of Equation 1 is achieved by
computing two solutions to smaller problems.

The keyword Match helps to define the algorithm as a rewriting rule: Whenever the state-
ment in the Match condition is found, it can be rewritten by the algorithm. For the SCHUR
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preconditioner, this rewriting can be performed at the condition that the requirement is ful-
filled: P1AP t

1 has to be invertible. Using identities defined through the equation system, the
rewriting system proves here that indeed, the requirement is valid, when matrix A is Dirac
matrix and P1 is a projection matrix keeping only vertices of the lattice with even coordinates
(even-odd preconditioning). QIRAL is expressive enough to represent different variants of con-

Algo 1: Conjugate Gradient, Normal
Resolution [CGNR]

Input : A ∈ M, b ∈ V, ǫ ∈ R

Output : x ∈ V

Match : x = A−1 ∗ b
Var : r, p, Ap, z ∈ V, α, β, nr, nz, nz1 ∈ R

r = b ;

z = A† ∗ r;
p = z ;
x = 0 ;
nz = (z | z) ;
nr = (r | r) ;
while (nr > ǫ) do

Ap = A ∗ p;
α = nz/(Ap | Ap) ;
x = x + α ∗ p ;
r = r − α ∗ Ap ;

z = A† ∗ r ;
nz1 = (z | z) ;
β = nz1/(nz) ;
p = z + β ∗ p ;
nz = nz1 ;
nr = (r | r) ;

Algo 2: Definition of Schur complement
method [SCHUR]

Input : A, P1, P2 ∈ M, b ∈ V
Output : x ∈ V

Match : x = A−1 ∗ b
Var : v1, v2, x1, x2 ∈ V,D11, D12, D21, D22 ∈ M

Require : invertible(P1 ∗ A ∗ Pt
1)

D21 = P2 ∗ A ∗ Pt
1 ;

D11 = P1 ∗ A ∗ Pt
1 ;

D22 = P2 ∗ A ∗ Pt
2 ;

D12 = P1 ∗ A ∗ Pt
2 ;

v1 = P1 ∗ b ;
v2 = P2 ∗ b ;

x2 = (D22 − D21 ∗ D
−1
11 ∗ D12)−1 ∗ (v2 − D21 ∗ D

−1
11 ∗ v1) ;

x1 = D
−1
11 ∗ (v1 − D12 ∗ x2) ;

x = Pt
1 ∗ x1 + Pt

2 ∗ x2 ;

Figure 2: Two algorithms. On the left: A variant of the conjugate gradient method; on the
right: A preconditioner, the Schur complement method.

jugate gradient, BiCGSTAB, methods with restart (such as GCR), and other methods proposed
by physicists.

4 From QIRAL to parallel code

The QIRAL compiler takes as input a file describing algorithms and equations and generates
parallel code. The phases are described in 3 and presented in detail in the following.

◗■❘❆▲

▲❆❚❊❳ ✜❧❡
t❡①✷♠❛✉❞❡

✭❙②♥t❛① tr❛♥s❧❛t♦r✮
▼❛✉❞❡

✳♠❛✉❞❡

◗■❘❆▲ s❡♠❛♥t✐❝s
✭✯✳♠❛✉❞❡✮

▲✐♦♥
✭❙②♥t❛① ♣♦st♣r♦❝❡ss♦r✮

♣s❡✉❞♦❝♦❞❡

✳❝ ❝♦❞❡❈ ❝♦♠♣✐❧❡r ✭❣❝❝✱ ✐❝❝✱ ✳ ✳ ✳ ✮

❙❦❡❧❡t♦♥✱ r✉♥t✐♠❡✱

❝✉st♦♠ ❢✉♥❝t✐♦♥s

❊①❡❝✉t❛❜❧❡

Figure 3: Overview of QIRAL compilation chain

Rewriting System Generation: From its current LATEX implementation, the QIRAL input
is translated into a set of rewriting rules and equations, using Maude framework [3]. Maude
is a multi-purpose rewriting system, handling equational rewriting rules and reflection. More
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precisely, definitions are translated by a first phase, tex2maude into equations (or conditional
equations) and algorithms into rewriting rules. The output file contains domain specific defini-
tions (e.g. the Dirac operator from Figure 1), the desired program (in our case x = Dirac−1b),
and all algorithms and preconditioners we want to apply.

Definitions have a semantic similar to a rewriting rule: the left hand side is rewritten into
the right hand side. To ensure the existence of a normal form, the system of equation has to be
convergent and confluent. So far, our implementation does not use a tool such as an automatic
Church-Rosser Checker [4] . Algorithms are translated into conditional rules, applied is their
prerequisite are checked. The left hand side of the rule correspond to the Match clause and the
algorithm itself is the right hand side.

This rewriting system is merged with another one defining general algebraic properties, code
generation rewriting rules and code optimizations. The main phase of the QIRAL compiler is
therefore described through rewriting system, following works such as Stratego [11]. QIRAL
is a static strongly type language, vectors and matrices are defined by their index sets. Type
checking is the first analysis achieved by this main phase.

Applying Algorithms and Simplifications: The user provides the list of algorithms to
compose and the initial program (here, we focused on the equation x = Dirac−1b). Exploring
different algorithms and sequences of algorithms boils down to change the list given to the QI-
RAL compiler. Checking that algorithm requirements is automatically achieved by the rewriting
system, using the equational theory provided through the system of definitions. The equational
system, using both equations coming from LQCD definitions and algebraic properties involving
the different operators, simplifies terms that are equal to zero.

The result is a program where the matrix A of the algorithms has been replaced either by
the Dirac matrix, or by a matrix obtained through transformation by preconditioners.

Loop generation and parallelization: At this step, the initial statement has been replaced
by the algorithm statements, directly using the Dirac matrix or a preconditioned version. As-
signment statements are vector assignments: Values for all vertices of the lattice can be modified
in one statement. Matrices are still described using tensor products and direct sums.

Loops are obtained by transforming all indexed sums, products into loops or sequences. For
instance, the direct sum operator indexed by the lattice L in the definition of Dirac matrix, in
Figure 1 is transformed into a parallel loop over all elements of the lattice. This loop is parallel,
due to the meaning of ⊕. As the lattice is 4D, either 4 nested loops are created, or one single,
linearized loop is created. The choice depends on a parameter in the QIRAL compiler.

Some usual compiler transformations are then used, computing dependences, fusioning
loops, applying scalar promotion and other optimizations. At the end of this phase, an OpenMP
code is produced, essentially by identifying for parallel loops the set of private variables. These
transformations are driven by rewriting strategies, using reflection in Maude.

Matching Library Calls: The resulting code still uses some high level operators on dense
matrices, such as tensor products on dense matrices, matrix-vector product. These operators
are then replaced by library calls. For this step, it is sufficient to define for each library the
expression it computes, as a rewriting rule. We defined LION, a set of hand-written library
functions used for validation purposes.

Finally, post-processing phase, mostly syntactic rewriting, transforms this output into a C
function. This function is compiled with a program skeleton and a runtime that initializes
data, calls the generated code and stores the result. Custom functions can also be defined here
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...

while(nr > epsilon) {

#pragma omp parallel for private(ID30,ID31,ID43,ID44,ID56)

for(iL = 0; iL < L; iL ++) {

ID31 = spnaddspn(matmulspn(tensor(U[uup(iL, dt)], gmsubgm(gmdiag(c1), G(dt))), p[sup(IDX, dt)]),

spnaddspn(matmulspn(tensor(U[uup(iL, dz)], gmsubgm(gmdiag(c1), G(dz))), p[sup(IDX, dz)]),

spnaddspn(matmulspn(tensor(U[uup(iL, dy)], gmsubgm(gmdiag(c1), G(dy))), p[sup(IDX, dy)]),

matmulspn(tensor(U[uup(iL, dx)], gmsubgm(gmdiag(c1), G(dx))),

p[sup(IDX, dx)])))) ;

ID30 = cplmulspn(kappa, ID31) ;

ID44 = spnaddspn(matmulspn(tensor(U[udn(iL, dt)], gmaddgm(gmdiag(c1), G(dt))), p[sdn(IDX, dt)]),

spnaddspn(matmulspn(tensor(U[udn(iL, dz)], gmaddgm(gmdiag(c1), G(dz))), p[sdn(IDX, dz)]),

spnaddspn(matmulspn(tensor(U[udn(iL, dy)], gmaddgm(gmdiag(c1), G(dy))), p[sdn(IDX, dy)]),

matmulspn(tensor(U[udn(iL, dx)], gmaddgm(gmdiag(c1), G(dx))), p[sdn(IDX, dx)])))) ;

ID43 = cplmulspn(kappa, ID44) ;

...

Figure 4: Sample output C code produced for CGNR algorithm

since undefined operations from the QIRAL input appear as functions calls. One application
is to call BLAS routines instead of letting QIRAL implement them. For instance one defines
a rule that says (C = A ∗ B) = dgemm(A,B,C). At this stage, we are more concerned about
the correctness of the output rather than the efficiency of the code, which will be the purpose
of further steps. Automatically generated codes for different algorithms and preconditionings
show different convergence speed, as shown in Figure 5.
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Figure 5: Convergence speed for a lattice of size 44 for different methods: Conjugate Gradi-
ent Normal Error (CGNE), Normal Resolution (CGNR), Biconjugate Gradient (BiCGSTAB),
Modified conjugate gradient with preconditioning (MCR1).

5 Conclusion

This paper has presented an overview of QIRAL, a high level language for automatic parallel
code generation of Lattice QCD codes. The language is based on algorithmic specifications and
on mathematical definitions of mathematical objects used in the computation.
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The contribution of this short paper is to show that a high-level representation makes
possible the automatic generation of complex LQCD parallel code. Parallelism directly stems
from the structure of sparse, regular matrices used in LQCD. While the initial matrix represents
a stencil computation, QIRAL is able to manipulate more complex structures obtained through
preconditioning for instance, unlike Pochoir [10]. The approach, similar to the one proposed
by Ashby et al. [1] enables the user to define new equations and domain-specific definitions.
The QIRAL compiler is able to keep such information through transformations resulting from
preconditioners or algorithms. The tensor product and direct sum operators are translated into
parallel loops and lead to OpenMP code generation. This way, algorithmic exploration, the
key for higher levels of performance, can be freed from the constraints and costs of parallel
tuning. Besides generation of distributed codes with communications is within reach. For
heterogeneous architectures, such as Cell or GPUs, further work for automatic data-layout
optimization is required, in order to reach levels of performance of previous works (such as
[12, 6, 9] for the CELL BE and [2] for the GPU).
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